MIMO技术杂谈
浅谈mimo技术

浅谈MIMO技术一、MIMO技术的概念MIMO用于通信系统的概念早在20世纪70年代就有人提出,但是对无线移动通信系统MIMO技术产生巨大推动的奠基工作则是20世纪90年代由AT&T(Am erican Telephone& Te legraph Company,美国电话电报公司)Bell实验室学者完成的。
1995年Teladar给出了在衰落情况下的MIMO容量。
1996年Foshini给出了一种MIMO处理算法——D- BLAST(Diagonal- BLAST,对角BLAST)算法,1998年Tarokh等讨论了用于MIMO的空时码,1998年Wolinansky等采用V-BLAST(Vertica l-BLAST,垂直BLAST)算法建立了一个MIMO实验系统,在室内试验中达到了20bps/Hz以上的频谱利用率,这在普通系统中是极难实现的。
这些工作引起了各国学者的极大注意,并使得MIMO的研究得到了迅速发展。
多输入多输出(MIMO)技术是指在发射端和接收端分别使用多发射天线和接收天线,信号通过发射端的和接收端的多个天线传送和接收,从而改善每个用户得到的服务质量(误比特率或数据速率)。
而传统的通信系统是单进单出( Single- InputSing le-Output SISO)系统,基于发射分集和接收分集的多进单出(Multiple-Input Single- Output MISO)方式和单进多出( Single-InputMultiple-Output SIMO)方式也是MIMO的一部分。
二、MIMO技术的研究现状作为无线高速数据传输的关键技术——MIMO,其理论、性能、算法和实现的各方面均被各国学者广泛地进行着研究。
在MIMO系统理论及性能研究方面已有一批文献。
这些文献已涉及相当广泛的内容,但是由于无线移动通信MIMO信道是一个时变、非平稳多输入多输出系统, 尚有大量问题需要研究。
MIMO无线移动通信系统关键技术研究

MIMO无线移动通信系统关键技术研究MIMO无线移动通信系统关键技术研究随着移动通信技术的快速发展,人们对高速、高容量的无线通信需求日益增加。
多输入多输出(MIMO)技术作为一种有效提高无线通信性能的关键技术逐渐受到广泛关注。
本文针对MIMO无线移动通信系统中的关键技术进行研究探讨。
首先,多天线技术是MIMO系统的基础。
传统的无线通信系统一般采用单天线进行通信,而MIMO系统利用多天线同时发送和接收信号,从而大大提高了信号传输的可靠性和速率。
在MIMO系统中,发射端和接收端配备多个天线,通过分别发送和接收多个信号流,可以充分利用多径传播中的空间分集和多路径增益,从而提高信号质量。
因此,多天线技术是实现MIMO系统的关键。
其次,空时编码技术是MIMO系统中的一项重要技术。
空时编码技术通过在不同的天线上编码不同的信号,并且合理组合成一个空时码字进行传输。
距离接收端越远的信号会经历更多的多径传播效应,容易受到更多的干扰,而多天线的应用可以通过编码和解码过程中的信号处理技术减少干扰并提高系统的性能。
在MIMO系统中,采用空时编码技术可以通过编码矩阵的设计,使多天线之间相互独立,从而实现多用户同时传输的要求。
另外,使用智能天线技术也是MIMO系统中的一项重要技术。
智能天线是指具有信号处理和调度功能的天线单元,可以通过其自身对通信环境的感知和信息处理来优化系统性能。
智能天线可以根据当前通信环境的特征自适应地选择最佳的天线配置和信号传输方式,从而提高系统的容量和覆盖范围。
此外,空间分集技术也是MIMO系统中的一项关键技术。
空间分集技术利用多个天线分别接收多条独立的信号,通过信号处理技术在接收端进行合并处理,从而减少信道传输过程中的信号衰落和干扰,提高信号的可靠性和传输速率。
在实际应用中,空间分集技术可以通过引入码间交织和空间多路复用等技术手段,进一步提高系统的性能。
最后,MIMO系统中的信号检测技术也是至关重要的。
移动通信的MIMO技术

移动通信的MIMO技术移动通信技术一直在不断发展和演进,以满足用户对更高速、更可靠的通信需求。
多输入多输出(MIMO)技术作为其中一种重要的发展方向,其在提高通信性能和增强信号覆盖方面具有显著优势。
本文将对MIMO技术的原理、应用和未来发展进行探讨。
一、MIMO技术的原理MIMO技术利用多个天线进行数据传输和接收,通过同时传输多个数据流,提高信号传输速率和系统容量。
其基本原理是利用多个天线在发射端同时发送不同数据流,接收端的多个天线则同时接收这些数据流,并通过解调和复合技术还原出原始信号。
通过利用天线之间的空间多样性和分集增益,MIMO技术可以有效提高系统的吞吐量、抗干扰能力和信号覆盖范围。
二、MIMO技术的应用1.无线局域网(WLAN):MIMO技术已广泛应用于Wi-Fi网络中,通过增加天线数量和使用多个频段,可以提高网络的传输速率和覆盖范围,为用户提供更稳定、更快速的无线接入体验。
2.移动通信:MIMO技术在4G LTE和5G移动通信标准中得到了广泛应用。
通过利用多个天线进行空间复用和频谱复用,可以提高系统的峰值传输速率,降低信道干扰,提升用户体验和网络容量。
3.无线电广播和电视:MIMO技术在无线电广播和电视传输中也有应用,通过使用多个天线发送和接收信号,可以提高信号的覆盖范围和质量,减少信号受阻和衰减的影响,提升音视频传送的效果。
4.车联网:MIMO技术在车载通信中也有应用,通过利用车载天线进行信号传输和接收,可以提升车联网系统的可靠性和传输速率,支持高速移动环境下的数据传输和车辆间通信。
三、MIMO技术的进一步发展1.大规模MIMO:大规模MIMO是MIMO技术的一种演进形式,通过进一步增加天线数量和采用更高级的信号处理技术,将可以实现更高的信号传输速率和更强的抗干扰能力。
大规模MIMO将在未来的5G和6G通信系统中得到广泛应用。
2.智能反馈技术:智能反馈技术是指通过对信道状态信息进行精确测量和预测,并将其作为反馈信号发送到发射端,以实现更高效的MIMO数据传输。
MIMO技术在无线通信中的性能分析及优化方法研究

MIMO技术在无线通信中的性能分析及优化方法研究无线通信已经成为现代社会中不可或缺的一部分。
传输大量数据和提供高速网络连接的需求日益增长,因此需要更高效可靠的通信技术来满足这些需求。
MIMO(Multiple-Input Multiple-Output)技术作为一种先进的无线通信技术,已经被广泛应用于各种领域,包括移动通信、无线局域网和无线传感器网络等。
本文将对MIMO技术在无线通信中的性能分析以及优化方法进行深入研究,以探索如何提高无线通信的性能和可靠性。
首先,我们将对MIMO技术的基本原理进行介绍。
MIMO系统利用多个天线进行信号的发送和接收,通过空间上的多样性来提高信号的可靠性和传输速率。
MIMO系统中的多个发送和接收天线之间可以实现多路径通信,从而提供多样化的信道传输环境。
多天线之间的独立性使得MIMO系统具有抗信道衰落、抗干扰和提高频谱效率的优势。
其次,我们将分析MIMO技术的性能。
MIMO系统的性能评估主要包括误码率、信噪比和容量三个指标。
误码率是衡量信号传输过程中出现错误的概率,低误码率意味着更可靠的传输。
信噪比是信号的功率与噪声功率之比,用于衡量通信系统的性能。
容量是指单位时间内传输的最大比特数,也可以看作是系统的数据传输速率。
通过对这些指标的分析,我们可以评估MIMO技术在无线通信中的性能。
接下来,我们将探讨优化MIMO系统性能的方法。
目前,有许多方法可以用于提高MIMO系统的性能和可靠性。
首先,天线选择是一种简单而有效的方法,通过优化天线选择方案,选择合适数量和合适位置的天线,可以大大提高系统的性能。
其次,空时块编码(STBC)和空时码(STC)是一种常用的编码技术,通过编码多个信号以提高信号的可靠性。
此外,利用智能天线和自适应调制技术也可以有效地提高MIMO系统的性能。
最后,我们将探讨MIMO技术在实际应用中的一些问题和挑战。
尽管MIMO技术具有很多优势,但在实际应用中还存在一些问题。
通俗易懂的MIMO技术简介3篇

通俗易懂的MIMO技术简介第一篇:什么是MIMO技术?MIMO技术全称Multiple Input Multiple Output,中文翻译为“多输入多输出”,是一项近年来日益受到重视的无线通信技术。
简单来说,MIMO技术就是利用多个天线进行数据传输和接收,从而提高无线通信系统的可靠性和吞吐量。
MIMO技术的发展始于上世纪90年代,当时是由于无线通信系统中的多径效应导致信号传输质量下降,而MIMO是通过一定的技术手段来利用多个信道进行信号传输和接收,从而提高系统的性能表现。
在传统的单天线系统中,信号只能通过一个天线进行传输和接收,如有多径效应或者干扰等问题出现,就会影响信号的传输和接收质量。
而在MIMO系统中,可以利用多个天线同时进行传输和接收,从而提高了系统的可靠性和吞吐量,降低了误码率和传输延迟。
MIMO技术不仅适用于无线通信系统,也可以应用于Wi-Fi、蓝牙、雷达等领域,既能提高系统的性能表现,也可以降低功耗和成本。
随着5G时代的到来,MIMO技术将会得到更加广泛的应用和发展。
第二篇:MIMO技术的原理和实现方式MIMO技术的实现基于两个基本概念:时空编码和空间复用。
其中,时空编码是指将数据信号与多个天线传输的信号进行编码,以此提高传输的可靠性和吞吐量;空间复用是指在多个天线上进行数据的同时传输,以此提高系统的吞吐量和信号质量。
时空编码主要有两种方式:空时块码(STBC)和空时分组码(STGC)。
其中,STBC是在时间和空间两个方向进行数据编码,以此提高传输可靠性,适用于多径效应较强的无线环境;STGC则是在时间和频域两个方向进行数据编码,以此提高传输速率,适用于高速无线通信环境。
空间复用技术则主要有两种方式:空分多路复用(SDM)和空时多路复用(STDM)。
其中,SDM是通过将数据进行分割,然后分别发送到多个天线上,以此提高系统的吞吐量;STDM则是通过将不同的数据序列分成多个时间片段,在不同天线上传输,以此降低多径效应和干扰对系统的影响。
无线通信中的MIMO技术研究与应用

无线通信中的MIMO技术研究与应用在当今科技日新月异的时代,无线通信技术也在不断的发展和完善,为我们的生活带来了太多的便利和创新。
其中,MIMO技术作为一种在无线通信领域中的重要技术,其研究与应用也越来越广泛,为无线通信技术的发展提供了很多的潜力。
一、 MIMO技术概述MIMO是多输入多输出的简称,在无线通信中,它是指利用物理空间中的多径效应,在一定的频带宽度下,通过多个天线和多个接收机之间传输信息的技术。
在MIMO系统的系统设计中,它与其它多种技术如频率复用和编码一起使用,以实现更高的数据速率和较少的误码率。
由于MIMO技术的创新性和有效性,它被广泛应用于卫星通信、移动通信、无线电视、家庭局域网和无线网络等领域。
二、 MIMO技术的原理在MIMO系统中,网络的发射端和接收端都拥有多个天线,用于接收和发射信息。
通过不同的信道传输经过编码的多个信息流,并在接收端重新组合到一起,以实现更高的质量和速率。
这样的好处在于,它可通过使用空间多门技术来利用信道空间,通过平凡的PAM(脉振调制)或者QAM(码振调制)技术,达到多倍的速率提升。
三、 MIMO技术的发展历程MIMO技术的发展是始于20世纪90年代一些研究团队推出的一些传输理念的发展。
在1993年,卡尔罗林斯卡科技院的Andrea Goldsmith首先针对单天线的接收来研究宽带通信。
因为在单天线系统中,随着用户占用更多频率范围,噪声也会相应地增长,这激发了人们对MIMO的开发。
2001年,最早的标准通过了IEEE 802.11a,从而推动了MIMO的应用和发展。
四、 MIMO技术的应用1、移动通信作为一种无线通信领域的重要技术,MIMO技术被广泛应用于移动通信领域。
采用MIMO技术的移动通信系统,可以大大增强覆盖面,提高数据传输速率,提升系统的可靠性和性能,从而实现更高效、稳定的无线通信。
2、无线局域网应用MIMO技术的无线局域网,可为室内场景带来更加稳定、高速、宽广的通信,从而更好的支持企业内部、校园等场景内部的高速数据传输、视频流传输等应用。
MIMO无线技术的研究现状与发展趋势

MIMO无线技术的研究现状与发展趋势MIMO(Multiple-Input Multiple-Output)无线技术是一种利用多个天线实现的无线通信技术,可以显著提高无线通信系统的容量和性能。
在过去的几十年中,MIMO技术得到了广泛研究和应用,并在诸多无线通信标准中得到了采用。
本文将介绍MIMO无线技术的研究现状以及未来的发展趋势。
MIMO技术最早在20世纪90年代初被提出,并在当时被用于实现高速无线数据传输。
之后,MIMO技术经过了不断的研究与发展,成为了当前无线通信领域的重要技术之一、目前,MIMO技术已被广泛应用于Wi-Fi、LTE、5G等无线通信标准,并取得了显著的性能改善。
MIMO技术的研究现状主要体现在以下几个方面:首先,MIMO信道建模与预测是MIMO技术研究的基础。
由于MIMO信道具有复杂的时空特性,精确的信道建模对于系统设计和性能分析至关重要。
目前,研究人员通过实测数据和仿真模型,不断改进MIMO信道建模的准确性和适用性,并提出了许多新的信道预测算法。
其次,多用户MIMO(MU-MIMO)是当前MIMO技术研究的热点之一、传统的MIMO技术主要关注点是单个用户的数据传输,而MU-MIMO技术则可以同时服务多个用户,大幅提高系统的容量和效率。
目前,研究人员通过联合传输、干扰管理和波束成形等技术,不断提升MU-MIMO系统的性能。
另外,基于大规模天线阵列的MIMO技术也受到了广泛的关注。
大规模天线阵列可以提供更多的自由度,进一步增加系统的容量和抗干扰性能。
研究人员正在探索如何设计高效的天线阵列、解决天线之间的互相干扰以及实现低成本的天线封装等问题。
此外,MIMO技术在无线通信系统中的定位与导航应用也受到了研究人员的关注。
通过利用MIMO信道的多路径传输特性,可以实现高精度的室内定位和导航,为人们的生活带来更多便利。
未来首先,随着5G技术的快速发展,MIMO技术在5G系统中将得到更广泛的应用。
浅谈MIMO技术汇总

浅谈MIMO技术一、MIMO简介MIMO(Multiple—Input Multiple—Output)即是多输入多输出技术,是指在发射端和接收端分别使用多个发射天线和接收天线,信号通过发射端和接收端的多个天线传送和接收,从而改善每个用户的服务质量(误比特率或数据速率)。
MIMO系统根据收发两端天线数量,相对于普通的SISO(Single—Input Single-Output)系统,MIMO还可以包括MISO(Multiple-Input Single-Output)系统和SIMO(Single-Input Multiple-Output)系统.MISO系统SIMO系统1.MIMO的发展历史实际上多进多出(MIMO)技术由来已久,早在1908年马可尼就提出用它来抗衰落.在70年代有人提出将多入多出技术用于通信系统,但是对无线移动通信系统多入多出技术产生巨大推动的奠基工作则是由AT&TBell实验室学者完成的。
1995年Teladar给出了在衰落情况下的MIMO容量;1996年Foshinia给出了一种多入多出处理算法—-对角—贝尔实验室分层空时(D-BLAST)算法;1998年Tarokh等讨论了用于多入多出的空时码;1998年Wolniansky等人采用垂直-贝尔实验室分层空时(V—BLAST)算法建立了一个MIMO实验系统,在室内试验中达到了20bit/s/Hz以上的频谱利用率,这一频谱利用率在普通系统中极难实现。
这些工作受到各国学者的极大注意,并使得多入多出的研究工作得到了迅速发展。
至2010年年底,IEEE数据库收录该领域的研究论文已达上万篇,从MIMO无线通信技术的理论研究到实验验证,再到商用化的各个方面。
目前,国际上很多科研院校与商业机构都争相对MIMO通信技术进行深入研究。
2.MIMO 技术特点随着无线通信技术的快速发展,频谱资源的严重不足已经日益成为遏制无线通信事业的瓶颈。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无线通信世界在过去的几十年中的发展简直是爆发式的,MIMO(多发多收)技术的出现更是将通信理论推向了另一个高峰。
它已经成为当今乃至今后很多年内的主流物理层技术。
所以,理解一些MIMO技术的思想,对于理解通信收发原理,乃至通信系统设计,都是很有帮助的。
笔者不才,通信小兵一名,冒昧在此布下一贴,愿与大家一同探讨MIMO技术心得。
希望我们能够通过彼此的交流学习,共同体验到无线通信之美。
然而笔者能力有限,若有不足及错误之处,还请广大通信战友指正。
鱼与熊掌能否兼得?--浅谈分集与复用的权衡在无线通信的世界里,分集和复用是两项最基本的技术。
提到分集,就不得不说起经典的“罗塞塔”石碑。
在这块1799年被世人发现的石碑上,分别用埃及象形文,埃及草书与古希腊文三种文字刻着埃及国王托勒密五世诏书。
这种记录方式对现代的研究者来说简直是福音,只要有一种文字能够被识别,诏书的内容就得以保存。
在无线通信中,分集的思想与之类似。
它把一个数据重复发送多次,以保证接收端能够正确收到。
罗塞塔石碑分集的方式有很多种。
在传统的单发单收(SingleInput,SingleOutput;SISO)系统中,可以通过时间来实现分集。
在多发多收(MultipleInput,MultipleOutput;MIMO)系统中,收发双方拥有多根天线,分集可以在不同的天线上实现,这种方法也叫做空间分集。
例如,我们想把符号“X”从发送端传递给接收端,如果采用时间分集,只要在不同的时刻t1,t2,…分别发送X就可以了;若采用空间分集,则可以将X在不同的天线上进行发送。
有两件事情需要注意:第一,分集的次数越多,传输的成功率就越高;第二,在空间上的分集,节省了时间资源。
然而,我们很快就发现了一个问题:不管在时间上还是空间上的分集,传输的效率并不高。
比如在图2中,尽管我们有4根发送天线,但由于发送内容相同,一个时刻(t1)实际上只传输了一个符号(X)。
要知道,如果在不同的天线上发送不同的数据,我们一次就可以传输4个符号!--这种“在不同的天线上发送不同的数据”的发送思想也叫空间多路复用,V-BLAST,最早由贝尔实验室提出。
现在棘手的事情来了,“分集”告诉我们,把数据重复发送多次可以提高传输的可靠性,“复用”则说,把资源都用来发送不同的数据可以提高传输速率。
“分集”和“复用”似乎站在了天平的两端,你偏重哪一方,势必会降低另一方的性能。
那么,在无线通信系统中,发送策略究竟要怎样设计才好呢?它又能否兼顾“分集”与“复用”呢?要回答这些问题,我们不妨把“分集”和“复用”分别当做两个评价发送策略的标准,然后把设计的发送策略都拿出来比比看,打个分,孰优孰劣不就一目了然了么?我们把衡量空间分集的标准叫做“分集增益”。
有一个很简单的方法来看一个通信系统能提供多少分集增益,就是数数看从发送天线到接收天线间有多少条“可辨识”的传播路径(为什么强调“可辨识”?下一篇文章《犹抱琵琶半遮面--MIMO信道中隐藏的秘密》将详细讲述这个问题)。
衡量复用的标准当然是看一个系统每时刻最多可以发送多少个不同的数据,也叫做“自由度”。
举例来说,在一个1x2的系统中,发送端有一根天线,接收端有两根天线,如图表3所示。
从天线A发出的X可以通过路径1到达B,也可以通过路径2到达C,这就表示1x2的系统有两条不同的传播路径,可以提供的最大分集增益是2。
由于发送端只有一根天线,所以每个时刻只能发出一个数据,故它具有的自由度就是1。
我们可以把这样的分析扩展到接收端有多个天线的情况:对一个有n根接收天线的SIMO系统来说,能够提供的最大分集增益是n,自由度是1。
我们再来看看发送端配有多天线的情况。
先考虑具有两根发送天线的MISO系统,如图表4所示。
我们也能找出两条不同的传播路径,分别为A到C 的路径1;B到C的路径2。
所以2x1的MISO系统可以提供的最大分集增益也是2。
现在发送端有两根发送天线,一次可以发出两个不同的符号,是否说明2x1的系统具有的自由度是2呢?这个问题挺有意思,需要我们特别的分析一下。
假设在t1时刻,天线A上发送Y,天线B上发送X,那么接收天线C上得到的接收信号就是h1·Y+h2·X,其中h1和h2分别是传播路径1和2的信道增益。
我们考虑相干解调,即h1和h2在接收端已知,现在,任何一个学过奥数的小学生也会大声的告诉你:“这里有两个未知数X和Y,但是只有一个方程,从一个方程中是无法解出两个未知数的!”所以,这就说明2x1的MISO系统无法支持2个自由度,它的自由度只能是1。
我们把这个问题扩展一下,既然从一个方程中不能解出两个未知数,那么如果能再写出一个传输方程,不就可以解出这两个未知数了吗?其中一种提供额外方程的方法就是在接收端多加一根天线。
这就是我们下面要讨论的2x2MIMO 系统。
类似于2x1系统的分析,我们在接收端加了一根天线D,在D上接收到的信号就是h3·Y+h4·X。
现在,即使发送端发出两个不同信号,接收端也能轻松处理了。
所以2x2的MIMO系统支持的自由度是2(这也是为什么V-BLAST系统要求接收天线数要大于等于发送天线数的原因)。
我们不难数出,2x2的系统有4条不同的传播路径,故它能提供的最大分集增益是4。
回到刚才的问题,在2x1系统中,还有一种方法可以提供额外的传输方程,就是在时间上进行分集。
比如我们在 t1和t2时刻重复发送X 和Y,接收端同样可以得到关于X和Y的两个传输方程。
现在,我们把时间维度也引入到发送策略的设计中来,这种结合了时间和空间的发送策略,其实有一个响亮的名字--空时编码。
当然,如何在时间和空间两个维度上分配好资源,却是一门艺术。
当引入了时间维度后,我们可以设计以下的发送策略:天线A在时刻t1和t2上都发Y,天线B上都发X。
我们用了两个时刻,一共传输了两个不同的数据,所以每个时刻传输的数据量,即获得的自由度是1(2/2=1)。
刚才我们分析过,一个2x1系统的最大自由度就是1,换句话说,这种发送策略在自由度这个评价标准下获得了满分!我们再来考察它能得到多少分集增益。
在t1和t2时刻,Y都从天线A上发送,它只能通过传播路径1到达C;同理,X也只能通过路径2到达C,每个数据都无法遍历所有的传播路径,只用到了其中一条,所以这种发送策略能获得的分集增益就是1。
而2x1系统能提供的最大分集增益是2,看来,这种发送策略在分集增益上的得分并不理想。
那么,如何才能获得所有的分集增益呢?这里有个小技巧,那就是,在t2时刻,从天线A上发送X,从天线B上发送Y。
这样一来,X在两个时刻上,分别由传播路径2和1到达接收端,它能够遍历两条传播路径,所以这个发送策略获得的分集增益就是2。
注意到,拥有图表7所示的空时编码结构,就是著名的Alamouti码(真正的Alamouti码是在t2时刻发送-Y*和X*,并且假设信道在t1和t2时刻是不变的,这样的设计是为了满足数学上的准则,本文描述的形式只为了分析Alamouti码的分集与复用特性)。
到现在为止,我们已经知道一个具有特定天线配置的系统所拥有的最大分集增益和自由度是多少,我们也知道如何去分析一种发送策略,看它能够获得多少分集增益和自由度。
接下来,我们就以2x2MIMO系统为例,分别考察下“重复编码”,“Alamouti编码”和“V-BLAST”三种发送策略。
回忆一下,2x2MIMO 系统拥有的最大分集增益是4,自由度是2。
(1)重复编码。
重复编码的策略是这样的:在时刻t1,天线A上发送X,天线B关闭,什么也不发;在时刻t2,天线B上发送X,天线A关闭。
有了之前的分析经验,我们可以很快看出重复编码的性能:在t1和t2两个时刻,X分别由传播路径1,3和2,4到达接收端,所以重复编码获得的分集增益是4。
但经过了两个时刻,只传送了一个符号X,它的自由度只有1/2。
(2)Alamouti编码。
前面我们已经分析了Alamouti码在2x1系统下的性能,在2x2 MIMO系统中,分析类似。
我们简单回顾一下:经过两个时刻,每个符号都可以遍历4条传播路径,故可以获得的分集增益是4;这两个时刻一共发送了两个不同的符号,所以获得的自由度是1。
(3)V-BLAST系统。
在V-BLAST系统中,每个时刻,两根发送天线上都发送不同的数据,所以它获得的自由度是2。
但分析V-BLAST系统的分集增益就没有那么简单了,因为这与它采用的接收方式有关(关于接收机设计的话题,后续会有专门的讨论,这里只简述其思想)。
如果采用ML接收机,它的中心思想是把接收信号投影到待检测信号的“方向”上。
比如我们要检测X,它通过传播路径1和3到达接收端,那么,信号X的“方向”就只和这两条路径有关,我们只需要关注这两条路径就可以了。
沿着这个思路,我们可以把V-BLAST系统分解成两个SIMO子系统。
现在再进行分析就容易多了,很明显,每个信号都经历了两条传播路径,所以,使用ML接收机的V-BLAST 系统,能获得的分集增益是2。
V-BLAST系统中,接收机还可以使用“解相关”的方式。
顾名思义,它的中心思想就是将接收信号投影在干扰信号的“正交方向”上,把干扰消灭掉,那么剩下的不就是待检测信号了么。
这里,我们将V-BLAST系统分解成两个MISO 子系统,以便于分析。
对于接收天线C,它同时收到了从路径1和路径2到达的信号X和Y。
如果我们想检测X,就要消除干扰Y。
同理,在接收天线D上,可以通过消除X来检测信号Y。
当干扰都被消除掉以后,我们清晰的看到,V-BLAST 系统变身为拥有两条独立平行子信道的系统,两条子信道间互不干扰。
这时,每个信号只能经历1条传播路径,故采用干扰抵消(解相关)的V-BLAST系统可以获得的分集增益是1。
好了,到目前为止,我们已经分析了多种发送策略,但每种策略,都各有所长。
比如Alamouti码可以获得最高的分集增益,而V-BLAST在自由度的评比上又当仁不让。
那么,现实的MIMO通信系统中,是如何选择发送策略的呢?通常,一套完整的通信物理层协议会定义许多种发送方式。
在实际通信过程中,收发双方会根据即时的通信条件和传播环境等因素,自适应的调整并选择最优的方式进行通信。
比如,当无线信道条件很差的时候,会更多的用到分集技术,来保证通信的可靠性;当信道条件良好的时候,就会选择复用,每次多发一些数据,以提高传输的速率。
闲话:2009年,IEEE正式通过了802.11n标准,这是第一个将MIMO技术引入到无线局域网的标准。
802.11n最大支持4天线,4个空间流(有几个空间流,就意味着能处理几路独立的数据,换句话说,空间流数可以理解为我们文章中提到的“自由度”)。
在40MHz带宽下,如果选择调制编码方式为64QAM,5/6编码速率时,最高的传输速率可以达到540Mbit/s!这个速率是以前SISO设备不敢想象的。