六年级数学重点内容 不定方程
六年级奥数第28讲:不定方程

简单的不定方程所谓有定方程,是指未知数的个数多于方程个数的方程(组)。
解不定方程的方法是:(1)根据整除知识,缩小未知数的取值范围,然后试算求解。
(2)分析末位数字,缩小未知数的取值范围,寻求方程的整数解。
(3)求出一个未知数用另一个未知数表示的式子,然后试算求解。
(4)直接根据方程确定未知数的取值范围,通过试算求解。
例1、马小富在甲公司打工,几个月后又在乙公司兼职。
甲公每月付给他薪金470元,乙公司每月付给他薪金350元。
年终,马小富从两家公司共获薪金7 620元。
问他在甲公司打工多少个月,在乙公司兼职多少个月。
做一做:有A、B、C三种商品若干,价值共300元,其中A商品单价为16元,B商品单价为158元,C商品单价为19元。
那么,全部C商品至少价值多少元?最多价值多少元?例2、要把1米长的优质铜管锯成长38毫米和长90毫米两种规格的小铜管,每锯一次都损耗1毫米铜管,那么,只有当锯得的38毫米铜管和90毫米的铜管各为多少段时,所损耗的铜管才能最少?做一做:一个同学把他生日的月份乘以31,日期乘以12,然后加起来的和是170,你知道他出生于何月何日吗?例3、某单位的职工到效外植树,其中的男职工,也有女职工,并有31的职工各带一个孩子参加,男职工每人种13棵树,女职工每人种10棵树,每个孩子种6棵树,他们共种了216棵树,那么其中女职工有多少人?做一做:一群猴子采摘水蜜桃。
猴王不在的时候,一只大猴子1小时可采摘15千克,一只小猴子1小时可采摘11千克;猴王在场监督的时候,大猴子的51和小猴子的51必须停止采摘,去伺候猴王,有一天采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共摘3 382千克水密桃。
问:在这个猴群中,共有大猴子多少只?例4、小明用5天时间看完一本200页的故事书。
已知第二天看的页数比第一天多,第三天看的页数是第一天、第二天看的页数之和,第四天看的页数是第五天至少看了多少页?做一做:有一堆围棋子,白子颗数是黑子颗数的3倍。
六年级奥数不定方程

六年级奥数不定方程Prepared on 21 November 2021第六讲不定方程【知识要点】1、许多数学家需要用方程或方程组来求解。
要想获得未知数的唯一解,能独立列出的方程个数必须与未知数的个数相等。
如果方程个数少于未知数的个数,则称之为不定方程或不定方程组,以为此时未知数一般有无数多个解,解是不确定的。
但如果结合具体问题,增加一些对解的限制条件,如只求自然数解等,这样的不定方程的解就只有有限个或唯一一个了。
必须注意,限制条件中,有些是明显的,有些则是隐藏的。
2、求不定方程的自然数解或正整数解,关键是充分利用整除特征,尝试找出第一解;对于其他的所有解,可通过解的规律,逐一罗列出来,并不困难。
【例题精讲】例1:求下列方程的整数解(x>0,y>0)。
(1)5x+10y=14;(2)11x+3y=89.【思路点拨】5和10有公因数5,而14没有公因数5,所以原方程无整数解;y=29-3211x,11x-2能被3整除且x<9。
模仿练习:(1)求满足方程5x+3y=40的自然数解。
(2)设A 和B 都是自然数,且满足11A +7B =7757,求A+B 的值。
例2:某单位职工到郊外植树,其中31的职工各带了一个孩子参加,男职工每人种13棵树,女职工每人种10棵,每个孩子种6棵树,他们共种了216棵树,那么其中有女职工多少人【思路点拨】设有女职工x 人,男职工y 人,那么有孩子3y x +人,这个条件说明3|x+y 。
模仿练习:某小学共有大、中、小宿舍12间,能住80人。
每间大宿舍能住8人,每间中宿舍能住7人,每间小宿舍能住5人。
问中、小宿舍共有多少间例3:有四个自然数A 、B 、C 、D ,它们的和不超过除以B 商5余5;A 除以C 商6余6;A 除以D 商7余7,这四个自然数的和是多少【思路点拨】A=5B+5=6C+6=7D+7,A 一定是5,6,7的公倍数。
模仿练习:有三张扑克牌,牌的数字各不相同,并且都小于10,把三张牌洗好后,分别发给甲、乙、丙三人,每人记下自己牌的数字,再重新洗牌、发牌、记数。
小学六年级奥数第40讲 不定方程(含答案分析)

第40讲不定方程一、知识要点当方程的个数比方程中未知数的个数少时,我们就称这样的方程为不定方程。
如5x-3y =9就是不定方程。
这种方程的解是不确定的。
如果不加限制的话,它的解有无数个;如果附加一些限制条件,那么它的解的个数就是有限的了。
如5x-3y=9的解有:x=2.4 x=2.7 x=3.06 x=3.6y=1 y=1.5 y=2.1 y=3如果限定x、y的解是小于5的整数,那么解就只有x=3,Y=2这一组了。
因此,研究不定方程主要就是分析讨论这些限制条件对解的影响。
解不定方程时一般要将原方程适当变形,把其中的一个未知数用另一个未知数来表示,然后再一定范围内试验求解。
解题时要注意观察未知数的特点,尽量缩小未知数的取值范围,减少试验的次数。
对于有3个未知数的不定方程组,可用削去法把它转化为二元一次不定方程再求解。
解答应用题时,要根据题中的限制条件(有时是明显的,有时是隐蔽的)取适当的值。
二、精讲精练【例题1】求3x+4y=23的自然数解。
先将原方程变形,y=23-3x4。
可列表试验求解:所以方程3x+4y=23的自然数解为X=1 x=5 Y=5 y=2 练习11、求3x+2y=25的自然数解。
2、求4x+5y=37的自然数解。
3、求5x-3y=16的最小自然数解。
【例题2】求下列方程组的正整数解。
5x+7y+3z=253x-y-6z=2这是一个三元一次不定方程组。
解答的实话,要先设法消去其中的一个未知数,将方程组简化成例1那样的不定方程。
5x+7y+3z=25 ①3x-y-6z=2 ②由①×2+②,得13x+13y=52X+y=4 ③把③式变形,得y=4-x。
因为x、y、z都是正整数,所以x只能取1、2、3.当x=1时,y=3当x=2时,y=2当x=3时,y=1把上面的结果再分别代入①或②,得x=1,y=3时,z无正整数解。
x=2,y=2时,z也无正整数解。
x=3时,y=1时,z=1.所以,原方程组的正整数解为 x=1y=1z=1求下面方程组的自然数解。
六年级不定方程

解:设需要大客车x辆,小客车y辆, 则 48x+30y=306 即 8x+5y=51, 可以变形为:y=(51-8x)÷5, 由于y是自然数,所以51-8x应该是5的倍数, 我们不难找出:x=2;y=7。
5
例题精讲
例4、一个工人将99颗子弹装入两种盒子中,每个大盒子装12 颗,小盒子装5颗,恰好装完,已知盒子数大于10,问这两种 盒子各有多少个?
7
练习题
2、大旅游车有50个座位,小旅游车有21个座 位,现有284位乘客去八达岭旅游,要使每位 旅游者都有座位且车上没有空座位,共需多少 辆旅游车?
分析:没有空座,即 坐满,列出符合题意 的不定方程求解即可。
解:设大旅游车x辆,小旅游车y辆, 则50x+21y=284,变形得:x=( 284-21y)÷50 即284-21y是50的倍数,y只能取4 ,此时x=4,即共需8辆旅游车 。
所以,解答这类方程,一定要 找出题中明显或隐含的限制条 件。亦可以根据整除知识,缩 小未知数的取值范围,然后试 算求解。
2
例题精讲
例1、求不定方程7x+11y=276的自然数解。
题中不定方程的限制条件就是x、y都是自然数。将不定方程7x+11y= 276变形为:x=(276-11y)÷7,由于x、y都是自然数,说明276- 11y应该是7的倍数,y可以从最小的自然数1开始试验。经过试验,y可 取6、13、20,相对应,x=30、19、8。
分析:题中已经告诉我们恰好装完,则大盒子与小盒子总量就 是99颗,且注意限制条件,所需的盒子数必须大于10 。列出 符合题意的不定方程求出解。
解: 设大盒有x只,小盒有y只,列方程得:12x+ 5y=99,且x+y>10,x,y都是整数。 变形得:x=(99-5y)÷12,99-5y是12的倍 数,可得:x=2时,y=15,符合条件; x=7,y=3时,x+y=10,不符合条件。 所以大盒子有2只,小盒子有15只。
小学数学六年级(上)第07讲 不定方程(含答案)

一般地,如果 是 的一组解,那么 (当 时)也是 的一组解.这是因为 .另外, (当 时)也是 的一组解,理由相同.
这条性质有什么用呢?我们以求 的自然数解为例,我们容易看出它有一组自然数解 .应用上面的规律, 每次增加3, 每次减少2(只要 还是自然数),所得结果仍然是 的一组解,所以 、 、 、 、 都是 的自然数解.另外 每次减少3(只要 还是自然数), 每次增加2,所得结果也是 的自然数解,所以 、 、 也都是 的自然数解.而且这样就已经求出了 的所有自然数解,它们是:
例5.我国古代数学家张丘建在《算经》一书中提出了“百鸡问题”:鸡翁一值钱五,鸡母一值钱三,鸡雏三值钱一.百钱买百鸡,问鸡翁、鸡母、鸡雏各几何?这个问题是说:每只公鸡价值5文钱,每只母鸡价值3文钱,每3只小鸡价值1文钱.要想用100文钱恰好买100只鸡,公鸡、母鸡和小鸡应该分别买多少只?
「分析」题中有几个未知量?由这些未知量你能列出几个方程?
《张丘建算经》
张丘建,北魏清河(今山东邢台市清河县)人,中国古代数学家,著有《张丘建算经》.该书的体例为问答式,条理精密、文辞古雅,是中国古代数学史上少有的杰作.
《张丘建算经》现传本有92问,比较突出的成就有最大公约数与最小公倍数的计算,各种等差数列问题的解决,某些不定方程问题的求解.百鸡问题就是其中一个著名的不定方程问题.
练习3、天气炎热,高思学校购置了大、小空调若干.每台大空调每天耗电38度,每台小空调每天耗电13度.已知所有大空调日耗电量之和恰好比所有小空调日耗电量之和少1度.请问:单位里最少购进了多少台空调?
例4.将一根长为380厘米的合金铝管截成若干根长为36厘米和24厘米两种型号的短管,加工损耗忽略不计.问:剩余部分最少是多少厘米?
不定方程概念

不定方程概念
不定方程是一个含有未知数的方程,通常是一个非线性方程,其中未知数的数量大于方程中的已知系数的数量。
一个不定方程可能有多个解,而且通常没有一般的解析解。
不定方程的目标是找到满足方程的未知数的所有可能的取值。
不定方程的求解可以通过代数、数论、几何等方法进行。
代数方法通常包括代数运算和方程变形,以便将方程化简为已知数和未知数的关系。
数论方法通常使用数学的数论理论和性质,将方程的解限制在某些整数范围内。
几何方法通常使用几何图形和性质,将方程的解转化为几何问题的解。
不定方程在数学和工程领域中广泛应用,例如在密码学中的离散对数问题、模线性方程问题;在控制理论中的状态估计和参数辨识问题;在经济学中的最优化和均衡问题等等。
不定方程的求解方法和技巧因问题的不同而各异,需要灵活运用数学知识和解题技巧。
六年级数学第10讲:不定方程

目录第10讲不定方程 (1)兴趣篇 (1)拓展篇 (5)超越篇 (11)第10讲不定方程兴趣篇1、有两种不同规格的油桶若干个,大油桶能装8千克油,小油桶能装5千克油,44千克油恰好装满这些油桶。
问:大、小油桶各几个?【答案】大油桶3个,小油桶4个【分析】设大桶x个,,小桶y个,则8x+5y=44。
尾数判断:y必为偶数,8x尾数为4。
那么有8x=24 x=3y=(44-24)÷5=4答:有大油桶3个,小油桶4个。
2、有150个乒乓球分装在大、小两种盒子里,大盒每盒装12个,小盒每盒装7个。
问:需要大、小盒子各多少个才能恰好把这些球装完?【答案】大盒9个,小盒6个或者大盒2个,小盒18个【分析】设大盒子x个,小盒子y个,则12x+7y=150两边取7的模,有()53mod7x ≡x =2+7k (k N ∈)又x ≤15012.512=,故x 共有2个取值:2,9。
不定方程有2组正整数解:218x y =⎧⎨=⎩,96x y =⎧⎨=⎩答:需要2个大盒子,18个小盒子或9个大盒子,6个小盒子。
3、小花狗和波斯猫是一对好朋友,它们在早晚见面时总要叫上几声表示问候。
若是早晨见面,小花狗叫2声,波斯猫叫1声;若是晚上见面,小花狗叫2声,波斯猫叫3声。
细心的小娟对它们的叫声统计了15天,发现它们并不是每天早晚都见面,在这15天内它们共叫了61声。
问:波斯猫至少叫了多少声?【答案】27声【分析】依题意,猫狗早晨见面,共叫了3声,晚上见面,共叫了5声,设它们15天中白天见面x 次,晚上见面y 次,显然x ,y ≤15,那么3x +5y =61,两边取5的模,有:31(mod5)25()x x k k N ≡⇒=+∈有3组解:211x y =⎧⎨=⎩,78x y =⎧⎨=⎩,125x y =⎧⎨=⎩ 对应的小猫分别叫了:35,31,27次,故最少叫27声。
4、庙里有若干个大和尚和若干个小和尚共七百多人,已知7个大和尚每天共吃41个馒头,19个小和尚每天共吃60个馒头,平均每个和尚每天恰好吃4个馒头。
6年级-2-不定方程-难版

第2讲 不定方程在列方程组解答应用题时,有两个未知数,就需要有两个方程。
有三个未知数,就需要有三个方程。
当未知数的个数多于方程的个数时,这样的方程称为不定方程,为纪念古希腊数学家丢番图,不定方程也称为丢番图方程。
不定方程在小学奥数乃至以后初高中数学的进一步学习中,有着举足轻重的地位。
而在小学阶段打下扎实的基础,无疑很重要。
不定方程是由于联立方程的条件“不足”而出现的,从一般情况来说,有无数多个解。
不过,我们要注意到它的“预定义”条件,比如未知项是自然数,比如在数位上的数码不仅是自然数,而且是一位数等等,甚至题干中直接给出限制条件,这样,就使得不定方程的解“定”下来了。
这种情况也不排除它的取值不止一种。
不定方程解的情况比较复杂,有时无法得出方程的解,有时又会出现多个解。
如果考虑到题中以一定条件所限制的范围,会有可能求出唯一的解或几种可能的解(而这类题的限制范围往往与整数的分拆有很大关系)。
解答这类方程,必须要对题中明显或隐含的条件加以判断、推理,才能正确求解。
【例1】★求方程2725=+y x 的正整数解。
【解析】因为2y 为偶数,27为奇数,所以5x 为奇数,即x 为奇数典型例题知识梳理⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==15,63,111y x y x y x 【小试牛刀】求方程4x +10y =34的正整数解【解析】因为4与10的最大公约数为2,而2|34,两边约去2后,得 2x +5y =17,5y 的个位是0或5两种情况,2x 是偶数,要想和为17,5y 的个位只能是5,y 为奇数即可;2x 的个位为2,所以x 的取值为1、6、11、16……x =1时,17-2x =15,y =3,x =6时,17-2x = 5,y =1,x =11时,17-2x =17 -22,无解所以方程有两组整数解为:16,31x x y y ==⎧⎧⎨⎨==⎩⎩ 【例2】★ 设A ,B 都是正整数,并且满足3317311=+B A ,求B A +的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级数学重点内容不定方程
专题简析:
当方程的个数比方程中未知数的个数少时,我们就称这样的方程为不定方程。
如5x-3y=9就是不定方程。
这种方程的解是不确定的。
如果不加限制的话,它的解有无数个;如果附加一些限制条件,那么它的解的个数就是有限的了。
如5x-3y=9的解有:
x=2.4 x=2.7 x=3.06 x=3.6
………
y=1 y=1.5 y=2.1 y=3
如果限定x、y的解是小于5的整数,那么解就只有x=3,Y=2这一组了。
因此,研究不定方程主要就是分析讨论这些限制条件对解的影响。
解不定方程时一般要将原方程适当变形,把其中的一个未知数用另一个未知数来表示,然后再一定范围内试验求解。
解题时要注意观察未知数的特点,尽量缩小未知数的取值范围,减少试验的次数。
对于有3个未知数的不定方程组,可用削去法把它转化为二元一次不定方程再求解。
解答应用题时,要根据题中的限制条件(有时是明显的,有时是隐蔽的)取适当的值。
例1.
求3x+4y=23的自然数解。
先将原方程变形,y=23-3x
4。
可列表试验求解:
X=1 x=5 Y=5 y=2 练习一
1、求3x+2y=25的自然数解。
2、求4x+5y=37的自然数解。
3、求5x-3y=16的最小自然数解。
例2
求下列方程组的正整数解。
5x+7y+3z=25
3x-y-6z=2
这是一个三元一次不定方程组。
解答的实话,要先设法消去其中的一个未知数,将方程组简化成例1那样的不定方程。
5x+7y+3z=25 ①
3x-y-6z=2 ②
由①×2+②,得13x+13y=52
X+y=4 ③
把③式变形,得y=4-x。
因为x、y、z都是正整数,所以x只能取1、2、3.
当x=1时,y=3
当x=2时,y=2
当x=3时,y=1
把上面的结果再分别代入①或②,得x=1,y=3时,z无正整数解。
x=2,y=2时,z也无正整数解。
x=3时,y=1时,z=1.
所以,原方程组的正整数解为 x=1
y=1
z=1
练习2
求下面方程组的自然数解。
1、-2z=7
2、 7x+9y+11z=68
3x+2y+4z=21 5x+7y+9z=52
4、5x+7y+4z=26
3x-y-6z=2
例3
一个商人将弹子放进两种盒子里,每个大盒子装12个,每个小盒子装5个,恰好装完。
如果弹子数为99,盒子数大于9,问两种盒子各有多少个?
两种盒子的个数都应该是自然数,所以要根据题意列出不定方程,再求出它的自然数解。
设大盒子有x个,小盒子有y个,则
12x+5y=99(x>0,y>0,x+y>9)
y=(99-12y)÷5
经检验,符合条件的解有: x=2 x=7
y=15 y=3
所以,大盒子有2个,小盒子有15个,或大盒子有7个,小盒子有3个。
练习3.
1、某校6(1)班学生48人到公园划船。
如果每只小船可坐3人,每只大船可
坐5人。
那么需要小船和大船各几只?(大、小船都有)
2、甲级铅笔7角钱一枝,乙级铅笔3角钱一枝,小华用六元钱恰好可以买两种
不同的铅笔共几枝?
3、小华和小强各用6角4分买了若干枝铅笔,他们买来的铅笔中都是5分一枝
和7分一枝的两种,而且小华买来的铅笔比小强多,小华比小强多买来多少枝?
例题4
买三种水果30千克,共用去80元。
其中苹果每千克4元,橘子每千克3元,梨每千克2元。
问三种水果各买了多少千克?
设苹果买了x千克,橘子买了y千克,梨买了(30-x-y)千克。
根据题意得:
4x+3y+2×(30-x-y)=82
x=10-y 2
由式子可知:y<20,则y必须是2的倍数,所以y可取2、4、6、8、10、12、
14、16、18。
因此,原方程的解如下表:
练习4
1、有红、黄、蓝三种颜色的皮球共26只,其中蓝皮球的只数是黄皮球的9倍,
蓝皮球有多少只?
2、用10元钱买25枝笔。
已知毛笔每枝2角,彩色笔每枝4角,钢笔每枝9角。
问每种笔各买几枝?(每种都要买)
3、晓敏在文具店买了三种贴纸;普通贴纸每张8分,荧光纸每张1角,高级纸
每张2角。
她一共用了一元两角两分钱。
那么,晓敏的三种贴纸的总数最少是多少张?
例5
某次数学竞赛准备例2枝铅笔作为奖品发给获得一、二、三等奖的学生。
原计划一等奖每人发6枝,二等奖每人发3枝,三等奖每人发2枝。
后又改为一等奖每人发9枝,二等奖每人发4枝,三等奖每人发1枝。
问:一、二、三等奖的学生各有几人?
设一等奖有x人,二等奖有y人,三等奖有z人。
则
6x+3y+2z=22 ①
9x+4y+z=22 ②
由②×2-①,得12x+5y=22
y =22-12x
5
x=1
x只能取1。
Y=2,代入①得z=5,原方程的解为 y=2
z=5 所以,一等奖的学生有1人,二等奖的学生有2人,三等奖的学生有5人。
练习5
1、某人打靶,8发打了53环,全部命中在10环、7环和5环。
他命中10环、7
环和5环各几发?
2、篮子里有煮蛋、茶叶蛋和皮蛋30个,价值24元。
已知煮蛋每个0.60元,茶
叶蛋每个1元,皮蛋每个1.20元。
问篮子里最多有几个皮蛋?
3、一头猪卖31
2
个银币,一头山羊卖1
1
3
个银币,一头绵羊买
1
2
个银币。
有人用
100个银币卖了这三种牲畜100头。
问猪、山羊、绵羊各几头?
答案:
练1
1、 x=1 x=3 x=5 x=7
y=11 y=8 y=5 y=2
2、 x=3 x=8
y=11 y=1
4、 x=5
y=3
练2
1、x=1
y=3
z=3
2、 x=3 x=4
y=4 y=2
z=1 z=2
3、 x=3
y=1
z=1
练3
1、设需要小船x只,大船y只。
则3x+5y=48,y=48-3x
5
根据题意,x可取1、
6、11,
方程的解是 x=1 x=6 x=11 y=9 y=6 y=3
2、设买甲级笔x枝,乙级笔y枝,则7x+3y=60,y=60-7x
3。
x≤。