(英语试题)2012年广州市普通高中毕业班综合测试(一)

合集下载

【精品】2012年广州市普通高中毕业班综合测试(一)英语参考答案.doc

【精品】2012年广州市普通高中毕业班综合测试(一)英语参考答案.doc

2012年广州市普通高中毕业班综合测试(一)英语参考答案1. B2. A3. D4. C5. D6. A7. C8. D9. B 10. B 11. D 12. C 13. B 14. A 15. C26. C 27. D 28. C 29. A 30. B 31. D 32. C 33. A 34. B 35. C 36. D 37. C 38. B 39. A 40. B41. A 42. B 43. D 44. C 45. B 46. D 47. E 48. C 49. B 50. F一、完形1,B 原则,文章的第一句话内容就是原则。

上下义重现2,A,公司后面的麦当劳和摩托罗拉是公司名。

上下义重现3,D 可通过的前面的accessible 是提示同根重现4,C 与losing 同义重现5,D 网站,本文讲得最多是网站,原词重现6,A 意思上要表达不断增加7,C 根据常识,可以知道这里表达为很方便购物。

8,D 前面的does not let them do this 与closed 同义重现9,B 根据后文的law, 我们知道此处要选一个和法律相关的词,同义重现10,B 此处意为浏览。

11,D 与第10题前的ensuring 同根重现12,C 根据常识可以得出答案。

13,B 可以用排除法及同义重现得出usable,可以使用的。

14,A 根据意思,此处意为“遵循”15,C 利用排除法和原词重现,本文所讲的就是要让网站更容易访问。

二、语法填空16which 考察代词17cheerful /cheery形容词词性变化18digging 非谓语,可是后面有出现这个词19 lay 不规则动词过去式20for 介词21But 连词22left 非谓语(分词作状语)23where 连词24the 冠词25 because /since/as连词考察连词较多,介词才一个,形容词有两种形式。

表因为有三种形式。

(文数答案)2012年广州市普通高中毕业班综合测试(一)

(文数答案)2012年广州市普通高中毕业班综合测试(一)

2012年广州市普通高中毕业班综合测试(一)数学(文科) 答案说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半:如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共10小题,每小题5分,满分50分. 题号 1 2 3 4 5 6 7 8 9 10 答案DDCBCBACBA二、填空题:本大题考查基本知识和基本运算,体现选择性.共5小题,每小题5分,满分20分.其中14-15题是选做题,考生只能选做一题.第13题仅填对1个,则给3分.11.0 12.[0,1] 13.35,10 14.26 15.2三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(本小题主要考查两角和的正切、诱导公式、同角三角函数的基本关系和二倍角的余弦等知识,考查化归与转化的数学思想方法,以及运算求解能力)(1)解:)43tan()9(πππ+=f ………………………………1分 4tan3tan 14tan3tan ππππ-+=………………………………3分 323113--=-+=………………………………4分(2)解法1:因为)443tan()43(ππαπα++=+f …………………………5分)tan(πα+= …………………………6分 2tan ==α …………………………7分所以2cos sin =αα,即ααcos 2sin = ①因为1cos sin 22=+αα, ②由①、②解得51cos2=α, ………………………9分所以1cos 22cos 2-=αα ……………………11分 531512-=-⨯= …………………………12分解法2:因为)443tan()43(ππαπα++=+f ……………5分)tan(πα+= …………6分.2tan ==α ……………7分 所以ααα22sincos 2cos -= ……………………9分 αααα2222sin cos sin cos +-= ……………………10分 αα22tan 1tan 1+-=………………………11分 534141-=+-=……………………12分 17.(本小题满分12分)(本小题主要考查频率、频数、统计和概率等知识,考查数形结合、化归与转化的数学思想方法,以及运算求解能力)(1)解:由于图中所有小矩形的面积之和等于1,所以10×(0.005+0.01+0.02+a+0.025+0.01)=1.…………………1分 解得a=0.03. ………………………2分(2)解:根据频率分布直方图,成绩不低于60分的频率为1-10×(0.005+0.01)=0.85.………………………3分由于该校高一年级共有学生640人,利用样本估计总体的思想,可估计该校高一年级数学成绩不低于60分的人数约为 640×0.85=544人. ……………………………………5分 (3)解:成绩在[40,50)分数段内的人数为40×0.05=2人,分别记为A ,B .………6分 成绩在[90,100]分数段内的人数为40×0.1=4人,分别记为C ,D ,E ,F .……7分 若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生,则所有的基本事件有:(A,B),(A,C),(A,D),(A ,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D), (C,E),(C,F),(D,E),(D,F),(E ,F)共15种. …………………9分如果两名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这两名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这两名学生的数学成绩之差的绝对值一定大于10.记“这两名学生的数学成绩之差的绝对值不大于10”为事件M ,则事件M 包含的基本事件有:(A ,B),(C ,D),(C ,E),(C,F),(D,E),(D ,F),(E,F)共7种,……………………11分 所以所求概率为157)(=M P …………………………………………12分18.(本小题满分14分)(本小题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力) (1)证明:因为平面PAC ⊥平面ABC ,平面PAC ∩平面ABC=AC ,⊂PD 平面PAC ,PD ⊥AC , 所以PD ⊥平面ABC . …………………………2分 记AC 边上的中点为E ,在△ABC 中,因为AB=BC , 所以BE ⊥AC.因为6==BC AB,AC=4, 所以22CE BC BE -=22)6(22=-= ………………………4分 所以△ABC 的面积2221=⨯⨯=∆BE AC S ABC …………………5分 因为PD=2,所以三棱锥P-ABC 的体积⨯=-31ABC P V =⨯∆PD S ABC 32422231=⨯⨯………7分 (2)证法1:因为PD ⊥AC ,所以△PCD 为直角三角形.因为PD=2,CD=3,所以22CD PD PC+=2232+=13= ……………………………9分 连接BD ,在Rt △BDE 中,因为∠BED=900,2=BE ,DE=1,所以22DE BE BD +=31)2(22=+=. …………10分由(1)知PD ⊥平面ABC ,又⊂BD 平面ABC , 所以PD ⊥BD.在Rt △PBD 中,因为2,90==∠PD PDB,3=BD , 所以22BD PD PB+=7)3(222=+= ………………… 12分 在△PBC 中,因为13,7,6===PC PB BC . 所以BC 2+PB 2=PC 2. ………………13分 所以△PBC 为直角三角形. ……………14分证法2:连接BD ,在Rt △BDE 中,因为oBED 90=∠,2=BE ,DE=1,所以22DE BE BD +=31)2(22=+=. …………8分在△BCD 中,CD=3,3,6==BD BC , 所以BC 2+BD 2=CD 2,所以BC ⊥BD .………………10分由(1)知PD ⊥平面ABC ,因为⊂BC 平面ABC , 所以BC ⊥PD . 因为BD ∩PD=D ,所以BC ⊥平面PBD . ………………………12分 因为⊂PB 平面PBD ,所以BC ⊥PB . 所以△PBC 为直角三角形. ……………………………14分 19.(本小题满分14分)(本小题主要考查等差数列、等比数列、裂项求和等知识,考查化归与转化的数学思想方法,以及抽象概括能力、运算求解能力和创新意识) (1)解:因为数列}{n a 是等差数列, 所以a n =a 1+(n-1)d ,d n n na S n 2)1(1-+=. ……………………………1分 依题意,有⎪⎪⎩⎪⎪⎨⎧==222275,70a a a S 即⎩⎨⎧++=+=+)21)(()6(,7010511211d a d a d a d a ……………………3分解得a 1=6,d=4. ……………………5分所以数列{a n }的通项公式为*)(24N n n a n ∈+= ……………6分 (2)证明:由(1)可得S n =2n 2+4n ………………………7分 所以n n S n 42112+=)211(41)2(21+-=+=n n n n …………………………8分 所以nn n S S S S S T 111111321+++++=- +-+-+-=)5131(41)4121(41)311(41)211(41)1111(41+-++--+n n n n ……9分 )2111211(41+-+-+=n n )2111(4183+++-=n n ………10分 因为0)2111(4183<+++-=-n n T n,所以83<n T ……………11分 因为0)3111(411>+-+=-+n n T T nn ,所以数列}{n T 是递增数列. ………12分 所以611=≥T T n ………………13分所以8361<≤n T …………………………14分20.(本小题满分14分)(本小题主要考查函数的性质、导数、函数零点、不等式等知识,考查数形结合、化归与转化、分类与讨论的数学思想方法,以及运算求解能力)(1)解:因为b ax x x f ++-=23)(,所以ax x x f 23)('2+-=)32(3ax x --= ……1分 当a=0时,f'(x)≤0,函数f(x)没有单调递增区间; …………………………2分 当a>0时,令f'(x)>0,得320a x <<. 故f(x)的单调递增区间为)32,0(a ; ………………………3分 当a<0时,令f'(x)>0,得032<<x a.故f(x)的单调递增区间为)0,32(a ……………4分综上所述,当a=0时,函数f(x)没有单调递增区间;当a>0时,函数f(x)的单调递增区间为)32,0(a ; 当a<0时,函数f(x)的单调递增区间为)0,32(a . ……………5分 (2)解:由(1)知,]4,3[∈a 时,f(x)的单调递增区间为)32,0(a ,单调递减区间为(-∞,0)和),32(+∞a …………6分所以函数f(x)在x=0处取得极小值f(0)=b , ……………………7分函数f(x)在32ax =处取得极大值b a a f +=274)32(3 ……………8分由于对任意]4,3[∈a ,函数f(x)在R 上都有三个零点,所以⎪⎩⎪⎨⎧><0)32(,0)0(a f f 即⎪⎩⎪⎨⎧>+<0274,03b a b ………10分解得02743<<-b a ……11分 因为对任意]4,3[∈a ,2743a b ->恒成立,所以=->max 3)274(a b 427343-=⨯- ……13分 所以实数b 的取值范围是(-4,0). …………………14分21.(本小题满分14分)(本小题主要考查椭圆与双曲线的方程、直线与圆锥曲线的位置关系、函数最值等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力)(1)解:依题意可得A(-1,0),B(1,0). ………1分设双曲线C 的方程为)0(1222>=-b by x ,因为双曲线的离心率为5,所以5112=+b ,即b=2.所以双曲线C 的方程为1422=-y x ……………3分(2)证法1:设点),(11y x P 、)2,1,0,0)(,(22=>>i y x y x T i i ,直线AP 的斜率为k (k>0), 则直线AP 的方程为y=k(x+1), …………4分联立方程组⎪⎩⎪⎨⎧=++=.14),1(22y x x k y …………5分 整理,得042)4(2222=-+++k x k x k , 解得x=-1或2244k k x +-=.所以22244k k x +-= …………6分同理可得,22144k k x -+= ……………7分所以121=⋅x x …………8分 证法2:设点),(11y x P 、)2,1,0,0)(,(22=>>i y x y x T i i , 则111+=x y k AP ,122+=x yk AT …………………4分 因为k AP =k AT ,所以111221+=+x y x y ,即22222121)1()1(+=+x y x y ………………5分 因为点P 和点T 分别在双曲线和椭圆上,所以142121=-y x ,142222=+y x . 即)1(42121-=x y ,)1(42222x y -= ……………6分 所以22222121)1()1(4)1()1(4+-=+-x x x x ,即12111211+-=+-x x x x …………………7分 所以121=⋅x x …………………8分 证法3:设点P (x 1,y 1),直线AP 的方程为)1(111++=x x y y ………………………4分联立方程组⎪⎪⎩⎪⎪⎨⎧=+++=.14),1(12211y x x x y y ………………………5分整理,得x y x y x 21221212])1(4[+++0)1(42121=+-+x y , 解得x=-1或21212121)1(4)1(4y x y x x ++-+= ………………………6分 将442121-=x y 代入21212121)1(4)1(4y x y x x ++-+=,得11x x =.即121x x =. 所以121=⋅x x …………………8分 (3)解:设点),(11y x P 、)2,1,0,0)(,(22=>>i y x y x T i i , 则),1(11y x PA ---=,),1(11y x PB --=. 因为15≤⋅PB PA ,所以15)1)(1(2111≤+---y x x ,即162121≤+y x ………9分 因为点P 在双曲线上,则142121=-y x ,所以16442121≤-+x x ,即421≤x . 因为点P 是双曲线在第一象限内的一点,所以211≤<x …………………10分因为||||21221y y AB S ==,==||||2112y OB S 121y , 所以2122222141y y S S -=-)44(22x -=22212145)1(x x x --=-- ………11分 由(2)知,121=⋅x x ,即121x x =. 设21x t =,则1<t ≤4,52221=-S S t t 4--. 设t t t f 45)(--=,则241)('tt f +-=2)2)(2(t t t +-=, 当1<t<2时,f'(t)>0,当2<t ≤4,f'(t)<0,所以函数f(t)在(1,2)上单调递增,在(2,4]上单调递减. 因为f(2)=1,f(1)=f(4)=0,所以当t=4,即x 1=2时,0)4()(min 2221==-f S S ……………………12分 当t=2,即21=x 时,1)2()(max2221==-f S S ………………13分所以2221S S -的取值范围为[0,1]. ………………………………………14分 说明:由)4(522212221x x S S +-=-14521=-≤x x ,得1)(max 2221=-S S ,给1分.。

2012 年广州市普通高中毕业班综合测试(一)英语答案WORD版本

2012 年广州市普通高中毕业班综合测试(一)英语答案WORD版本

2012 年广州市普通高中毕业班综合测试(一)英语参考答案1. B2. A3. D4. C5. D6. A7. C8. D9. B 10. B 11. D 12. C 13. B 14. A 15. C26. C 27. D 28. C 29. A 30. B 31. D 32. C 33. A 34. B 35. C 36. D 37. C 38. B 39. A 40. B 41. A 42. B 43. D 44. C 45. B46. D 47. E 48. C 49. B 50. F主观题评分标准及说明(一)语法填空参考答案16. which 17. cheerful / cheery 18. digging 19. lay 20. for 21. But 22. left23. where 24. the 25. because /as / since注:单词拼写错误、大小写未区分不给分。

(二)基础写作﹡范文Recently we surveyed 368 middle school students on how they spent the 2012 Spring Festival. 30% said they spent most of their time with their parents visiting relatives and friends while 25% went traveling with classmates or parents. 45% of all those surveyed indicated that they just stayed at home to do homework. When asked how they felt about the Spring Festival, most said they enjoyed it because of the holiday and lucky money they got, but some felt unhappy because the amount of homework they were given left little time for fun activities. Many students expressed the hope that next year they will have less homework and more free time.﹡基础写作评分说明基础写作主要考查学生的语言结构的应用能力,能够应用正确、规范的语言表达特定的内容。

2012年广州市普通高中毕业班综合测试一英语科分析报告

2012年广州市普通高中毕业班综合测试一英语科分析报告

2012年广州市普通高中毕业班综合测试(一)英语学科分析报告(说明:此报告中的数据包含了2011年12月30日听说考试的成绩,听说考试的分析报告已在2012年1月下发。

)第一部分背景介绍一、命题指导思想本次测试命题以《2012年普通高等学校招生全国统一考试(广东卷)英语考试大纲的说明》、《新课程标准》为依据,并参考2007年以来普通高等学校招生全国统一考试(广东卷)的试题。

试卷各部分命题的指导思想如下所述。

1.语言知识运及应用(1)完形填空考查学生在篇章层面综合运用逻辑判断手段进行词义辨析和搭配的能力,要求考生必须根据上下文分析语句间的意义关系和逻辑关联才能正确选择答案。

主要考查:①词的用法及搭配②句子意义的逻辑性、篇章的衔接手段③篇章连贯考点词汇全部是实义词,语言层面包括词、句和篇(其中以篇和句为主)。

(2)语法填空考查学生在语篇层面的语法知识分析和应用能力,充分考虑上下文意义和句法结构对语法知识的要求,强调语法知识在实际语言中的正确使用。

题型包括虚词(功能词)填空和用实词的正确形式填空两种。

应用时要分析的内容主要包括:①句子的语法结构②构词法、篇章连贯③意义对句子结构的制约作用。

2.阅读(1)阅读理解着重考查学生在阅读一般性书面英语的过程中获取和处理信息的能力,重点考查学生的一般阅读技能。

包括:①理解主旨和要义②理解文中具体信息③根据上下文推断生词和短语的词义④做出判断和推理⑤理解文章的基本结构⑥理解作者的意图、观点和态度(2)信息匹配题主要考查的能力包括:考查学生能否有选择、有效地使用参考资源,是对学生阅读策略的考查;侧重考查学生的略读和跳读能力。

3.写作(1) 基础写作侧重考查学生最基本的写作技能:组词造句和连句成篇。

“基础写作”所要表达的信息已经全部给出,学生不需要再发挥。

(2)读写任务侧重考查学生分析、解决问题的能力以及用英语进行思维和书面表达的能力。

二、考查内容分布1.试卷结构本次测试的性质属于能力考试,主要目的在于检查学生前一阶段的学习情况,预测学生高考的能力水平,并为下一阶段的复习规划提供有力的依据。

2012广州一模试题及答案(理综)WORD版-推荐下载

2012广州一模试题及答案(理综)WORD版-推荐下载

C.姬小蜂引进本地后其种群增长曲线呈“J”型 D.引进本地的姬小蜂会与椰心叶甲共同进化 6.以下说法不正确的是 A.用含蛋白酶和脂肪酶的洗衣粉去除奶渍效果更好 B.用以纤维素为唯一碳源的培养基来分离纤维素分解菌 C.在植物组织培养过程中改变培养条件容易获得突变体 D.基因工程和蛋白质工程只能生产自然界已存在的蛋白质 7.下列说法正确的是
A.甲烷和乙醇均能发生取代反应 B.苯酚和甲苯遇 FeCl3 均显紫色 C.溴乙烷与 NaOH 水溶液共热生成乙烯 D.油脂和淀粉都是高分子化合物 8.下列说法正确的是 A.Fe 在一定条件下与水反应生成 H2 和 Fe(OH)3 B.Fe3O4 溶于盐酸后加入几滴 KSCN 溶液,溶液显红色 C.FeCl2 溶液蒸干灼烧后得到 FeCl2 固体 D.FeCl3 饱和溶液滴入 NaOH 溶液中可制备 Fe(OH)3 胶体 9.能在水溶液中大量共存的一组离子是 A.H+、Fe3+、I-、SO42- B.Al3+、Mg2+、CO32-、Cl- C.K+、Ag+、Ca2+、NO3- D.NH4+、Na+、OH-、MnO4- 10.设 nA 为阿伏加德罗常数的数值,下列说法正确的是(相对原子质量:C 12 O 16) A.常温下,22g CO2 含有 nA 个氧原子 B.2mol Na 与足量水反应,转移 nA 个电子 C.1L0.1mol·L-1CH3COOH 溶液中含有 0.1nA 个 H+ D.常温常压下,22.4LCH4 中含有 nA 个 CH4 分子 11.对于 0.1 mol·L-1 NH4Cl 溶液,正确的是 A.升高温度,溶液 pH 升高 B.通入少量 HCl,c(NH4+)和 c(Cl-)均增大
D.若 a 为粗铜,b 为纯铜,通电后 b 电极质量增加

2012年广州七区联考高一英语试卷

2012年广州七区联考高一英语试卷

2012-2013学年第二学期期末教学质量监测高一英语本试卷分为第I卷(选择题)和第II卷(非选择题)两部分,共8页,满分135分。

考试时间120分钟。

注意事项:1.答卷前,考生首先检查答题卡是否整洁无缺损,之后务必用黑色字迹的钢笔或者签字笔在答题卡指定位置填写自己的姓名和考生号,用2B铅笔将相应的信息点涂黑。

2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上。

不按要求填涂的,答案无效。

3.非选择题必须用黑色字迹的钢笔或者签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

第Ⅰ卷(共85分)I.语言知识与运用(共两节,满分45分)第一节完形填空(共15小题;每小题2分,满分30分)阅读下面短文,掌握其大意,然后从1~15各小题所给的A、B、C和D项中,选出最佳选项,并在答题卡上将该项涂黑。

One of the worst feelings in the world is trying your hardest at something but still getting a bad result. In the case of schoolwork, studying for hours and bringing home ___1___ grades may make you feel hopeless or helpless, but it does ____2___ sometimes. If you are having such a problem, make sure to __3__ your old study habits or methods and after some time, you'll be ___4___ by the results.The most important rule is to act ___5____. Don't sit around and let it become worse, and don't ___6___ it. Instead, admit that you need the change and go in search of it as quickly as possible. The faster you face up to the ___7___, the faster you can find a way out and see some results. Make sure that you study ___8___ by reviewing your textbooks and ___9___ notes while you study.If you are still disappointed with your grades, then it is time to figure out where you are going wrong___10___. Look over the____11__ and assignments to see if you are having trouble with a particular kind of questions. Request an appointment with the ___12____ and use this time to discuss your work and get his/her ___13____ as well.Dealing with discouraging grades is something that every student will face at one time or another. It won't be fun, but take a realistic look at your study habits and your ___14_____ on past exams. Figure out where you are having __15____ and devote yourself to fixing these problems.1. A. encouraging B. exciting C. boring D. disappointing2. A. improve B. happen C. increase D. show3. A. keep B. form C. change D. start4. A. frightened B. depressed C. amazed D. shocked第 1 页共8 页5. A. slowly B. fast C. carefully D. simply6. A. ignore B. see C. solve D. face7. A. question B. puzzle C. method D. problem8. A. specially B. effectively C. wrongly D. curiously9. A. taking B. putting C. finding D. drawing10. A. doubtfully B. certainly C. exactly D. surprisingly11. A. papers B. computers C. dictionaries D. interests12. A. student B. adult C. coach D. teacher13. A. advice B. opinion C. ways D. habits14. A. performance B. action C. sign D. knowledge15. A. help B. trouble C. fun D. feeling第二节语法填空(共10小题;每小题1.5分,满分15分)阅读下面短文,按照句子结构的语法性和上下文连贯的要求,在空格处填入一个适当的词或使用括号中词语的正确形式填空,并将答案填写在答题卡标号为16-25的相应位置上。

2012年广东省广州市普通高中毕业班综合测试文科数学试题广州一测及参考答案

试卷类型:A2012年广州市普通高中毕业班综合测试(一)数学(文科)2012.3本试卷共4页,21小题, 满分150分.考试用时120分钟注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(A)填涂在答题卡相应位置上。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.函数y =A.(],1-∞-B.(),1-∞-C.[)1,-+∞D.()1,-+∞2.已知复数()i i 1i a b +=-(其中,a b ∈R ,i 是虚数单位),则a b +的值为A.2-B.1-C.0D.23.如果函数()sin 6f x x ωπ⎛⎫=+⎪⎝⎭()0ω>的最小正周期为2π,则ω的值为 A.1 B.2 C.4 D.84.在△ABC 中,60ABC ∠=,2AB =,3BC =,在BC 上任取一点D ,使△ABD 为钝角三角形的概率为A.16 B.13 C.12 D.235.如图1是一个空间几何体的三视图,则该几何体的侧面积...为A.3B.C.8 D.126.在平面直角坐标系中,若不等式组20,20,x y x y x t +-⎧⎪-+⎨⎪⎩≥≥≤表示的平面区域的面积为4,则实数t 的值为A.1B.2C.3D.4 7.已知幂函数()22657m y m m x-=-+在区间()0,+∞上单调递增,则实数m 的值为A.3B.2C.2或3D.2-或3-8.已知两个非零向量a 与b ,定义sin θ⨯=a b a b ,其中θ为a 与b 的夹角.若()3,4-a =, ()0,2b =,则⨯a b 的值为A.8-B.6-C.6D.8 9.已知函数()21f x x =+,对于任意正数a ,12x x a -<是()()12f x f x a -<成立的A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件10.已知圆O :222x y r +=,点()P a b ,(0ab ≠)是圆O 内一点,过点P 的圆O 的最短弦所在的直线为1l ,直线2l 的方程为20ax by r ++=,那么A.12l l ∥,且2l 与圆O 相离B.12l l ⊥,且2l 与圆O 相切C.12l l ∥,且2l 与圆O 相交D.12l l ⊥,且2l 与圆O 相离二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.若函数()()2ln 1f x x ax =++是偶函数,则实数a 的值为 .12.已知集合{}13A x x =≤≤,{}3B x a x a =+≤≤,若A B ⊆,则实数a 的取值范围为 .13.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图2中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作11a =,第2个五角形数记作25a =,第3个五角形数记作312a =,第4个五角形数记作422a =,…,若按此规律继续下去,则5a = ,若145n a =,则n =.(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图3,圆O 的半径为5cm ,点P 是弦AB 的中点,3OP =cm ,弦CD 过点P ,且13CP CD =,则CD 的长为 cm .15.(坐标系与参数方程选做题)在平面直角坐标系中,已知直线l 与曲线C 的参数方程分别为l :1,1x s y s=+⎧⎨=-⎩(s 为参数)和C :22,x t y t =+⎧⎨=⎩(t 为参数), 若l 与C 相交于A 、B 两点,则AB = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()tan 34f x x π⎛⎫=+⎪⎝⎭. (1)求9f π⎛⎫⎪⎝⎭的值; (2)若234f απ⎛⎫+= ⎪⎝⎭,求cos 2α的值. 17.(本小题满分12分)某校从高一年级学生中随机抽取40名学生,将他们的期中考 试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[)50,40,[)60,50,…,[]100,90后得到如图4的 频率分布直方图.(1)求图中实数a 的值;(2)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于60分的人数; (3)若从数学成绩在[)40,50与[]90,100两个分数段内的学 生中随机选取两名学生,求这两名学生的数学成绩之差 的绝对值不大于10的概率.18.(本小题满分14分)5 121 22 图2图4图3如图5所示,在三棱锥ABC P -中,AB BC ==,平面⊥PAC 平面ABC ,AC PD ⊥于点D ,1AD =,3CD =,2=PD .(1)求三棱锥ABC P -的体积; (2)证明△PBC 为直角三角形.19.(本小题满分14分)已知等差数列{}n a 的公差0d ≠,它的前n 项和为n S ,若570S =,且2a ,7a ,22a 成等比数列. (1)求数列{}n a 的通项公式; (2)设数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为nT ,求证:1368n T <≤.20.(本小题满分14分)已知函数32()f x x ax b =-++(),a b ∈R . (1)求函数()f x 的单调递增区间;(2)若对任意[]3,4a ∈,函数()f x 在R 上都有三个零点,求实数b 的取值范围.21.(本小题满分14分)已知椭圆2214y x +=的左、右两个顶点分别为A 、B .曲线C 是以A 、B 两点为顶点,双曲线.设点P 在第一象限且在曲线C 上,直线AP 与椭圆相交于另一点T . (1)求曲线C 的方程;(2)设点P 、T 的横坐标分别为1x 、2x ,证明:121x x ⋅=;(3)设TAB ∆与POB ∆(其中O 为坐标原点)的面积分别为1S 与2S ,且PA PB uu r uu rg ≤15,求2212S S - 的取值范围.2012年广州市普通高中毕业班综合测试(一)图5BPAD数学(文科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共10小题,每小题5分,满分50分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共5小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题.第13题仅填对1个,则给3分.11.0 12.[]0,1 13.35,10 14.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(本小题主要考查两角和的正切、诱导公式、同角三角函数的基本关系和二倍角的余弦等知识,考查化归与转化的数学思想方法,以及运算求解能力) (1)解:9f π⎛⎫⎪⎝⎭tan 34ππ⎛⎫=+ ⎪⎝⎭……………………………………………………………………………1分tantan 341tan tan34ππ+=ππ-…………………………………………………………………………3分 2==-………………………………………………………………………4分(2)解法1:因为3tan 3444f ααπππ⎛⎫⎛⎫+=++⎪ ⎪⎝⎭⎝⎭…………………………………………………………5分()tan α=+π………………………………………………………………6分tan 2α==.………………………………………………………………7分所以sin 2cos αα=,即sin 2cos αα=. ① 因为22sin cos 1αα+=, ②由①、②解得21cos 5α=.………………………………………………………………………………9分 所以2cos 22cos 1αα=-………………………………………………………………………………11分132155=⨯-=-.………………………………………………………………………12分解法2:因为3tan 3444f ααπππ⎛⎫⎛⎫+=++⎪ ⎪⎝⎭⎝⎭…………………………………………………………5分()tan α=+π………………………………………………………………6分tan 2α==.………………………………………………………………7分所以22cos 2cos sin ααα=-……………………………………………………………………………9分2222cos sin cos sin αααα-=+…………………………………………………………………………10分 221tan 1tan αα-=+………………………………………………………………………………11分143145-==-+.……………………………………………………………………………12分17.(本小题满分12分)(本小题主要考查频率、频数、统计和概率等知识,考查数形结合、化归与转化的数学思想方法,以及运算求解能力)(1)解:由于图中所有小矩形的面积之和等于1,所以10(0.0050.010.02⨯++0.0250.01)1a +++=.………………………………………………1分 解得0.03a =.……………………………………………………………………………………………2分 (2)解:根据频率分布直方图,成绩不低于60分的频率为110(0.0050.01)-⨯+0.85=.…………3分由于该校高一年级共有学生640人,利用样本估计总体的思想,可估计该校高一年级数学成绩不低于60分的人数约为6400.85544⨯=人. …………………………………………………………………5分 (3)解:成绩在[)40,50分数段内的人数为400.052⨯=人,分别记为A ,B .……………………6分成绩在[]90,100分数段内的人数为400.14⨯=人,分别记为C ,D ,E ,F .…………………7分 若从数学成绩在[)40,50与[]90,100两个分数段内的学生中随机选取两名学生,则所有的基本事件有:(),A B ,(),A C ,(),A D ,(),A E ,(),A F ,(),B C ,(),B D ,(),B E ,(),B F ,(),C D ,(),C E ,(),C F ,(),D E ,(),D F ,(),E F 共15种.…………………………………………9分如果两名学生的数学成绩都在[)40,50分数段内或都在[]90,100分数段内,那么这两名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[)40,50分数段内,另一个成绩在[]90,100分数段内,那么这两名学生的数学成绩之差的绝对值一定大于10.记“这两名学生的数学成绩之差的绝对值不大于10”为事件M ,则事件M 包含的基本事件有:(),A B ,(),C D ,(),C E ,(),C F ,(),D E ,(),D F ,(),E F 共7种.……………………11分所以所求概率为()715P M =.…………………………………………………………………………12分18.(本小题满分14分)(本小题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力)(1)证明:因为平面⊥PAC 平面ABC ,平面PAC 平面ABC AC =, PD ⊂平面PAC ,AC PD ⊥,所以PD ⊥平面ABC .…………………………………………………………………………………2分 记AC 边上的中点为E ,在△ABC 中,因为AB BC =, 所以AC BE ⊥.因为AB BC ==4=AC ,所以BE ===………………………………………………………4分所以△ABC的面积12ABC S AC BE ∆=⨯⨯=.……………………………………………………5分 因为2=PD ,所以三棱锥ABC P -的体积13P ABC ABC V S PD -∆=⨯⨯1233=⨯=.……………………7分 (2)证法1:因为PD ⊥AC ,所以△PCD 为直角三角形.因为2PD =,3CD=,所以PC =………………9分连接BD ,在Rt △BDE 中,因为90BED ∠=o,BE =,1DE=,所以BD ===…………10分 由(1)知PD ⊥平面ABC ,又BD ⊂平面ABC , 所以PD ⊥BD .在Rt △PBD 中,因为90PDB ∠=o,2PD=,BD =,所以PB ===……………………………………………………12分在PBC ∆中,因为BCPB =PC =所以222BC PB PC +=.………………………………………………………………………………13分BPACDE所以PBC ∆为直角三角形.……………………………………………………………………………14分证法2:连接BD ,在Rt △BDE 中,因为90BED ∠=o,BE =,1DE =,所以BD ===…………8分在△BCD 中,3CD =,BC ,BD ,所以222BC BD CD +=,所以BC BD ⊥.………………10分由(1)知PD ⊥平面ABC , 因为BC ⊂平面ABC , 所以BC PD ⊥. 因为BD PD D =,所以BC ⊥平面PBD .…………………………………………………………………………………12分 因为PB ⊂平面PBD ,所以BC PB ⊥.所以PBC ∆为直角三角形.……………………………………………………………………………14分19.(本小题满分14分)(本小题主要考查等差数列、等比数列、裂项求和等知识,考查化归与转化的数学思想方法,以及抽象概括能力、运算求解能力和创新意识) (1)解:因为数列{}n a 是等差数列,所以()11n a a n d =+-,()112n n n S na d -=+.……………………………………………………1分 依题意,有52722270,.S a a a =⎧⎪⎨=⎪⎩即()()()1211151070,621.a d a d a d a d +=⎧⎪⎨+=++⎪⎩………………………………………3分 解得16a =,4d =.……………………………………………………………………………………5分 所以数列{}n a 的通项公式为42n a n =+(*n ∈N ).…………………………………………………6分(2)证明:由(1)可得224n S n n =+.……………………………………………………………………7分所以()21112422n S n n n n ==++11142n n ⎛⎫=- ⎪+⎝⎭.…………………………………………………8分 所以123111111n n n T S S S S S -=+++++L 1111111111111114342443541142n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭……………9分 111114212n n ⎛⎫=+-- ⎪++⎝⎭BPACDE31118412n n ⎛⎫=-+ ⎪++⎝⎭.………………………………………………………………………10分因为311108412n T n n ⎛⎫-=-+< ⎪++⎝⎭,所以38n T <.………………………………………………11分 因为11110413n n T T n n +⎛⎫-=-> ⎪++⎝⎭,所以数列{}n T 是递增数列.………………………………12分所以116n T T ≥=.………………………………………………………………………………………13分 所以1368n T ≤<.…………………………………………………………………………………………14分20.(本小题满分14分)(本小题主要考查函数的性质、导数、函数零点、不等式等知识,考查数形结合、化归与转化、分类与讨论的数学思想方法,以及运算求解能力)(1)解:因为32()f x x ax b =-++,所以22()3233a f x x ax x x ⎛⎫'=-+=--⎪⎝⎭.……………………1分 当0a =时,()0f x '≤,函数()f x 没有单调递增区间;……………………………………………2分 当0a >时,令()0f x '>,得203a x <<. 故()f x 的单调递增区间为20,3a ⎛⎫⎪⎝⎭;…………………………………………………………………3分 当0a <时,令()0f x '>,得203ax <<. 故()f x 的单调递增区间为2,03a ⎛⎫⎪⎝⎭.…………………………………………………………………4分 综上所述,当0a =时,函数()f x 没有单调递增区间;当0a >时,函数()f x 的单调递增区间为20,3a ⎛⎫ ⎪⎝⎭; 当0a <时,函数()f x 的单调递增区间为2,03a ⎛⎫⎪⎝⎭.……………………………………5分(2)解:,由(1)知,[]3,4a ∈时,()f x 的单调递增区间为20,3a ⎛⎫ ⎪⎝⎭,单调递减区间为(),0-∞和2,3a ⎛⎫+∞ ⎪⎝⎭. …………………………………6分所以函数()f x 在0x =处取得极小值()0f b =,……………………………………………………7分函数()f x 在23ax =处取得极大值324327a a f b ⎛⎫=+ ⎪⎝⎭.………………………………………………8分由于对任意[]3,4a ∈,函数()f x 在R 上都有三个零点,所以()00,20.3fa f <⎧⎪⎨⎛⎫> ⎪⎪⎝⎭⎩即30,40.27b a b <⎧⎪⎨+>⎪⎩……………………………………………………………………10分 解得34027a b -<<.……………………………………………………………………………………11分 因为对任意[]3,4a ∈,3427a b >-恒成立,所以33max44342727a b ⎛⎫⨯>-=-=- ⎪⎝⎭.………………13分 所以实数b 的取值范围是()4,0-.……………………………………………………………………14分21.(本小题满分14分)(本小题主要考查椭圆与双曲线的方程、直线与圆锥曲线的位置关系、函数最值等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力)(1)解:依题意可得(1,0)A -,(1,0)B .…………………………………………………………………1分设双曲线C 的方程为2221y x b-=()0b >,所以1=即2b =.所以双曲线C 的方程为2214y x -=.……………………………………………………………………3分 (2)证法1:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),直线AP 的斜率为k (0k >),则直线AP 的方程为(1)y k x =+,………………………………………………………………………4分联立方程组()221,1.4y k x y x ⎧=+⎪⎨+=⎪⎩………………………………………………………………………………5分 整理,得()22224240k x k x k +++-=,解得1x =-或2244k x k -=+.所以22244k x k-=+.…………………………………………………………6分 同理可得,21244k x k +=-.…………………………………………………………………………………7分 所以121x x ⋅=.……………………………………………………………………………………………8分证法2:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =), 则111AP y k x =+,221AT y k x =+.…………………………………………………………………………4分 因为AP AT k k =,所以121211y y x x =++,即()()2212221211y y x x =++.……………………………………5分 因为点P 和点T 分别在双曲线和椭圆上,所以221114y x -=,222214y x +=. 即()221141y x =-,()222241y x =-.…………………………………………………………………6分 所以()()()()22122212414111x x x x --=++,即12121111x x x x --=++.……………………………………………………7分 所以121x x ⋅=.……………………………………………………………………………………………8分 证法3:设点11(,)P x y ,直线AP 的方程为11(1)1y y x x =++,………………………………………4分 联立方程组()11221,11.4y y x x y x ⎧=+⎪+⎪⎨⎪+=⎪⎩…………………………………………………………………………5分 整理,得222222111114(1)24(1)0x y x y x y x ⎡⎤++++-+=⎣⎦, 解得1x =-或221122114(1)4(1)x y x x y +-=++.…………………………………………………………………6分 将221144y x =-代入221122114(1)4(1)x y x x y +-=++,得11x x =,即211x x =. 所以121x x ⋅=.…………………………………………………………………………………………8分(3)解:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),则()111,PA x y =---,()111,PB x y =--.因为15PA PB ⋅≤,所以()()21111115x x y ---+≤,即221116x y +≤.…………………………9分因为点P 在双曲线上,则221114y x -=,所以22114416x x +-≤,即214x ≤. 因为点P 是双曲线在第一象限内的一点,所以112x <≤.…………………………………………10分 因为1221||||||2S AB y y ==,21111||||||22S OB y y ==, 所以()()22222222122121121441544S S y y x x x x -=-=---=--.……………………………11分 由(2)知,121x x ⋅=,即211x x =. 设21t x =,则14t <≤, 221245S S t t -=--. 设()45t t f t =--,则()()()222241t t f t t t -+'=-+=, 当12t <<时,()0f t '>,当24t <≤时,()0f t '<,所以函数()f t 在()1,2上单调递增,在(]2,4上单调递减. 因为()21f =,()()140f f ==,所以当4t =,即12x =时,()()2212min 40S S f -==.……………………………………………12分 当2t =,即1x =,()()2212max 21S S f -==.………………………………………………13分所以2212S S -的取值范围为[]0,1.……………………………………………………………………14分说明:由()222212121254541S S x x x x -=-+≤-=,得()2212max 1S S -=,给1分.。

2023届广东省广州市普通高中毕业班综合测试(一)英语试题

2023届广东省广州市普通高中毕业班综合测试(一)英语试题一、听力选择题1.A.Take the subway to get to the show.B.Grab a bite on the way to the theater.C.Have dinner after the 7:30 show.D.Eat nothing and walk to the theater.2. What does the woman mean?A.She doesn’t understand the man.B.She gave the change to someone else.C.She’s unable to help the man.3. Who is the woman talking to?A.A neighbor.B.Her son.C.A deliveryman.4.A.The woman received a resume just now.B.The woman will be promoted next month.C.The woman should handle the problem soon.D.The woman demands a pay rise in the resume.5. What does the man want to know?A.Tips on making a pie.B.Meanings of expressions.C.Problems of eating dessert.二、听力选择题6. 听下面一段较长对话,回答以下小题。

1. Why did the man make the phone call?A.To ask for a meeting.B.To have a discussion.C.To make a reservation.2. When will the speakers have dinner together?A.On Friday.B.On Saturday.C.On Sunday.7. 听下面一段较长对话,回答以下小题。

2012年广州市普通高中毕业班综合测试(理科)(一)

试卷类型:A2012年广州市普通高中毕业班综合测试(一)数学(理科)2012.3本试卷共4页,21小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. 方差()()()2222121n s x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦,其中12nx x x x n+++=.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数()i i 1i a b +=-(其中,a b ∈R ,i 是虚数单位),则a b +的值为( )A .2-B .1-C .0D .22.已知全集U =R ,函数y =的定义域为集合A ,函数()2log 2y x =+的定义域为集合B ,则集合()U AB =ð( )A .()2,1--B .(]2,1--C .(),2-∞-D .()1,-+∞ 3.如果函数()sin 6f x x ωπ⎛⎫=+⎪⎝⎭()0ω>的相邻两个零点之间的距离为12π,则ω的值为( ) A .3 B .6 C .12D .244.已知点()P a b ,(0ab ≠)是圆O :222x y r +=内一点,直线l 的方程为20ax by r ++=,那么直线l 与圆O 的位置关系是( )A .相离B .相切C .相交D .不确定5.已知函数()21f x x =+,对于任意正数a ,12x x a -<是()()12f x f x a -<成立的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件6.已知两个非零向量a 与b ,定义sin θ⨯=a b a b ,其中θ为a 与b 的夹角.若()3,4-a =, ()0,2b =,则⨯a b 的值为( )A .8-B .6-C .8D .67.在△ABC 中,60ABC ∠=,2AB =,6BC =,在BC 上任取一点D ,使△ABD 为钝角三角形的概率为( ) A .16 B .13 C .12 D .238.从0,1,2,3,4,5,6,7,8,9这10个数字中任取3个不同的数字构成空间直角坐标系中的点的坐标(),,x y z ,若x y z ++是3的倍数,则满足条件的点的个数为( )A .252B .216C .72D .42二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分(一)必做题(9~13题) 9.如图1是一个空间几何体的三视图,则该几何体的体积为 .10.已知()211d 4kx x +⎰2≤≤,则实数k 的取值范围为 . 11.已知幂函数()22657m y m m x-=-+在区间()0,+∞上单调递增,则实数m 的值为 .12.已知集合{}1A x x =≤≤2,{}1B x x a =-≤,若A B A =I ,则实数a 的取值范围为 .13.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图2中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作11a =,第2个五角形数记作25a =,第3个五角形数记作312a =,第4个五角形数记作422a =,……,若按此规律继续下去,则5a = ,若145n a =,则n = .512122图2图1 俯视图 正(主)视图侧(左)视图(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图3,圆O 的半径为5cm ,点P 是弦AB 的中点,3OP =cm ,弦CD 过点P ,且13CP CD =,则CD 的长为 cm . 15.(坐标系与参数方程选做题)在平面直角坐标系中,已知直线l 与曲线C 的参数方程分别为l :1,1x s y s =+⎧⎨=-⎩(s 为参数)和C :22,x t y t=+⎧⎨=⎩(t 为参数), 若l 与C 相交于A 、B 两点,则AB = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()tan 34f x x π⎛⎫=+⎪⎝⎭. (1)求9f π⎛⎫⎪⎝⎭的值; (2)设3,2απ⎛⎫∈π ⎪⎝⎭,若234f απ⎛⎫+= ⎪⎝⎭,求cos 4απ⎛⎫- ⎪⎝⎭的值.17.(本小题满分12分)如图4所示的茎叶图记录了甲、乙两个小组(每小组4人)在期末考试中的数学成绩.乙组记录中有一个数据模糊,无法确认,在图中以a 表示.已知甲、乙两个小组的数学成绩的平均分相同.(1)求a 的值; (2)求乙组四名同学数学成绩的方差;(3)分别从甲、乙两组同学中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为X ,求随机变量X 的分布列和均值(数学期望).(温馨提示:答题前请仔细阅读卷首所给的计算公式及其说明.) 18.(本小题满分14分)如图5所示,在三棱锥ABC P -中,AB BC ==平面⊥PAC 平面ABC ,AC PD ⊥于点D ,1AD =,3CD =,PD =.(1)证明△PBC 为直角三角形;(2)求直线AP 与平面PBC 所成角的正弦值.图4 甲组 乙组 8 9 7 a 3 5 7 9 6 6 图5PACD图319.(本小题满分14分)等比数列{}n a 的各项均为正数,4352,,4a a a 成等差数列,且2322a a =.(1)求数列{}n a 的通项公式; (2)设()()252123n n n b a n n +=++,求数列{}n b 的前n 项和n S .20.(本小题满分14分)已知椭圆2214y x +=的左,右两个顶点分别为A 、B .曲线C 是以A 、B 两点为顶点,的双曲线.设点P 在第一象限且在曲线C 上,直线AP 与椭圆相交于另一点T . (1)求曲线C 的方程;(2)设P 、T 两点的横坐标分别为1x 、2x ,证明:121x x ⋅=;(3)设T A B ∆与POB ∆(其中O 为坐标原点)的面积分别为1S 与2S ,且PA PB uu r uu rg ≤15,求2212S S -的取值范围.21.(本小题满分14分)设函数()e xf x =(e 为自然对数的底数),23()12!3!!nn x x x g x x n =+++++L (*n ∈N ). (1)证明:()f x 1()g x ≥;(2)当0x >时,比较()f x 与()n g x 的大小,并说明理由;(3)证明:()123222211e 2341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++< ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭≤L (*n ∈N ).2012年广州市普通高中毕业班综合测试(一)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.二、填空题:本大题查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.第13题仅填对1个,则给3分.9 10.2,23⎡⎤⎢⎥⎣⎦11.3 12.[]1,2 13.35,10 14. 15三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(本小题主要考查两角和的正切、诱导公式、同角三角函数的基本关系和两角差的余弦等知识,考查化归与转化的数学思想方法,以及运算求解能力) (1)解:9f π⎛⎫⎪⎝⎭tan 34ππ⎛⎫=+ ⎪⎝⎭……………………………………………………………………………1分 tantan 341tan tan34ππ+=ππ-…………………………………………………………………………3分 2==-………………………………………………………………………4分(2)解:因为3tan 3444f ααπππ⎛⎫⎛⎫+=++⎪ ⎪⎝⎭⎝⎭………………………………………………………………5分 ()tan α=+π……………………………………………………………………6分 tan 2α==.……………………………………………………………………7分所以sin 2cos αα=,即sin 2cos αα=. ① 因为22sin cos 1αα+=, ②由①、②解得21cos 5α=.………………………………………………………………………………9分 因为3,2απ⎛⎫∈π ⎪⎝⎭,所以cos 5α=-,sin 5α=-.…………………………………………10分 所以cos 4απ⎛⎫-⎪⎝⎭cos cos sin sin 44ααππ=+ ………………………………………………………11分525210⎛=-⨯+-⨯=- ⎝⎭.……………………………………12分17.(本小题满分12分)(本小题主要考查统计、方差、随机变量的分布列、均值(数学期望)等知识,考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识) (1)解:依题意,得11(87899696)(87909395)44a ⨯+++=⨯++++,……………………………1分 解得3a =.…………………………………………………………………………………………………2分 (2)解:根据已知条件,可以求得两组同学数学成绩的平均分都为92x =.……………………………3分所以乙组四名同学数学成绩的方差为()()()()222221879293929392959294s ⎡⎤=-+-+-+-=⎣⎦. ……………………………5分(3)解:分别从甲、乙两组同学中各随机选取一名同学,共有4416⨯=种可能的结果.……………6分这两名同学成绩之差的绝对值的所有情况如下表:所以X 的所有可能取值为0,1,2,3,4,6,8,9.…………………………………………………8分由表可得1(0)16P X ==,2(1)16P X ==,1(2)16P X ==,4(3)16P X ==, 2(4)16P X ==,3(6)16P X ==,1(8)16P X ==,2(9)16P X ==.所以随机变量X 随机变量X 的数学期望为121423012346161616161616EX =⨯+⨯+⨯+⨯+⨯+⨯12891616+⨯+⨯…………………………11分 6817164==.…………………………………………………………………………………………12分 ……………………10分18.(本小题满分14分)(本小题主要考查空间线面关系、直线与平面所成角、空间向量及坐标运算等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力) (1)证明1:因为平面⊥PAC 平面ABC ,平面PAC 平面ABC AC =, PD ⊂平面PAC ,AC PD ⊥,所以PD ⊥平面ABC .…………………………………………………………………………………1分记AC 边上的中点为E ,在△ABC 中,AB BC =,所以AC BE ⊥.因为AB BC ==4=AC,所以BE ===3分因为PD ⊥AC ,所以△PCD 为直角三角形.因为PD =3CD =,所以PC ===4分连接BD ,在Rt△BDE 中,因为BE =1DE =,所以BD ===5分因为PD ⊥平面ABC ,BD ⊂平面ABC ,所以PD ⊥BD . 在Rt△PBD 中,因为PD=,BD =所以PB ===6分在PBC ∆中,因为BC =PB =PC =所以222BC PB PC +=.所以PBC ∆为直角三角形.………………………………………………………………………………7分 证明2:因为平面⊥PAC 平面ABC ,平面PAC I 平面ABC AC =, PD ⊂平面PAC ,AC PD ⊥, 所以PD ⊥平面ABC .…………………………………………………………………………………1分 记AC 边上的中点为E ,在△ABC 中,因为ABBC =,所以AC BE ⊥. 因为AB BC ==4=AC,所以BE ===3分连接BD ,在Rt △BDE 中,因为90BED ∠=o,BE =,1DE =,所以BD ===4分在△BCD 中,因为3CD =,BC =BD =所以222BC BD CD +=,所以BC BD ⊥.……………………………………………………………5分 因为PD ⊥平面ABC ,BC ⊂平面ABC ,所以BC PD ⊥.…………………………………………………………………………………………6分 因为BD PD D =,所以BC ⊥平面PBD .因为PB ⊂平面PBD ,所以BC PB ⊥.所以PBC ∆为直角三角形.………………………………………………………………………………7分BPACD E(2)解法1:过点A 作平面PBC 的垂线,垂足为H ,连PH ,则APH ∠为直线AP 与平面PBC 所成的角.…………………………………………………………8分由(1)知,△ABC的面积12ABC S AC BE ∆=⨯⨯=.…………………………………………9分因为PD =13P ABC ABC V S PD -∆=⨯⨯133=⨯=10分 由(1)知PBC ∆为直角三角形,BC =PB =所以△PBC的面积11322PBC S BC PB ∆=⨯⨯==.……………………………………11分 因为三棱锥A PBC -与三棱锥P ABC -的体积相等,即A PBC P ABC V V --=,即1333AH ⨯⨯=,所以3AH =.……………………………………………………………12分 在Rt △PAD中,因为PD =,1AD =,所以2AP ===.………………………………………………………13分因为3sin 23AH APH AP ∠===. 所以直线AP与平面PBC 所成角的正弦值为3.…………………………………………………14分 解法2:过点D 作DM AP ∥,设DMPC M =,则DM 与平面PBC 所成的角等于AP 与平面PBC 所成的角.……………………………………8分由(1)知BC PD ⊥,BC PB ⊥,且PD PB P =,所以BC ⊥平面PBD .因为BC ⊂平面PBC ,所以平面PBC ⊥平面PBD .过点D 作DN PB ⊥于点N ,连接MN ,则DN ⊥平面PBC .所以DMN ∠为直线DM 与平面PBC 所成的角.……10分 在Rt△PAD 中,因为PD =,1AD =, 所以2AP ===.………………………………………………………11分因为DM AP ∥,所以DM CD AP CA =,即324DM =,所以32DM =.………………………………12分 由(1)知BD=,PB =PD =所以2PD BD DN PB ⨯===.……………………………………………………………13分 BP A CDM N因为2sin 332DN DMN DE ∠===, 所以直线AP 与平面PBC所成角的正弦值为3.…………………………………………………14分 解法3:延长CB 至点G ,使得BG BC =,连接AG 、PG ,……………………………………8分 在△PCG中,PB BG BC ===所以90CPG ∠=o,即CP PG ⊥.在△PAC中,因为PC =2PA =,4AC =, 所以222PA PC AC +=, 所以CP PA ⊥. 因为PA PG P =I ,所以CP ⊥平面PAG .…………………………………………………………………………………9分 过点A 作AK PG ⊥于点K , 因为AK ⊂平面PAG , 所以CP AK ⊥. 因为PG CP P =I ,所以AK ⊥平面PCG .所以APK ∠为直线AP 与平面PBC 所成的角.……………………………………………………11分 由(1)知,BC PB ⊥, 所以PG PC ==在△CAG 中,点E 、B 分别为边CA 、CG 的中点,所以2AG BE ==12分 在△PAG 中,2PA =,AG =PG =所以222PA AG PG +=,即PA AG ⊥.……………………………………………………………13分 因为sin AG APK PG ∠===. 所以直线AP 与平面PBC 所成角的正弦值为3.…………………………………………………14分 解法4:以点E 为坐标原点,以EB ,EC 所在的直线分别为x 轴,y 轴建立如图的空间直角坐标系E xyz -,…………………………………………………………………………………………………8分BPACD EGK则()0,2,0A -,)B,()0,2,0C,(0,P -.于是(AP =,(2,1,PB =,(0,3,PC =设平面PBC 的法向量为(),,x y z =n ,则0,0.PB PC ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,30.y y +=-=⎪⎩ 取1y =,则z =x =所以平面PBC 的一个法向量为=n .……………………………………………………12分设直线AP 与平面PBC 所成的角为θ, 则sin cos AP AP AP θ⋅=<>===⋅n ,n n. 所以直线AP 与平面PBC 14分若第(1)、(2)问都用向量法求解,给分如下:(1)以点E 为坐标原点,以EB ,EC 所在的直线分别为x 轴,y 轴建立如图的空间直角坐标系E xyz -,…………………………………………………………………………………………………1分则)B,()0,2,0C ,(0,P -.于是(BP =-,()2,0BC =. 因为()()2,1,32,2,00BP BC =---=,所以BP BC ⊥.所以BP BC ⊥.所以PBC ∆为直角三角形.………………………………………………………………………………7分 (2)由(1)可得,()0,2,0A -. 于是(AP =,(2,1,PB =,(0,3,PC =.设平面PBC 的法向量为(),,x y z =n ,AA则0,0.PB PC ⎧⋅=⎪⎨⋅=⎪⎩n n即0,30.y y +-==⎪⎩ 取1y =,则z =x =所以平面PBC的一个法向量为=n .……………………………………………………12分设直线AP 与平面PBC所成的角为θ,则sin cos 3AP AP AP θ⋅=<>===⋅n ,n n. 所以直线AP 与平面PBC 所成角的正弦值为3.…………………………………………………14分 19.(本小题满分14分)(本小题主要考查等比数列的通项、裂项求和等知识,考查化归与转化的数学思想方法,以及抽象概括能力、运算求解能力和创新意识)(1)解:设等比数列{}n a 的公比为q ,依题意,有45323224,22.a a a a a +⎧=⎪⎨⎪=⎩即3452322,2.a a a a a =+⎧⎪⎨=⎪⎩……………………………………………………………………2分 所以234111222112,2.a q a q a q a q a q ⎧=+⎪⎨=⎪⎩………………………………………………………………………………3分 由于10a ≠,0q ≠,解之得11,21.2a q ⎧=⎪⎪⎨⎪=⎪⎩或11,21.a q ⎧=⎪⎨⎪=-⎩……………………………………………………5分又10,0a q >>,所以111,22a q ==,…………………………………………………………………6分 所以数列{}n a 的通项公式为12nn a ⎛⎫= ⎪⎝⎭(*n ∈N ).…………………………………………………7分(2)解:由(1),得()()252123n n n b a n n +=⋅++()()25121232n n n n +=⋅++.………………………………8分所以21121232n n b n n ⎛⎫=-⋅⎪++⎝⎭ 111(21)2(23)2n nn n -=-++.…………………………………………………………………10分所以12n n S b b b =+++L()()211111113525272212232n n n n -⎡⎤⎛⎫⎛⎫=-+-++-⎢⎥⎪ ⎪⋅⋅⋅++⎝⎭⎝⎭⎣⎦L ()113232n n =-+. 故数列{}n b 的前n 项和()113232n nS n =-+.………………………………………………………14分 20.(本小题满分14分)(本小题主要考查椭圆与双曲线的方程、直线与圆锥曲线的位置关系、函数最值等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力)(1)解:依题意可得(1,0)A -,(1,0)B .…………………………………………………………………1分设双曲线C 的方程为2221y x b-=()0b >,,所以1=2b =. 所以双曲线C 的方程为2214y x -=.……………………………………………………………………3分 (2)证法1:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),直线AP 的斜率为k (0k >),则直线AP 的方程为(1)y k x =+,………………………………………………………………………4分联立方程组()221,1.4y k x y x ⎧=+⎪⎨+=⎪⎩………………………………………………………………………………5分 整理,得()22224240kxk x k +++-=,解得1x =-或2244k x k -=+.所以22244k x k -=+.…………………………………………………………6分同理可得,21244k x k +=-.…………………………………………………………………………………7分所以121x x ⋅=.……………………………………………………………………………………………8分证法2:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),则111AP y k x =+,221AT y k x =+.…………………………………………………………………………4分 因为APAT k k =,所以121211y y x x =++,即()()2212221211y y x x =++.……………………………………5分 因为点P 和点T 分别在双曲线和椭圆上,所以221114y x -=,222214y x +=. 即()221141y x =-,()222241y x =-.…………………………………………………………………6分 所以()()()()22122212414111x x x x --=++,即12121111x x x x --=++.……………………………………………………7分 所以121x x ⋅=.……………………………………………………………………………………………8分 证法3:设点11(,)P x y ,直线AP 的方程为11(1)1y y x x =++,………………………………………4分 联立方程组()11221,11.4y y x x y x ⎧=+⎪+⎪⎨⎪+=⎪⎩…………………………………………………………………………5分整理,得222222111114(1)24(1)0x y x y x y x ⎡⎤++++-+=⎣⎦, 解得1x =-或221122114(1)4(1)x y x x y +-=++.…………………………………………………………………6分将221144y x =-代入221122114(1)4(1)x y x x y +-=++,得11x x =,即211x x =. 所以121x x ⋅=.…………………………………………………………………………………………8分 (3)解:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),则()111,PA x y =---,()111,PB x y =--.因为15PA PB ⋅≤,所以()()21111115x x y ---+≤,即221116x y +≤.…………………………9分因为点P 在双曲线上,则221114y x -=,所以22114416x x +-≤,即214x ≤. 因为点P 是双曲线在第一象限内的一点,所以112x <≤.…………………………………………10分因为1221||||||2S AB y y ==,21111||||||22S OB y y ==, 所以()()22222222122121121441544S S y y x x x x -=-=---=--.……………………………11分由(2)知,121x x ⋅=,即211x x =. 设21t x =,则14t <≤,221245S S t t-=--. 设()45t tf t =--,则()()()222241t t f t t t -+'=-+=,当12t <<时,()0f t '>,当24t <≤时,()0f t '<, 所以函数()f t 在()1,2上单调递增,在(]2,4上单调递减. 因为()21f =,()()140f f ==,所以当4t =,即12x =时,()()2212min40S S f -==.……………………………………………12分当2t =,即1x =()()2212max21S S f -==.………………………………………………13分所以2212S S -的取值范围为[]0,1.……………………………………………………………………14分说明:由()222212121254541S S x x x x -=-+≤-=,得()2212max1S S -=,给1分.21.(本小题满分14分)(本小题主要考查函数、导数、不等式、数学归纳法、二项式定理等知识,考查数形结合、化归与转化、分类与讨论的数学思想方法,以及运算求解能力)(1)证明:设11()()()1xx f x g x e x ϕ=-=--,所以1()1xx e ϕ'=-.………………………………………………………………………………………1分当0x <时,1()0x ϕ'<,当0x =时,1()0x ϕ'=,当0x >时,1()0x ϕ'>.即函数1()x ϕ在(,0)-∞上单调递减,在(0,)+∞上单调递增,在0x =处取得唯一极小值,………2分 因为1(0)0ϕ=,所以对任意实数x 均有 11()(0)0x ϕϕ=≥. 即1()()0f x g x -≥,所以()f x 1()g x ≥.………………………………………………………………………………………3分(2)解:当0x >时,()f x >()n g x .………………………………………………………………………4分用数学归纳法证明如下:①当1n =时,由(1)知()f x 1()g x >.②假设当n k =(*k ∈N )时,对任意0x >均有()f x >()k g x ,…………………………………5分令()()()k k x f x g x ϕ=-,11()()()k k x f x g x ϕ++=-,因为对任意的正实数x ,()()11()()()k kk x f x g x f x g x ϕ++'''=-=-, 由归纳假设知,1()()()0k k x f x g x ϕ+'=->.…………………………………………………………6分 即11()()()k k x f x g x ϕ++=-在(0,)+∞上为增函数,亦即11()(0)k k x ϕϕ++>, 因为1(0)0k ϕ+=,所以1()0k x ϕ+>. 从而对任意0x >,有1()()0k f x g x +->. 即对任意0x >,有1()()k f x g x +>.这就是说,当1n k =+时,对任意0x >,也有()f x >1()k g x +.由①、②知,当0x >时,都有()f x >()n g x .………………………………………………………8分 (3)证明1:先证对任意正整数n ,()1e n g <.由(2)知,当0x >时,对任意正整数n ,都有()f x >()n g x . 令1x =,得()()11=e n g f <.所以()1e n g <.……………………………………………………………………………………………9分再证对任意正整数n ,()1232222112341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭111112!3!!n =+++++. 要证明上式,只需证明对任意正整数n ,不等式211!nn n ⎛⎫≤ ⎪+⎝⎭成立. 即要证明对任意正整数n ,不等式1!2nn n +⎛⎫≤ ⎪⎝⎭(*)成立.……………………………………10分以下分别用数学归纳法和基本不等式法证明不等式(*): 方法1(数学归纳法):①当1n =时,1111!2+⎛⎫≤ ⎪⎝⎭成立,所以不等式(*)成立.②假设当n k =(*k ∈N )时,不等式(*)成立,即1!2kk k +⎛⎫≤ ⎪⎝⎭.………………………………………………………………………………………11分则()()()1111!1!1222k k k k k k k k +++⎛⎫⎛⎫+=+≤+= ⎪ ⎪⎝⎭⎝⎭.因为111101111112211121C C C2111112k k k k k k k k k k k k k k k k ++++++++++⎛⎫⎪+⎛⎫⎛⎫⎛⎫⎝⎭==+=+++≥ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭+⎛⎫⎪⎝⎭,…12分所以()11121!222k k k k k ++++⎛⎫⎛⎫+≤≤ ⎪⎪⎝⎭⎝⎭.……………………………………………………………13分这说明当1n k =+时,不等式(*)也成立.由①、②知,对任意正整数n ,不等式(*)都成立.综上可知,对任意正整数n ,不等式()123222211e 2341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤< ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭成立. ……………………………………14分方法2(基本不等式法):12n +≤,……………………………………………………………………………………11分 12n +≤, ……,12n +≤, 将以上n 个不等式相乘,得1!2nn n +⎛⎫≤ ⎪⎝⎭.……………………………………………………………13分所以对任意正整数n ,不等式(*)都成立.综上可知,对任意正整数n ,不等式()123222211e 2341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤< ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭成立. ……………………………………14分。

2012年广州高三第一学期末英语调研考题目(带答案)

试卷类型:B 广东省广州市2012届高三上学期12月调研测试英语2011.12 I 语言知识及应用 (共两节,满分45分)第一节完形填空 (共15小题;每小题2分,满分30分)Steve Jobs on life and deathWhen I was 17, I read a quote that went something like: “If you live each day as if it was your last, some day you’ll most certainly be right.” It made an 1 on me, and since then, for the past 33 years, I have looked in the mirror every 2 and asked myself: “If today were the last day of my life, would I want to do what I am about to do today?” And whenever the 3 has been “No” for too many days in a row, I know I need to 4 something.Remembering that I’ll be 5 soon is the most important tool I’ve ever used to help me make the big 6 in life. Because almost everything — all external expectations, all pride, all 7 of embarrassment or failure — these things just fall away in the face of death, leaving only what is 8 important. Remembering that you are going to die is the best way I know to avoid the trap of thinking you have something to 9 . You are already naked. There is no reason not to 10 your heart.Your time is limited, so don’t 11 it living someone else’s life. Don’t be 12 by dogma —which is living with the results of other people’s thinking. Don’t let the noise of others’ opinions drown out your own inner voice. And most importantly, have the 13 to follow your beliefs and goals. They somehow already know what you really want to 14 . Everything else is 15 .1. A. expectation B. impression C. imagination D. examination2. A. minute B. night C. day D. morning3. A. answer B. solution C. result D. chance4. A. accept B. hide C. change D. avoid5. A. famous B. dead C. old D. forgotten6. A. decisions B. contributions C. differences D. mistakes7. A. understanding B. certainty C. fear D. knowledge8. A. mostly B. hardly C. nearly D. truly9. A. take B. lose C. give D. win10. A. break B. catch C. warm D. follow11. A. waste B. imagine C. spend D. risk12. A. confused B. trapped C. discouraged D. hurt13. A. wisdom B. idea C. desire D. courage14. A. see B. show C. become D. forget15. A. necessary B. natural C. secondary D. possible第二节语法填空(共10小题;每小题1.5分,满分15分)阅读下面短文,按照句子结构的语法性和上下文连贯的要求,在空格处填入一个适当的词或使用括号中词语的正确形式填空,并将答案填写在答题卡标号为16~25的相应位置上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档