2019届四川省(天府大联考)高中高三综合能力检测(五)数学(文)试题(PDF版)
2019届四川省高三联合诊断数学(文)试题(解析版)21

高三联合诊断数学(文)试题一、单选题1.已知集合则=( )A .B .C .D .2.复数( ) A .B .C .D .3.若函数的定义域是,则的定义域为( )A .RB .C .D .4.已知角的终边上一点坐标为,则角的最小正值为( )A .B .C .D .5.函数的最小正周期为( )A .B .C .D .6.与直线关于x 轴对称的直线的方程是( ) A . B . C .D .7.由直线1y x =+上的一点向圆()2231x y -+=引切线,则切线长的最小值为( ).A .1B .CD .3 8.函数22x y x =-的图象大致是( )A .B .C .D .9.已知双曲线的右焦点为F ,则点F 到C 的渐近线的距离为( )A .3B .C .aD .10.若函数有两个零点,则实数a 的取值范围为( )A .B .C .D .11.已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若3AB =,4AC =,AB ⊥AC ,112AA =,则球O 的半径为( )A .2B .C .132D .12.若函数满足,当时,,当时,的最大值为,则实数a 的值为( ) A .3 B .e C .2 D .1二、填空题13.已知,,向量与的夹角大小为60°,若与垂直,则实数_____.14.设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+= .15.设变量满足约束条件,则目标函数的最小值为__________. 16.已知函数则满足不等式成立的实数的取值范围是_____.三、解答题17.等差数列中,.(1)求的通项公式.(2)记为的前项和,若,求m.18.某火锅店为了解气温对营业额的影响,随机记录了该店1月份中5天的日营业额y(单位:千元)与该地当日最低气温x(单位:℃)的数据,如表:x258911y1210887(1)求y关于x的回归方程;(2)判定y与x之间是正相关还是负相关,若该地1月份某天的最低气温为6℃,用所求回归方程预测该店当日的营业额.19.如图,在多面体ABCDEF中,四边形ABCD是矩形,四边形ABEF为等腰梯形,且,平面ABCD⊥平面ABEF(1)求证:BE⊥DF;(2)求三棱锥C﹣AEF的体积V.20.如图,A、B分别是椭圆2213620x y+=的左、右端点,F是椭圆的右焦点,点P在椭圆上,且位于x轴上方,PA⊥PF.(1)点P的坐标;(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于MB,求椭圆上的点到点M的距离d的最小值.21.已知函数,其中为自然对数的底数.(1)若的图象在处的切线斜率为2,求;(2)若有两个零点,求的取值范围.22.在平面直角坐标系中,已知曲线(为参数)与曲线(为参数,).(Ⅰ)若曲线与曲线有一个公共点在轴上,求的值;(Ⅱ)当时,曲线与曲线交于两点,求两点的距离.23.已知定义在上的函数,,若存在实数使成立.(1)求实数的值;(2)若,,,求证:.高三联合诊断数学(文)试题【解析】一、单选题1.已知集合则=()A.B.C.D.【答案】D【解析】试题分析:根据题意得,,,所以.故本题正确答案为D.【考点】集合的运算,集合的含义与表示.2.复数()A.B.C.D.【答案】C【解析】直接利用复数乘法的运算法则求解即可.【详解】由复数乘法的运算法则可得,,故选C.【点睛】本题主要考查复数乘法的运算法则,意在考查对基本运算的掌握情况,属于基础题.3.若函数的定义域是,则的定义域为()A.R B.C.D.【答案】A【解析】直接利用求抽象函数定义域的方法,由可得.【详解】∵的定义域是,∴满足,∴,∴的定义域为.故选A.【点睛】本题主要考查抽象函数的定义域,属于简单题. 定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2) 对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3) 若已知函数的定义域为,则函数的定义域由不等式求出.4.已知角的终边上一点坐标为,则角的最小正值为()A.B.C.D.【答案】C【解析】利用特殊角的三角函数化为点,判断角的终边所在象限,从而可得结果.【详解】角的终边上一点坐标为,即为点在第四象限,且满足,且,故的最小正值为,故选C.【点睛】本题主要考查特殊角的三角函数以及根据角终边上点的坐标求角,意在考查灵活应用所学知识解答问题的能力,属于中档题.5.函数的最小正周期为()A.B.C.D.【答案】C【解析】化简,利用周期公式可得结果.【详解】因为函数,所以最小正周期为,故选C .【点睛】本题主要考查同角三角函数的关系、二倍角的正弦公式,以及正弦函数的周期公式,属于中档题. 函数的最小正周期为.6.与直线关于x 轴对称的直线的方程是( ) A . B . C . D .【答案】D【解析】利用所求直线的点的坐标,关于轴的对称点的坐标在已知的直线上求解即可. 【详解】设所求直线上点的坐标,则关于轴的对称点的坐标在已知的直线上,所以所求对称直线方程为:,故选D .【点睛】本题主要考查对称直线的方程,意在考查灵活应用所学知识解答问题的能力,属于简单题.7.由直线1y x =+上的一点向圆()2231x y -+=引切线,则切线长的最小值为( ).A .1B .CD .3 【答案】C【解析】因为切线长的最小值是当直线1y x =+上的点与圆心距离最小时取得,圆心()3,0到直线的距离为d ==1,那么切线== 故选C .8.函数2=-的图象大致是()y x2xA.B.C.D.【答案】A【解析】由2-=0得两个正根和一个负根,所以舍去B,C;因为2x xx y→-∞→-∞,所以舍D,选A..,9.已知双曲线的右焦点为F,则点F到C的渐近线的距离为()A.3 B.C.a D.【答案】B【解析】由双曲线的方程求出焦点坐标与渐近线方程,利用点到直线的距离公式化简可得结果.【详解】因为双曲线的右焦点为,渐近线,所以点到渐近线的距离为,故选B.【点睛】本题主要考查利用双曲线的方程求焦点坐标与渐近线方程,以及点到直线距离公式的应用,属于基础题.若双曲线方程为,则渐近线方程为. 10.若函数有两个零点,则实数a的取值范围为()A.B.C.D.【答案】B【解析】函数有两个零点,等价于的图象与轴有两个交点,利用导数研究函数的单调性性、求出最小值,令最小值小于零即可得结果. 【详解】 ∵函数有两个零点,所以的图象与轴有两个交点, ∴函数,当时,,函数为减函数;当时,,函数为增函数;故当时,函数取最小值, 又∵,;∴若使函数有两个零点,则且,即,故选B .【点睛】本题主要考查利用导数研究函数的单调性及零点,属于中档题. 函数零点的几种等价形式:函数的零点函数在轴的交点方程的根函数与的交点.11.已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若3AB =,4AC =,AB ⊥AC ,112AA =,则球O 的半径为( )A .2B .C .132D .【答案】C【解析】试题分析:因为三棱柱111ABC A B C -的底面为直角三角形,所以可以把三棱柱111ABC A B C -补成长宽高分别是3,4,12的长方体,且长方体的 外接球就是三棱柱的外接球,根据长方体的性质可知外接球的直径2r等于长方,所以132r=,故选C.【考点】1、三棱柱及长方体的性质;2、多面体外接球的性质及半径的求法.【方法点睛】本题主要考查三棱柱及长方体的性质;多面体外接球的性质及半径的求法,属于难题.,求外接球半径的常见方法有:①若三条棱两垂直则用22224R a b c=++(,,a b c为三棱的长);②若SA⊥面ABC(SA a=),则22244R r a=+(r为ABC∆外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.本题的解答是利用方法③进行的. 12.若函数满足,当时,,当时,的最大值为,则实数a的值为()A.3 B.e C.2 D.1【答案】D【解析】若时,则,可得,由此可得时,,利用导数研究函数的单调性,由单调性可得,从而可得结果.【详解】由已知得:,当时,,设时,则,∴∴时,∴,∵,∴,∴,∴当时,,函数单调递增,当时,,函数单调递减,∴,∴,故选D.【点睛】本题主要考查利用导数判断函数的单调性以及函数的极值与最值,属于难题.求函数极值的步骤:(1) 确定函数的定义域;(2) 求导数;(3) 解方程求出函数定义域内的所有根;(4) 判断在的根左右两侧值的符号,如果左正右负(左增右减),那么在处取极大值,如果左负右正(左减右增),那么在处取极小值. (5)如果只有一个极值点,则在该处即是极值也是最值;(6)如果求闭区间上的最值还需要比较端点值的函数值与极值的大小.二、填空题13.已知,,向量与的夹角大小为60°,若与垂直,则实数_____.【答案】【解析】先利用平面向量数量积公式求出的值,然后利用向量垂直数量积为零列方程求解即可.【详解】根据题意得,,∴,而∴, ∴故答案为﹣7. 【点睛】本题主要考查平面向量数量积的运算法则,属于中档题. 向量数量积的运算主要掌握两点:一是数量积的基本公式;二是向量的平方等于向量模的平方.14.设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+= .【答案】9 【解析】试题分析:由题设可得62122)12(log ,321)2(1112log 22=⨯===+=---f f ,故963)12(log )2(2=+=+-f f ,故应填答案9. 【考点】对数函数指数函数的概念及性质的运用.15.设变量满足约束条件,则目标函数的最小值为__________. 【答案】【解析】试题分析:作出可行域如下图所示,当直线过可行域中的点时,的最小值.【考点】线性规划. 16.已知函数则满足不等式成立的实数的取值范围是_____.【答案】【解析】利用导数判断函数为增函数,利用奇偶性的定义判断为奇函数,从而可将,转化为,利用一元二次不等式的解法求解即可.【详解】由,得,∴函数为增函数,又,∴为奇函数.由,得即,∴.解得.故答案为.【点睛】本题主要考查函数的奇偶性的应用与利用导数研究函数的单调,属于难题.将奇偶性与单调性综合考查一直是命题的热点,解这种题型往往先确定所给区间上的单调性,根据奇偶性转化为函数值的不等关系,然后再根据单调性列不等式求解.三、解答题17.等差数列中,.(1)求的通项公式.(2)记为的前项和,若,求m.【答案】(1);(2) .【解析】(1)根据等差数列中,列出关于首项、公差的方程组,解方程组可得与的值,从而可得数列的通项公式;(2)由,利用等差数列求和公式列方程求解即可.【详解】(1)等差数列的公差为d,∵,∴,解方程可得,=1,,∴;(2)由(1)可知,,由,可得,,∴m=6或m=﹣10(舍),故m=6.【点睛】本题主要考查等差数列的通项公式、等差数列的前项和公式,属于中档题. 等差数列基本量的运算是等差数列的一类基本题型,数列中的五个基本量一般可以“知二求三”,通过列方程组所求问题可以迎刃而解. 18.某火锅店为了解气温对营业额的影响,随机记录了该店1月份中5天的日营业额y(单位:千元)与该地当日最低气温x(单位:℃)的数据,如表:x258911y1210887(1)求y关于x的回归方程;(2)判定y与x之间是正相关还是负相关,若该地1月份某天的最低气温为6℃,用所求回归方程预测该店当日的营业额.【答案】(1);(2)负相关,预测约为9.56千元.【解析】(1)根据所给的数据,求出变量的平均数,根据最小二乘法所需要的数据求出线性回归方程的系数,再根据样本中心点一定在线性回归方程上,求出的值,可得出线性回归方程;(2)将代入所求的线性回归方程求出对应的的值,即可预测该店当日的营额.【详解】(1),.,,∴,.∴回归方程为:.(2)∵,∴y与x之间是负相关.当x=6时,.∴该店当日的营业额约为9.56千元.【点睛】本题主要考查线性回归方程的求解与应用,属于中档题.求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.19.如图,在多面体ABCDEF中,四边形ABCD是矩形,四边形ABEF为等腰梯形,且,平面ABCD ⊥平面ABEF(1)求证:BE ⊥DF ;(2)求三棱锥C ﹣AEF 的体积V .【答案】(1)见解析; (2). 【解析】(1)取的中点,连结,则,利用勾股定理可得,由面面垂直的性质可得 平面,可得,由此可得 平面,则平面,从而可得结果;(2)平面,可得,由(1)得,平面,由棱锥的体积公式可得结果.【详解】(1)取EF 的中点G ,连结AG , ∵EF=2AB,∴AB=EG,又AB∥EG,∴四边形ABEG 为平行四边形, ∴AG∥BE,且AG=BE=AF=2,在△AGF 中,GF=,AG=AF=2,∴,∴AG⊥AF,∵四边形ABCD 是矩形,∴AD⊥AB, 又平面ABCD⊥平面ABEF ,且平面ABCD平面ABEF=AB ,∴AD⊥平面ABEF ,又AG 平面ABEF ,∴AD⊥AG, ∵ADAF=A ,∴AG⊥平面ADF ,∵AG∥BE,∴BE⊥平面ADF , ∵DF平面ADF ,∴BE⊥DF;(2)∵CD∥AB 且平面ABEF ,BA平面ABEF ,∴CD∥平面ABEF ,∴,由(1)得,DA⊥平面ABEF ,∵,∴.【点睛】本题主要考查面面垂直的性质、线面垂直的判定定理与性质,属于中档题. 解答空间几何体中的平行、垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间的平行、垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;解答本题的关键是由面面垂直证明线面垂直、线面垂直证明线线垂直,线线垂直证明线面垂直,进而证明线线垂直.20.如图,A 、B 分别是椭圆2213620x y +=的左、右端点,F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PA ⊥PF. (1)点P 的坐标;(2)设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于MB ,求椭圆上的点到点M 的距离d 的最小值.【答案】(1)32⎛ ⎝⎭(2【解析】试题分析:(1)先求出PA 、F 的坐标,设出P 的坐标,求出、的坐标,由题意可得,且y >0,解方程组求得点P 的坐标.(2)求出直线AP 的方程,设点M 的坐标,由M 到直线AP 的距离等于|MB|,求出点M 的坐标,再求出椭圆上的点到点M 的距离d 的平方得解析式,配方求得最小值. 试题解析:(1)由已知可得点A (﹣6,0),F (4,0),设点P (x ,y ),则=(x+6,y ),=(x ﹣4,y ).由已知可得,2x 2+9x ﹣18=0,解得x=,或x=﹣6.由于y >0,只能x=,于是y=.∴点P 的坐标是32⎛ ⎝⎭.(2)直线AP 的方程是 ,即 x ﹣y+6=0.设点M (m ,0),则M 到直线AP 的距离是.于是=|6﹣m|,又﹣6≤m≤6,解得m=2,故点M (2,0).设椭圆上的点(x ,y )到点M 的距离为d ,有 d 2=(x ﹣2)2+y 2 =x 2﹣4x+4+20﹣x 2 =(x ﹣)2+15,∴当x=时,d 21.已知函数,其中为自然对数的底数.(1)若的图象在处的切线斜率为2,求;(2)若有两个零点,求的取值范围.【答案】(1); (2).【解析】(1)求出,根据导数的几何意义,由,解方程即可得结果;(2)由,得,利用导数可得在上递减;在上,递增,,结合时,时,从而可得结果.【详解】(1),,∴.(2)由,得,记,则,,,递减;时,,递增.∴. 而x→0时,时,故.【点睛】本题主要考查利用导数研究函数零点,以及导数的几何意义的应用,属于中档题.导数几何意义的应用主要体现在以下几个方面:(1) 已知切点求斜率,即求该点处的导数;(2) 己知斜率求切点即解方程;(3) 巳知切线过某点(不是切点) 求切点, 设出切点利用求解.22.在平面直角坐标系中,已知曲线(为参数)与曲线(为参数,).(Ⅰ)若曲线与曲线有一个公共点在轴上,求的值;(Ⅱ)当时,曲线与曲线交于两点,求两点的距离.【答案】(1);(2).【解析】试题分析:(1)曲线化成,令可得与轴的交点,曲线直角坐标方程为,利用与轴的交点;(2)当时,曲线化为.利用点到直线的距离公式可得:圆心到直线的距离为,利用弦长公式可得.试题解析:(1)曲线的直角坐标方程为,曲线与轴交点为,曲线的直角坐标方程为,曲线与轴交点为,由,曲线与曲线有一个公共点在轴上,知(2)当时,曲线,为圆,圆心到直线的距离,所以两点在距离【考点】参数方程化成普通方程.23.已知定义在上的函数,,若存在实数使成立.(1)求实数的值;(2)若,,,求证:.【答案】(1);(2)证明见解析。
2019年【天府高考】全国高考大联考信息卷:数学(文)试卷(2)及答案解析

高考数学精品复习资料2019.5普通高等学校招生全国统一考试模拟试题(二)文科数学第I 卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,集合{}lg(1)A x y x ==-,集合{}B yy ==,则=)(B C A UA .[]1,2B .[)1,2C .(]1,2D .(1,2) 2.如图,在复平面内,若复数12,z z 对应的向量分别是,OA OB ,则复数12z z +所对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限3.将函数()()ϕ+=x x f 2sin 的图象向左平移8π个单位,所得到的函数图象关于y 轴对称,则ϕ的一个可能取值为 A .34π B .4π C .0 D .4π- 4.设z x y =+,其中实数,x y 满足24122x y x y x y +≥⎧⎪-≥⎨⎪-≤⎩,则z 的最小值为A .1-B .2-C .2D .0 5.设123log 2,ln 2,5a b c -===则A .a b c <<B .b c a <<C .c a b <<D .c b a << 6.执行如右图所示的程序框图后,输出的结果为A .8B .10C .12D .32 7.如图是一个几何体的三视图,则该几何体的任意 两个顶点间距离的最大值为A . 4B . 5 C. D.8.已知,20π<<x 且t 是大于0的常数,xtx x f sin sin )(-+=11的最小值为9,则t 的值为 A .5 B . 4 C .3 D .29.设n S 是公差为)(0≠d d 的无穷等差数列}{n a 的前n 项和,则下列命题错误的是A .若0<d ,则数列 }{n S 有最大项;B .若数列 }{n S 有最大项,则0<d ;C .若数列 }{n S 是递增数列,则对任意,*N n ∈均有0>n S ; D .若对任意,*N n ∈均有0>n S ,则数列 }{n S 是递增数列 .10.已知ABC ∆中,2290==︒=∠BC AB ACB ,,将ABC ∆绕BC 旋转得PBC ∆,当直线PC 与平面PAB 所成角的正弦值为66时,A P 、两点间的距离是 A .2 B .4 C .22 D .32 11. 若椭圆)(:01112122121>>=+b a b y a x C 和椭圆)(:01222222222>>=+b a b y a x C 的焦点相同且021>>a a .给出如下四个结论:①椭圆1C 和椭圆C ;21b b > ③;22212221b b a a -=- ④ .2121b b a a -<- 其中,所有正确结论的序号是_____.A ②③④B ①③④C ①②④D ①②③12.已知点(1,1)A -,(4,0)B ,(2,2)C ,平面区域D 由所有满足AP AB AC λμ=+(1,1)a b λμ<≤<≤的点(,)P x y 组成,若区域D 的面积为8,则a b +的最小值为 A .32B .2C .4D .8 第II 卷(非选择题,共90分)二、填空题: 本题共4小题,每小题5分,共20分. 13.设幂函数akx x f =)( 的图象经过点),(2221 ,则=+a k ______. 14.如图,H 是球O 的直径AB 上一点,平面α 截球O 所得截面的面积为9π ,平面AB H α= ,13AH :BH := ,且点A 到平面α 距离为1,则球O 的表面积为______.15.在ABC ∆中, ,sin cos ,A c C a c ==2若当0x a =时的ABC ∆有两解,则x16.函数⎩⎨⎧>≤-=1,ln 1,1)(2x x x x x f ,若方程21)(-=mx x f 恰有四个不相等的实数根,则实数m 的取值范围是_________.三、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)设{}n a 是等差数列, {}n b 是各项都为正数的等比数列,且111a b == ,3521a b += ,5313a b += . (Ⅰ)求{}n a ,{}n b 的通项公式. 18.(本小题满分12分)某地区20xx 年至农村居民家庭纯收入y (单位:千元)的数据如下表:(Ⅰ)求y 关于x 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析20xx 年至该地区农村居民家庭人均纯收入的变化情况,并预 测该地区农村居民家庭人均纯收入.(注:1122211()()()n ni iiii i nniii i x y nx y x x y y b xnxxx ∧====---==--∑∑∑∑,a y b x ∧∧=-)19.(本小题满分12分)如图,在正四棱锥P ABCD -中,PA AB =,E ,F 分别为PB ,PD 的中点. (Ⅰ)求证:AC ⊥平面PBD ;(Ⅱ)求异面直线PC 与AE 所成角的余弦值;(Ⅲ)若平面AEF 与棱PC 交于点M ,求PMPC的值.20.(本小题满分12分)如图,在平面直角坐标系中,过()1,0F 的直线FM 与y 轴交于点M ,直线MN 与直线FM 垂直,且与x 轴的交点为N ,T 是点N 关于直线FM 的对称点. (Ⅰ)点T 的轨迹为曲线C ,求曲线C 的方程;(Ⅱ)椭圆E 的中心在坐标原点,F 为其右焦点,且离心率为12.过点F 的直线l 与曲线C 交于A 、B 两点,与椭圆交于P 、Q 两点,请问:是否存在直线l 使A 、F 、Q 是线段PB 的四等分点?若存在,求出直线l 的方程;若不存在,请说明理由.21.(本小题满分12分)设函数.)(,ln )()(x ex x g x a x x f 22=+=已知曲线)(x f 在点))(,(11f 处的切线过点),(32.(Ⅰ)求实数a 的值;(Ⅱ)是否存在自然数k ,使得方程)()(x g x f =在),(1+k k 内存在唯一的根?如果存在,求出k ,如果不存在,请说明理由;(Ⅲ)设函数},(min{)}(),(min{)(q p x g x f x m =表示q p , 中的较小值),求)(x m 的最大值. 请考生在第22、23题中任选一道....作答,如果多做,则按所做的第1题计分.作答时请写清题号. 22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系中,曲线1C :33cos 2sin x y αα=+⎧⎨=⎩(α为参数),曲线1C 经过伸缩变换32xx yy ⎧'=⎪⎪⎨⎪'=⎪⎩ 后的曲线为2C ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(Ⅰ)求2C 的极坐标方程;(Ⅱ)设曲线3C 的极坐标方程为sin 16πρθ⎛⎫-=⎪⎝⎭,且曲线3C 与曲线2C 相交于P ,Q 两点,求PQ 的值. 23.(本小题满分10分)选修4-5:不等式选讲 已知函数()f x x a x b =++-.(Ⅰ)当1a =,2b =,时,求不等式()4f x <的解集; (Ⅱ)若正实数,a b 满足1212a b +=,求证:()92f x ≥;并求()92f x =时,,a b 的值.普通高等学校招生全国统一考试模拟试题(二)文科数学答案一、选择题:DABCC BDBCC BC11. 由题意中的焦点相同可知,又∵∴∴椭圆和椭圆一定没有公共点,∴①③正确;又∴④正确.故选.二、填空题: 13.3214. 40 15. 16.12(14.解:设球的半径为R,,且点A 到平面的距离为1,球心O 到平面的距离d 为1,截球O 所得截面的面积为,截面圆的半径r 为3,故由得,球的表面积.故填:.15解:,由正弦定理可得:,,,..当时的有两解,,计算得出,则的取值范围是,因此,本题正确答案是:.三、解答题:17.解:(1)设{a n }的公差为d,{b n }的公比为q,则依题意有q>0且解得………2分 所以a n =1+(n-1) d=2n-1,b n =qn-1=2n-1. …4分(2)=, ……6分S n =1+++…++, ①2S n =2+3++…++. ②②-①,得S n =2+2+++…+-=2+2×(1+++…+)-,……………………9分=2+2×-=6-.……………………12分.18.解:(Ⅰ)由已知可知4, 4.3t y ==,故……………………2分(3)( 1.4)(2)(1)(1)(0.7)00.110.520.93 1.60.59410149b -⨯-+-⨯-+-⨯-+⨯+⨯+⨯+⨯==++++++…………4分4.30.54 2.3a y bt =-=-⨯=,所以所求的线性回归方程为0.5 2.3y t =+.……………………6分(Ⅱ)由(Ⅰ)可知0b >,故20xx 年至该地区农村居民家庭人均纯收入在逐年增加,平均每年增加0.5千元;…………………8分 当9t =时,0.59 2.3 6.8y =⨯+=所以预测该地区农村居民家庭人均纯收入为6.8千元.……………19.解:(Ⅰ)设AC BD O =,则O 为底面正方形ABCD 因为 P ABCD -为正四棱锥,所以 PO ⊥平面ABCD . 所以 又 BD AC ⊥,且POBD O =, 所以 AC ⊥平面PBD .……4(Ⅱ) ; ……………………8分(Ⅲ) ……………………12分 20.解:(Ⅰ)法一:延长FM 到点H ,使FM MH =,由平面几何知识, 易知四边形FTHN 为菱形.过H 做直线HK x ⊥轴,垂足为K .则TF TH =,即T 到点()1,0F 的距离等于T 到直线HK :1x =-的距离, 设(),T x y ,由抛物线定义,得曲线C 的方程为24y x =.…………4分法二:设(),T x y ,由题意知直线FM 的斜率必然存在,设直线FM 的方程为()1y k x =-. 令0x =,得()0,M k -.∴当0k ≠时,直线MN 的方程为1y k x k+=-. 令0y =,得()2,0N k -.又M 为N 、T 中点,∴22x k y k⎧=⎨=-⎩ ,消去k ,得到()240y x x =≠.当0k =时,得()0,0T .∴曲线C 的方程为24y x =.……………………………………………………4分(Ⅱ)∵椭圆E 的中心在坐标原点,F 为其右焦点,且离心率为12.∴椭圆方程为22143x y +=.……………5分假设存在直线l 使A 、F 、Q 是线段PB 的四等分点.当直线l 斜率不存在和斜率为0时,显然不满足题意. 设直线l 的斜率为k ,则其方程为()1y k x =-()0k ≠.………………………………………………6分13PM PC =由图形知,若A 、F 、Q 是线段PB 的四等分点,则必有12AF FB =. 设()11,A x y 、()22,B x y 由()214y k x y x⎧=-⎪⎨=⎪⎩ ,得2440ky y k --=∴216160k ∆=+> ∴124y y k+=,124y y =- ∴由12AF FB =,得212yy =-,又∵()212122122142y y y y y y y y k +=++=-.解得k =±.…………9分当k =l方程为)1y x =-.此时,解得1,2A ⎛⎝,(2,B又由)221143y x x y ⎧=-⎪⎨+=⎪⎩解得2,55P ⎛- ⎝⎭,10,77Q ⎛ ⎝⎭ ∵2B Q y y ≠,∴点Q 不是FB 的中点,即A 、F 、Q 不可能是线段PB 的四等分点……………11分同理,当k =-时,也可证得A 、F 、Q 不可能是线段PB 的四等分点.∴不存在直线l 使A 、F 、Q 是线段PB 的四等分点.………………………………………………12分21.解:(1)的导数为,…………1分;可得,又,………2分所以曲线在点处的切线方程为,把点代入得:,计算得出;…………………………………………3分(2)设,当时,.又,所以存在,使.………………4分因为,所以当时,,当时,,所以当时,单调递增. ………………6分所以时,方程在内存在唯一的根. ……………7分(3)由(2)知,方程在内存在唯一的根,且时,,时,,所以.……………………………………8分当时,若,;若,由,知在递增.所以;………10分当时,由,可以知道时,,单调递增;时,,单调递减;所以,且.综上可得函数的最大值为.…………………………………………12分22.解:,∴3'{2'x xy y==,代入33{2x cosy sinαα=+=,得'1{'x cosy sinαα=+=,∴2C的普通方程为()2211x y-+=,即2220x x y-+=,……………………2分∵222x yρ+=,cosxρθ=,∴22cos0ρρθ-=,∴2C的极坐标方程为2cosρθ=;…………4分,∵{x cosy sinρθρθ==,∴3C 的普通方程为………6分;圆心2C到3C的距离为:………8分10分23.解:(Ⅰ)当1,2a b ==时,不等式()4f x <化为 即1{23x x ≤--<或12{34x -<<<或2{25x x ≥<,解得或12x -<<或 ∴不等式()4f x <的解集为5分,即2b a =时“=”成立,3b =.……………………10分。
四川省2019届高三上学期联合诊断考试数学(文)试卷含解析

四川省2019届高三上学期联合诊断数学(文)试卷一、单选题1.已知集合则=()A. B. C. D.【答案】D【解析】试题分析:根据题意得,,,所以.故本题正确答案为D.【考点】集合的运算,集合的含义与表示.2.复数()A. B. C. D.【答案】C【解析】直接利用复数乘法的运算法则求解即可.【详解】由复数乘法的运算法则可得,,故选C.【点睛】本题主要考查复数乘法的运算法则,意在考查对基本运算的掌握情况,属于基础题.3.若函数的定义域是,则的定义域为()A.R B. C. D.【答案】A【解析】直接利用求抽象函数定义域的方法,由可得.【详解】∵的定义域是,∴满足,∴,∴的定义域为.故选A.【点睛】本题主要考查抽象函数的定义域,属于简单题. 定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2) 对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3) 若已知函数的定义域为,则函数的定义域由不等式求出.4.已知角的终边上一点坐标为,则角的最小正值为()A. B. C. D.【答案】C【解析】利用特殊角的三角函数化为点,判断角的终边所在象限,从而可得结果.【详解】角的终边上一点坐标为,即为点在第四象限,且满足,且,故的最小正值为,故选C.【点睛】本题主要考查特殊角的三角函数以及根据角终边上点的坐标求角,意在考查灵活应用所学知识解答问题的能力,属于中档题.5.函数的最小正周期为()A. B. C. D.【答案】C【解析】化简,利用周期公式可得结果.【详解】因为函数。
四川省2019届高三月考数学文科试卷含答案(2套).doc

2019届第五期10月月考试题数学(文史类)第I卷(选择题)一、选择题(共60分,每小题5分,每个小题有且仅有一个正确的答案)1.已知集合A = {1,2,3,4,5}, B = {x|(x-2)(x-5)<0},则A B=( ) A・{1,2,3,4} B. {3,4}c・{2,3,4} D. {4,5} 2-i2•复数〜=( i)A. 1-2/B・ l + 2i C. —1 — 2/ D. — 1 + 2iT T ―> —> ]3.设向量a , b满足\a + b\=\J\0 ,a-b=>/6 ,则a-b = {)A. 1B. 2C. 3D. 53 44.若角Q的终边经过点P(-,-一),贝ij cos a-tan a的值是( )5 5A. -A5 B. - C.53 ~54 2 15.已知6Z =23,Z?=33,C =253 ,贝!1()A. c < a <bB. a<b <cC. b<c <aD. b<a<c6.如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1, 2, 3, 4, 5中任取3个不同的数,则3个数构成一组勾股数的概率为()A. 1031B. 一5C.1101D.—207.函数/(x)m于+3兀的零点个数是()A. 0B- 1 C. 2 D. 3 & 已知函数f(x) = J 2「一2,兀<1 ,且 /@)= _3,则/(6-^)=([-log2(x+l),x>l7 5 3 1A・一一 B. 一一C・一一 D.--4 4 4 49. 已知/(兀)是偶函数,它在[0,4-0))上是减函数,若/ (lgx)>/(1),则兀的取值范围是()A.(丄,1)B.(丄,10)C. (0,—) (1,4-oc ))D. (0,1) (10,+8)10 10 1010. 己知侧棱长为佢的正四棱锥―外〃〃的五个顶点都在同一个球面上,且球心0在底面正方形ABCD 上,则球0的表面积为() A.兀 B. 2 nC ・ 3 nD. 4 n11.函数y =ax 2+bx 与『一"牛"(G /?H 0, d 工制)在同一直角坐标系中的图彖可能是( )第II 卷(非选择题)二、 填空题(共20分,每小题5分)13. 若函数/(x) = lnx —f(l)F+3x + 2,则/(1)= ___________________ ・14. 己知圆O : x 2+/=4,则圆O 在点A(I,J5)处的切线的方程是 ___________________ ・ 15. 己知/(x)是定义域为(-00, +00)的奇函数,满足/(l-x) = /(1 + x)・若/(1) = 2,则/(1) + /(2) + /⑶ + …+ /(46)= ______________ ・16. 已知圆锥的顶点为S,母线SA, S3互相垂直,SA 与圆锥底面所成角为30°.若△抽的面积为8, _______________________ 则该圆锥的体积为 ・三、 解答题(共70分)(17-21为必做题.,22、23为选做题)12. 已知可导函数/(x)的导函数为广(无),/(0)= 2018若对任意的xeR,都有/(x)>/(X ),则不等式/(%)<2018^的解集为()A. (0, +°°)B.丄,+8D. (―°°, 0)C.17.(本小题满分12分)在△血力中,角〃,B, C、所对的边分别是b, c,且a sinA = bsinB+ (c -Z?) sin C •(1) 求〃的大小;(2) 若sinB = 2sinC,d =巧,求的面积.18. (本小题满分12分)在等差数列{陽}屮,@=4,偽+%=15・ (1) 求数列{色}的通项公式;(2) 设b n = T n ~2+ 2n ,求勺+$+伏+・・・+%的值.19. (本小题满分12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的 两种新的生产方式.为比较两种生产方式的效率,选収40名工人,将他们随机分成两组,每组20 人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作 时间(单位:min)绘制了如下茎叶图:第一种生产方式第二种生产方式8 6 5 5 6 8 99 7 6 27 0122345668987765433 28 14 4 5 2 110 09 0@正确教育⑴求40名工人完成生产任务所需吋间的中位数加,并根据茎叶图判断哪种生产方式的效率更 高?并说明理由;⑵完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:根据列联表能否冇99%的把握认为两种生产方式的效率冇差异?O.O5OO.O1O 0.0013.841 6.635 10.828附:K 2=n^ad -bey(a + /?)(c + d)(a + c)(Z? + d)'20.(本小题满分12分)在如图所示的儿何体中,四边形ABCD 是正方形,P4丄平ffil ABCD, E , F分别是线段AD, PB的中点,PA = AB = \.(1)证明:EF//平面DCP;(2)求点F到平面PDC的距离.21.(本小题满分12分)已知函数/(%) = 4Inx-nvc + l(m G R).(1)若函数在点(1,/(1))处的切线与直线2x-y-l = 0平行,求实数加的值;(2)若对任意兀w[l,w],都有/(%) < 0恒成立,求实数/〃的取值范围.选考题:共10分。
【省级联考】四川省2019届高三联合诊断数学(文)试题-

绝密★启用前【省级联考】四川省2019届高三联合诊断数学(文)试题试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.已知集合 , 则 =( ) A . B . C . D . 2.复数 ( )A .B .C .D .3.若函数 的定义域是 ,则 的定义域为( ) A .R B . C .D . 4.已知角 的终边上一点坐标为,则角 的最小正值为( )A .B .C .D .5.函数 的最小正周期为( ) A . B .C .D .6.与直线 关于x 轴对称的直线的方程是( ) A . B . C . D .7.由直线1y x =+上的一点向圆()2231x y -+=引切线,则切线长的最小值为( ).A .1BCD .3 8.函数22xy x =-的图象大致是( )……线…………○…………线…………○……A . B . C .D .9.已知双曲线的右焦点为F ,则点F 到C 的渐近线的距离为( )A .3B .C .aD .10.若函数 有两个零点,则实数a 的取值范围为( ) A .B .C .D .11.已知三棱柱的6个顶点都在球的球面上,若,,⊥,,则球的半径为( )A C 12.若 函数满足 ,当 时,,当 时, 的最大值为,则实数a 的值为( ) A .3 B .e C .2 D .1111ABC A B C -O 3AB =4AC =AB AC 112AA =O○…………学校:_________○…………第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题13.已知 , ,向量 与 的夹角大小为60°,若 与 垂直,则实数 _____.14.设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,15.设变量 满足约束条件,则目标函数 的最小值为__________.16.已知函数 则满足不等式 成立的实数 的取值范围是_____. 三、解答题17.等差数列 中, . (1)求 的通项公式.(2)记 为 的前项和,若 ,求m .18.某火锅店为了解气温对营业额的影响,随机记录了该店1月份中5天的日营业额y (单位:千元)与该地当日最低气温x (单位:℃)的数据,如表:(1)求y 关于x 的回归方程 ;(2)判定y 与x 之间是正相关还是负相关,若该地1月份某天的最低气温为6℃,用所求回归方程预测该店当日的营业额.19.如图,在多面体ABCDEF 中,四边形ABCD 是矩形,四边形ABEF 为等腰梯形,且 ,平面ABCD⊥平面ABEF (1)求证:BE⊥DF;(2)求三棱锥C ﹣AEF 的体积V .○…………订…线…………○……※※订※※线※※内※※答○…………订…线…………○……20.如图,A 、B 分别是椭圆2213620x y +=的左、右端点,F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PA ⊥PF. (1)点P 的坐标;(2)设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于MB ,求椭圆上的点到点M 的距离d 的最小值.21.已知函数 ,其中 为自然对数的底数. (1)若 的图象在 处的切线斜率为2,求 ; (2)若 有两个零点,求 的取值范围.22.在平面直角坐标系 中,已知曲线 ( 为参数)与曲线( 为参数, ).(Ⅰ)若曲线 与曲线 有一个公共点在 轴上,求 的值;(Ⅱ)当 时,曲线 与曲线 交于 两点,求 两点的距离.23.已知定义在 上的函数 , ,若存在实数 使 成立.(1)求实数 的值;(2)若 , , ,求证:.参考答案1.D【解析】试题分析:根据题意得,,,所以.故本题正确答案为D.考点:集合的运算,集合的含义与表示.2.C【解析】【分析】直接利用复数乘法的运算法则求解即可.【详解】由复数乘法的运算法则可得,,故选C.【点睛】本题主要考查复数乘法的运算法则,意在考查对基本运算的掌握情况,属于基础题.3.A【解析】【分析】直接利用求抽象函数定义域的方法,由可得.【详解】∵的定义域是,∴满足,∴,∴的定义域为.故选A.【点睛】本题主要考查抽象函数的定义域,属于简单题. 定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2) 对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3) 若已知函数的定义域为,则函数的定义域由不等式求出.4.C【解析】【分析】利用特殊角的三角函数化为点,判断角的终边所在象限,从而可得结果.【详解】角的终边上一点坐标为,即为点在第四象限,且满足,且,故的最小正值为,故选C.【点睛】本题主要考查特殊角的三角函数以及根据角终边上点的坐标求角,意在考查灵活应用所学知识解答问题的能力,属于中档题.5.C【解析】【分析】化简,利用周期公式可得结果.【详解】因为函数,所以最小正周期为,故选C.【点睛】本题主要考查同角三角函数的关系、二倍角的正弦公式,以及正弦函数的周期公式,属于中档题. 函数的最小正周期为.6.D【解析】【分析】利用所求直线的点的坐标(,),关于轴的对称点的坐标(,)在已知的直线上求解即可.【详解】设所求直线上点的坐标(,),则关于 轴的对称点的坐标( , )在已知的直线 上, 所以所求对称直线方程为: ,故选D . 【点睛】本题主要考查对称直线的方程,意在考查灵活应用所学知识解答问题的能力,属于简单题. 7.C【解析】因为切线长的最小值是当直线1y x =+上的点与圆心距离最小时取得,圆心()3,0到直线的距离圆的半径为1,那么切线长的最小值为故选C . 8.A【解析】由22x x -=0得两个正根和一个负根,所以舍去B,C ;因为,x y →-∞→-∞,所以舍D,选A.. 9.B 【解析】 【分析】由双曲线的方程求出焦点坐标与渐近线方程,利用点到直线的距离公式化简可得结果. 【详解】 因为双曲线的右焦点为 , ,渐近线, 所以点 到渐近线的距离为,故选B .【点睛】本题主要考查利用双曲线的方程求焦点坐标与渐近线方程,以及点到直线距离公式的应用,属于基础题.若双曲线方程为,则渐近线方程为. 10.B 【解析】 【分析】函数 有两个零点,等价于 的图象与 轴有两个交点,利用导数研究函数的单调性性、求出最小值,令最小值小于零即可得结果.∵函数 有两个零点,所以 的图象与 轴有两个交点, ∴函数 ,当时, ,函数为减函数; 当 时, ,函数为增函数;故当 时,函数取最小值, 又∵,;∴若使函数 有两个零点,则 且 ,即,故选B . 【点睛】本题主要考查利用导数研究函数的单调性及零点,属于中档题. 函数零点的几种等价形式:函数 的零点 函数 在 轴的交点 方程 的根 函数 与 的交点. 11.C 【解析】试题分析:因为三棱柱的底面为直角三角形,所以可以把三棱柱补成长宽高分别是的长方体,且长方体的 外接球就是三棱柱的外接球,根据长方体的性质可知外接球的直径等于长方体的对角线C. 考点:1、三棱柱及长方体的性质;2、多面体外接球的性质及半径的求法.【方法点睛】本题主要考查三棱柱及长方体的性质;多面体外接球的性质及半径的求法,属于难题.,求外接球半径的常见方法有:①若三条棱两垂直则用(为三棱的长);②若面(),则(为外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.本题的解答是利用方法③进行的.111ABC A B C -111ABC A B C -3,4,122r 22224R a b c =++,,a b cSA ⊥ABC SA a =22244R r a =+r ABC ∆【解析】【分析】若时,则,可得,由此可得时,,利用导数研究函数的单调性,由单调性可得,从而可得结果.【详解】由已知得:,当时,,设时,则,∴∴时,∴,∵,∴,∴,∴当时,,函数单调递增,当时,,函数单调递减,∴,∴,故选D.【点睛】本题主要考查利用导数判断函数的单调性以及函数的极值与最值,属于难题.求函数极值的步骤:(1) 确定函数的定义域;(2) 求导数;(3) 解方程求出函数定义域内的所有根;(4) 判断在的根左右两侧值的符号,如果左正右负(左增右减),那么在处取极大值,如果左负右正(左减右增),那么在处取极小值. (5)如果只有一个极值点,则在该处即是极值也是最值;(6)如果求闭区间上的最值还需要比较端点值的函数值与极值的大小.13.【解析】先利用平面向量数量积公式求出 的值,然后利用向量垂直数量积为零列方程求解即可. 【详解】根据题意得,, ∴ ,而∴ , ∴ 故答案为﹣7. 【点睛】本题主要考查平面向量数量积的运算法则,属于中档题. 向量数量积的运算主要掌握两点:一是数量积的基本公式 ;二是向量的平方等于向量模的平方 . 14.9 【解析】试题分析:由题设可得62122)12(log ,321)2(1112log 22=⨯===+=---f f ,故963)12(log )2(2=+=+-f f ,故应填答案9.考点:对数函数指数函数的概念及性质的运用. 15.【解析】试题分析:作出可行域如下图所示,当直线 过可行域中的点 时, 的最小值 .考点:线性规划. 16.【解析】【分析】利用导数判断函数为增函数,利用奇偶性的定义判断为奇函数,从而可将,转化为,利用一元二次不等式的解法求解即可.【详解】由,得,∴函数为增函数,又,∴为奇函数.由,得即,∴.解得.故答案为.【点睛】本题主要考查函数的奇偶性的应用与利用导数研究函数的单调,属于难题.将奇偶性与单调性综合考查一直是命题的热点,解这种题型往往先确定所给区间上的单调性,根据奇偶性转化为函数值的不等关系,然后再根据单调性列不等式求解.17.(1);(2) .【解析】【分析】(1)根据等差数列中,列出关于首项、公差的方程组,解方程组可得与的值,从而可得数列的通项公式;(2)由,利用等差数列求和公式列方程求解即可.【详解】(1)等差数列的公差为d,∵,∴,解方程可得,=1,,∴;(2)由(1)可知,,由,可得,,∴m=6或m=﹣10(舍),故m=6.【点睛】本题主要考查等差数列的通项公式、等差数列的前项和公式,属于中档题. 等差数列基本量的运算是等差数列的一类基本题型,数列中的五个基本量一般可以“知二求三”,通过列方程组所求问题可以迎刃而解.18.(1);(2)负相关,预测约为9.56千元.【解析】【分析】(1)根据所给的数据,求出变量的平均数,根据最小二乘法所需要的数据求出线性回归方程的系数,再根据样本中心点一定在线性回归方程上,求出的值,可得出线性回归方程;(2)将代入所求的线性回归方程求出对应的的值,即可预测该店当日的营额.【详解】(1),.,,∴,.∴回归方程为:.(2)∵,∴y与x之间是负相关.当x=6时,.∴该店当日的营业额约为9.56千元.【点睛】本题主要考查线性回归方程的求解与应用,属于中档题.求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.19.(1)见解析;(2).【解析】【分析】(1)取的中点,连结,则,利用勾股定理可得,由面面垂直的性质可得平面,可得,由此可得平面,则平面,从而可得结果;(2)平面,可得,由(1)得,平面,由棱锥的体积公式可得结果.【详解】(1)取EF的中点G,连结AG,∵EF=2AB,∴AB=EG,又AB∥EG,∴四边形ABEG为平行四边形,∴AG∥BE,且AG=BE=AF=2,在△AGF中,GF=,AG=AF=2,∴,∴AG⊥AF,∵四边形ABCD是矩形,∴AD⊥AB,又平面ABCD⊥平面ABEF,且平面ABCD平面ABEF=AB,∴AD⊥平面ABEF,又AG平面ABEF,∴AD⊥AG,∵AD AF=A,∴AG⊥平面ADF,∵AG∥BE,∴BE⊥平面ADF,∵DF平面ADF,∴BE⊥DF;(2)∵CD∥AB且平面ABEF,BA平面ABEF,∴CD∥平面ABEF,∴,由(1)得,DA⊥平面ABEF,∵,∴.【点睛】本题主要考查面面垂直的性质、线面垂直的判定定理与性质,属于中档题. 解答空间几何体中的平行、垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间的平行、垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;解答本题的关键是由面面垂直证明线面垂直、线面垂直证明线线垂直,线线垂直证明线面垂直,进而证明线线垂直.20.(1)32⎛ ⎝⎭(2【解析】试题分析:(1)先求出PA 、F 的坐标,设出P 的坐标,求出、的坐标,由题意可得,且y >0,解方程组求得点P 的坐标.(2)求出直线AP 的方程,设点M 的坐标,由M 到直线AP 的距离等于|MB|,求出点M 的坐标,再求出椭圆上的点到点M 的距离d 的平方得解析式,配方求得最小值. 试题解析:(1)由已知可得点A (﹣6,0),F (4,0),设点P (x ,y ),则=(x+6,y ),=(x ﹣4,y ).由已知可得,2x 2+9x ﹣18=0,解得x=,或x=﹣6. 由于y >0,只能x=,于是y=.∴点P 的坐标是3532⎛⎫⎪ ⎪⎝⎭,. (2)直线AP 的方程是 ,即 x ﹣y+6=0.设点M (m ,0),则M 到直线AP 的距离是.于是=|6﹣m|,又﹣6≤m≤6,解得m=2,故点M (2,0).设椭圆上的点(x,y)到点M的距离为d,有 d2=(x﹣2)2+y2 =x2﹣4x+4+20﹣x2 =(x ﹣)2+15,∴当x=时,d取得最小值15.21.(1);(2).【解析】【分析】(1)求出,根据导数的几何意义,由,解方程即可得结果;(2)由,得,利用导数可得在上递减;在上,递增,,结合时,时,从而可得结果.【详解】(1),,∴.(2)由,得,记,则,,,递减;时,,递增.∴.而x→0时,时,故.【点睛】本题主要考查利用导数研究函数零点,以及导数的几何意义的应用,属于中档题.导数几何意义的应用主要体现在以下几个方面:(1) 已知切点求斜率,即求该点处的导数;(2) 己知斜率求切点即解方程;(3) 巳知切线过某点(不是切点) 求切点, 设出切点利用求解.22.(1);(2).【解析】试题分析:(1)曲线化成,令可得与轴的交点,曲线直角坐标方程为,利用与轴的交点;(2)当时,曲线化为.利用点到直线的距离公式可得:圆心到直线的距离为,利用弦长公式可得.试题解析:(1)曲线的直角坐标方程为,曲线与轴交点为,曲线的直角坐标方程为,曲线与轴交点为,由,曲线与曲线有一个公共点在轴上,知(2)当时,曲线,为圆,圆心到直线的距离,所以两点在距离考点:参数方程化成普通方程.23.(1);(2)证明见解析。
四川省(天府大联考)高中2019届毕业班综合能力检测(文科)试题含答案

【考试时间:2018年12月5日 适用地区:四川省】高中2019届毕业班综合能力检测(五)文科数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}31≤≤-=x x A ,{}22≥∈=x R x B ,则=)(B C A R A .(-2,2) B .[-1,2) C .[-1,2) D .(-2,2)2.复数ii z +=25,则=z A .1-2i B .1+2i C .-1+2i D ..-1-2i3.函数f (x )=1-e |x |的图像大致是4.已知直线l 1:mx+y-2=0余直线l 2:(m -2)x +my -4=0垂直,则m =A .0B .1C .-1或0D .0或15.已知实数x,y 满足⎪⎩⎪⎨⎧-≥-≤≥-110y x y y x ,则2x+y 的最大值为A .-3B .32C .2D .36.为了反映国民经济各行业对仓储物流业务的需求变化情况,以及重要商品库存变化的动向,中国物流与采购联合会和中储发展股份有限公司通过联合调查,制定了中国仓储指数。
如图所示的折线图是2017年1月至2018年7月的中国仓储指数走势情况。
根据上面的折线图,下列说法最合理的一项是A .2017年各月的仓储指数最大值在3月份B .2017年1月至12月的仓储指数的中位数为54%C .2018年1月至7月的仓储指数较2017年同期波动小D .2018年3月、4月的仓储指数持续上升,仓储物流业务发展向好7.等差数列{a n }中,已知a 7>0,a 2+a 10<0,则{a n }的前n 项和S n 的最大值为A .S 4B .S 5C .S 6D .S 78.已知31)6sin(=-απ,则=+)34cos(απ A .-322 B .-13 C .13 D .2239.已知某几何体的三视图如图所示,则该几何体的体积为A .163B .103C .163D .4310.若函数)2cos(ϕ+=x y (其中ϕ>0)的图像关于点)0,32(π对称,那么ϕ的最小值为 A .π6 B .π4 C .π3 D .π211.设P 是直线y =2上的动点,若圆O :x 2+y 2=4上存在点Q ,使得∠OPQ =45°,则该点P 的横坐标x 0的取值范围是A .[-1,2]B .[0,2]C .[-2,2]D .[-4,4]12.若直线l 是曲线f (x )=ae 2(a >0)的切线,且l 又与曲线g (x )=x 2相切,则a 的取值范围是A ..(0,4e 2)B .[4e 2,+∞) C..(0,6e 2] D .[6e 2,+∞)第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡上)13.已知角θ的顶点在坐标原点,始边与x 轴的非负半轴重合,终边在直线y =2x 上,则sin θcos θ=______。
四川省2019年高考数学试卷(文科)以及答案解析
绝密★启用前四川省2019年高考文科数学试卷文科数学本试卷共23题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={﹣1,0,1,2},B={x|x2≤1},则A∩B=()A.{﹣1,0,1}B.{0,1}C.{﹣1,1}D.{0,1,2} 2.(5分)若z(1+i)=2i,则z=()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i3.(5分)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A.B.C.D.4.(5分)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为()A.0.5B.0.6C.0.7D.0.85.(5分)函数f(x)=2sin x﹣sin2x在[0,2π]的零点个数为()A.2B.3C.4D.56.(5分)已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3=()A.16B.8C.4D.27.(5分)已知曲线y=ae x+xlnx在点(1,ae)处的切线方程为y=2x+b,则()A.a=e,b=﹣1B.a=e,b=1C.a=e﹣1,b=1D.a=e﹣1,b=﹣18.(5分)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线9.(5分)执行如图的程序框图,如果输入的ɛ为0.01,则输出s的值等于()A.2﹣B.2﹣C.2﹣D.2﹣10.(5分)已知F是双曲线C:﹣=1的一个焦点,点P在C上,O为坐标原点.若|OP|=|OF|,则△OPF的面积为()A.B.C.D.11.(5分)记不等式组表示的平面区域为D.命题p:∃(x,y)∈D,2x+y≥9;命题q:∀(x,y)∈D,2x+y≤12.下面给出了四个命题①p∨q②¬p∨q③p∧¬q④¬p∧¬q这四个命题中,所有真命题的编号是()A.①③B.①②C.②③D.③④12.(5分)设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则()A.f(log3)>f(2)>f(2)B.f(log3)>f(2)>f(2)C.f(2)>f(2)>f(log3)D.f(2)>f(2)>f(log3)二、填空题:本题共4小题,每小题5分,共20分。
2019届四川省高三联合诊断数学(文)试题(解析版)
2019届四川省高三联合诊断数学(文)试题一、单选题1.已知集合则=()A.B.C.D.【答案】D【解析】试题分析:根据题意得,,,所以.故本题正确答案为D.【考点】集合的运算,集合的含义与表示.2.复数()A.B.C.D.【答案】C【解析】直接利用复数乘法的运算法则求解即可.【详解】由复数乘法的运算法则可得,,故选C.【点睛】本题主要考查复数乘法的运算法则,意在考查对基本运算的掌握情况,属于基础题. 3.若函数的定义域是,则的定义域为()A.R B.C.D.【答案】A【解析】直接利用求抽象函数定义域的方法,由可得.【详解】∵的定义域是,∴满足,∴,∴的定义域为.故选A.【点睛】本题主要考查抽象函数的定义域,属于简单题. 定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2) 对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3) 若已知函数的定义域为,则函数的定义域由不等式求出.4.已知角的终边上一点坐标为,则角的最小正值为()A.B.C.D.【答案】C【解析】利用特殊角的三角函数化为点,判断角的终边所在象限,从而可得结果.【详解】角的终边上一点坐标为,即为点在第四象限,且满足,且,故的最小正值为,故选C.【点睛】本题主要考查特殊角的三角函数以及根据角终边上点的坐标求角,意在考查灵活应用所学知识解答问题的能力,属于中档题.5.函数的最小正周期为()A.B.C.D.【答案】C【解析】化简,利用周期公式可得结果.【详解】因为函数,所以最小正周期为,故选C .【点睛】本题主要考查同角三角函数的关系、二倍角的正弦公式,以及正弦函数的周期公式,属于中档题. 函数的最小正周期为.6.与直线关于x 轴对称的直线的方程是( ) A . B . C . D .【答案】D【解析】利用所求直线的点的坐标,关于轴的对称点的坐标在已知的直线上求解即可. 【详解】设所求直线上点的坐标,则关于轴的对称点的坐标在已知的直线上,所以所求对称直线方程为:,故选D .【点睛】本题主要考查对称直线的方程,意在考查灵活应用所学知识解答问题的能力,属于简单题.7.由直线1y x =+上的一点向圆()2231x y -+=引切线,则切线长的最小值为( ).A .1B .CD .3 【答案】C【解析】因为切线长的最小值是当直线1y x =+上的点与圆心距离最小时取得,圆心()3,0到直线的距离为d ==1,那么切线长的最小值为==故选C .8.函数22x y x =-的图象大致是( )A .B .C .D .【答案】A【解析】由22x x -=0得两个正根和一个负根,所以舍去B,C ;因为,x y →-∞→-∞,所以舍D,选A..9.已知双曲线的右焦点为F ,则点F 到C 的渐近线的距离为( )A .3B .C .aD .【答案】B【解析】由双曲线的方程求出焦点坐标与渐近线方程,利用点到直线的距离公式化简可得结果. 【详解】因为双曲线的右焦点为,渐近线,所以点到渐近线的距离为,故选B .【点睛】本题主要考查利用双曲线的方程求焦点坐标与渐近线方程,以及点到直线距离公式的应用,属于基础题.若双曲线方程为,则渐近线方程为.10.若函数有两个零点,则实数a 的取值范围为( )A .B .C .D .【答案】B 【解析】函数有两个零点,等价于的图象与轴有两个交点,利用导数研究函数的单调性性、求出最小值,令最小值小于零即可得结果.【详解】 ∵函数有两个零点,所以的图象与轴有两个交点, ∴函数,当时,,函数为减函数;当时,,函数为增函数;故当时,函数取最小值, 又∵,;∴若使函数有两个零点,则且,即,故选B .【点睛】本题主要考查利用导数研究函数的单调性及零点,属于中档题. 函数零点的几种等价形式:函数的零点函数在轴的交点方程的根函数与的交点.11.已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若3AB =,4AC =,AB ⊥AC ,112AA =,则球O 的半径为( )A B . C .132D .【答案】C【解析】试题分析:因为三棱柱111ABC A B C -的底面为直角三角形,所以可以把三棱柱111ABC A B C -补成长宽高分别是3,4,12的长方体,且长方体的 外接球就是三棱柱的外接球,根据长方体的性质可知外接球的直径2r 等于长方体的对角线,所以132r =,故选C. 【考点】1、三棱柱及长方体的性质;2、多面体外接球的性质及半径的求法.【方法点睛】本题主要考查三棱柱及长方体的性质;多面体外接球的性质及半径的求法,属于难题.,求外接球半径的常见方法有:①若三条棱两垂直则用22224R a b c=++(,,a b c 为三棱的长);②若SA ⊥面ABC (SA a =),则22244R r a =+(r 为ABC ∆外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.本题的解答是利用方法③进行的.12.若函数满足,当时,,当时,的最大值为,则实数a 的值为( ) A .3 B .e C .2 D .1 【答案】D【解析】若时,则,可得,由此可得时,,利用导数研究函数的单调性,由单调性可得,从而可得结果.【详解】由已知得:,当时,, 设时,则,∴∴时,∴,∵,∴,∴,∴当时,,函数单调递增,当时,,函数单调递减,∴,∴,故选D.【点睛】本题主要考查利用导数判断函数的单调性以及函数的极值与最值,属于难题.求函数极值的步骤:(1) 确定函数的定义域;(2) 求导数;(3) 解方程求出函数定义域内的所有根;(4) 判断在的根左右两侧值的符号,如果左正右负(左增右减),那么在处取极大值,如果左负右正(左减右增),那么在处取极小值. (5)如果只有一个极值点,则在该处即是极值也是最值;(6)如果求闭区间上的最值还需要比较端点值的函数值与极值的大小.二、填空题13.已知,,向量与的夹角大小为60°,若与垂直,则实数_____.【答案】【解析】先利用平面向量数量积公式求出的值,然后利用向量垂直数量积为零列方程求解即可.【详解】根据题意得,,∴,而∴, ∴故答案为﹣7.【点睛】本题主要考查平面向量数量积的运算法则,属于中档题.向量数量积的运算主要掌握两点:一是数量积的基本公式;二是向量的平方等于向量模的平方.14.设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+= .【答案】9【解析】试题分析:由题设可得62122)12(log ,321)2(1112log 22=⨯===+=---f f ,故963)12(log )2(2=+=+-f f ,故应填答案9. 【考点】对数函数指数函数的概念及性质的运用.15.设变量满足约束条件,则目标函数的最小值为__________.【答案】【解析】试题分析:作出可行域如下图所示,当直线过可行域中的点时,的最小值.【考点】线性规划.16.已知函数则满足不等式成立的实数的取值范围是_____.【答案】【解析】利用导数判断函数为增函数,利用奇偶性的定义判断为奇函数,从而可将,转化为,利用一元二次不等式的解法求解即可.【详解】 由,得,∴函数为增函数, 又,∴为奇函数.由,得即,∴.解得.故答案为.【点睛】本题主要考查函数的奇偶性的应用与利用导数研究函数的单调,属于难题.将奇偶性与单调性综合考查一直是命题的热点,解这种题型往往先确定所给区间上的单调性,根据奇偶性转化为函数值的不等关系,然后再根据单调性列不等式求解.三、解答题17.等差数列中,.(1)求的通项公式.(2)记为的前项和,若,求m.【答案】(1);(2) .【解析】(1)根据等差数列中,列出关于首项、公差的方程组,解方程组可得与的值,从而可得数列的通项公式;(2)由,利用等差数列求和公式列方程求解即可.【详解】(1)等差数列的公差为d,∵,∴,解方程可得,=1,,∴;(2)由(1)可知,,由,可得,,∴m=6或m=﹣10(舍),故m=6.【点睛】本题主要考查等差数列的通项公式、等差数列的前项和公式,属于中档题. 等差数列基本量的运算是等差数列的一类基本题型,数列中的五个基本量一般可以“知二求三”,通过列方程组所求问题可以迎刃而解.18.某火锅店为了解气温对营业额的影响,随机记录了该店1月份中5天的日营业额y (单位:千元)与该地当日最低气温x(单位:℃)的数据,如表:x 2 5 8 9 11y 12 10 8 8 7(1)求y关于x的回归方程;(2)判定y与x之间是正相关还是负相关,若该地1月份某天的最低气温为6℃,用所求回归方程预测该店当日的营业额.【答案】(1);(2)负相关,预测约为9.56千元.【解析】(1)根据所给的数据,求出变量的平均数,根据最小二乘法所需要的数据求出线性回归方程的系数,再根据样本中心点一定在线性回归方程上,求出的值,可得出线性回归方程;(2)将代入所求的线性回归方程求出对应的的值,即可预测该店当日的营额.【详解】(1),.,,∴,.∴回归方程为:.(2)∵,∴y与x之间是负相关.当x=6时,.∴该店当日的营业额约为9.56千元.【点睛】本题主要考查线性回归方程的求解与应用,属于中档题.求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.19.如图,在多面体ABCDEF中,四边形ABCD是矩形,四边形ABEF为等腰梯形,且,平面ABCD⊥平面ABEF(1)求证:BE⊥DF;(2)求三棱锥C﹣AEF的体积V.【答案】(1)见解析;(2).【解析】(1)取的中点,连结,则,利用勾股定理可得,由面面垂直的性质可得平面,可得,由此可得平面,则平面,从而可得结果;(2)平面,可得,由(1)得,平面,由棱锥的体积公式可得结果.【详解】(1)取EF的中点G,连结AG,∵EF=2AB,∴AB=EG,又AB∥EG,∴四边形ABEG为平行四边形,∴AG∥BE,且AG=BE=AF=2,在△AGF中,GF=,AG=AF=2,∴,∴AG⊥AF,∵四边形ABCD是矩形,∴AD⊥AB,又平面ABCD⊥平面ABEF,且平面ABCD平面ABEF=AB,∴AD⊥平面ABEF,又AG平面ABEF,∴AD⊥AG,∵AD AF=A,∴AG⊥平面ADF,∵AG∥BE,∴BE⊥平面ADF,∵DF平面ADF,∴BE⊥DF;(2)∵CD∥AB且平面ABEF,BA平面ABEF,∴CD∥平面ABEF,∴,由(1)得,DA⊥平面ABEF,∵,∴.【点睛】本题主要考查面面垂直的性质、线面垂直的判定定理与性质,属于中档题. 解答空间几何体中的平行、垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间的平行、垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;解答本题的关键是由面面垂直证明线面垂直、线面垂直证明线线垂直,线线垂直证明线面垂直,进而证明线线垂直.20.如图,A 、B 分别是椭圆2213620x y +=的左、右端点,F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PA ⊥PF. (1)点P 的坐标;(2)设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于MB ,求椭圆上的点到点M 的距离d 的最小值.【答案】(1)322⎛ ⎝⎭,(2【解析】试题分析:(1)先求出PA 、F 的坐标,设出P 的坐标,求出、的坐标,由题意可得,且y >0,解方程组求得点P 的坐标.(2)求出直线AP 的方程,设点M 的坐标,由M 到直线AP 的距离等于|MB|,求出点M 的坐标,再求出椭圆上的点到点M 的距离d 的平方得解析式,配方求得最小值. 试题解析:(1)由已知可得点A (﹣6,0),F (4,0),设点P (x ,y ),则=(x+6,y ),=(x ﹣4,y ).由已知可得,2x 2+9x ﹣18=0,解得x=,或x=﹣6. 由于y >0,只能x=,于是y=.∴点P 的坐标是322⎛ ⎝⎭,.(2)直线AP 的方程是 ,即 x ﹣y+6=0.设点M (m ,0),则M 到直线AP 的距离是.于是=|6﹣m|,又﹣6≤m≤6,解得m=2,故点M(2,0).设椭圆上的点(x,y)到点M的距离为d,有 d2=(x﹣2)2+y2 =x2﹣4x+4+20﹣x2 =(x﹣)2+15,∴当x=时,d21.已知函数,其中为自然对数的底数.(1)若的图象在处的切线斜率为2,求;(2)若有两个零点,求的取值范围.【答案】(1);(2).【解析】(1)求出,根据导数的几何意义,由,解方程即可得结果;(2)由,得,利用导数可得在上递减;在上,递增,,结合时,时,从而可得结果.【详解】(1),,∴.(2)由,得,记,则,,,递减;时,,递增.∴.而x→0时,时,故.【点睛】本题主要考查利用导数研究函数零点,以及导数的几何意义的应用,属于中档题.导数几何意义的应用主要体现在以下几个方面:(1) 已知切点求斜率,即求该点处的导数;(2) 己知斜率求切点即解方程;(3) 巳知切线过某点(不是切点) 求切点, 设出切点利用求解.22.在平面直角坐标系中,已知曲线(为参数)与曲线(为参数,).(Ⅰ)若曲线与曲线有一个公共点在轴上,求的值;(Ⅱ)当时,曲线与曲线交于两点,求两点的距离.【答案】(1);(2).【解析】试题分析:(1)曲线化成,令可得与轴的交点,曲线直角坐标方程为,利用与轴的交点;(2)当时,曲线化为.利用点到直线的距离公式可得:圆心到直线的距离为,利用弦长公式可得.试题解析:(1)曲线的直角坐标方程为,曲线与轴交点为,曲线的直角坐标方程为,曲线与轴交点为,由,曲线与曲线有一个公共点在轴上,知(2)当时,曲线,为圆,圆心到直线的距离,所以两点在距离【考点】参数方程化成普通方程.23.已知定义在上的函数,,若存在实数使成立. (1)求实数的值;(2)若,,,求证:.【答案】(1);(2)证明见解析。
四川省2019届高三联合诊断文科数学试题(解析版)
2018-2019学年四川省高三(上)9月联考数学试卷(文科)一、选择题.1.已知集合A={1,2,3,4},B={y|y=3x﹣2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}2.复数i•(1+i)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i3.若函数f(x)的定义域是[﹣1,1],则f(sinx)的定义域为()A.R B.[﹣1,1]C.[]D.[﹣sin1,sin1]4.已知角α的终边上一点坐标为(sin,cos),则角α的最小正值为()A.B.C.D.5.函数f(x)=|sinx﹣cosx|的最小正周期为()A.2πB.C.πD.6.与直线3x﹣4y+5=0关于x轴对称的直线的方程是()A.3x﹣4y+5=0B.3x﹣4y﹣5=0C.3x+4y﹣5=0D.3x+4y+5=07.由直线y=x+1上的一点向圆(x﹣3)2+y2=1引切线,则切线长的最小值为()A.1B.2C.D.38.函数y=2x﹣x2的图象大致是()A.B.C.D.9.已知双曲线的右焦点为F,则点F到C的渐近线的距离为()A.3B.C.a D.a10.若函数f(x)=a+xlnx有两个零点,则实数a的取值范围为()A.[0,]B.(0,)C.(0,]D.(﹣,0)11.已知三棱柱ABC﹣A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB ⊥AC,AA1=12,则球O的半径为()A.B.C.D.12.若f(x)函数满足f(x+2)=2f(x),当x∈(0,2)时,,当x∈(﹣4,﹣2)时,f(x)的最大值为,则实数a的值为()A.3B.e C.2D.1二、填空题.13.已知,,向量与的夹角大小为60°,若与垂直,则实数m=.14.设函数f(x)=,则f(﹣2)+f(log212)=.15.设变量x,y满足约束条件,则目标函数z=y﹣2x的最小值为.16.已知函数f(x)=x3+x﹣sinx则满足不等式f(m﹣1)+f(2m2)≤0成立的实数m 的取值范围是.三、解答题.17.等差数列{a n}中,a3+a4=4,a5+a7=6.(1)求{a n}的通项公式.(2)记S n为{a n}的前项和,若S m=12,求m.18.某火锅店为了解气温对营业额的影响,随机记录了该店1月份中5天的日营业额y (单位:千元)与该地当日最低气温x(单位:℃)的数据,如表:(1)求y关于x的回归方程;。
四川省2019届高中毕业班《天府大联考》高考应试能力测试(二)理综
四川省2019届高中毕业班《天府大联考》高考应试能力测试(二)理科综合 化学部分 2019.4考试范围:化学高考内容 考试时间:50分钟 命题人:四川省高中优秀教师团队注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分100分,考试时间50分钟。
2.超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效...........................。
时间珍贵,请考生合理安排! 相对原子质量:H-1 O-16 C-12 N-14第I 卷(选择题,共42分)本卷共7小题,每小题6分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 化学与生活密切相关,下列说法正确的是A.将()424SO NH 、4CuSO 溶液分别加入蛋白质溶液,都出现沉淀可知二者均可使人中毒B.塑料的老化是由于与空气中的氧气发生了加成反应C.粮食酿酒的过程:乙醇葡萄糖淀粉酒曲酶稀硫酸水解→→D.可以用足量氢氧化钠溶液加热的方法去吧地沟油(分离过的餐饮废弃油)与矿物油(汽油、煤油、柴油等)2. 常温下,下列各组离子在指定溶液中一定能大量共存的是 A.0.1mol ·L-14CuSO 溶液:--++322,,,NO S Mg Na B.0.1mol ·L-12NaAlO 溶液:--+-24,,,SO Cl Na OH C.使用甲基橙变红色的溶液:---+2423234,,,SO O S NO NHD.均为0.1mol ·L-1下列四种离子的溶液:--++3244,,,NO SO NH Na 3. 对反应:O H CuSO O SO H S Cu 24242224522+=++,下列判断不正确的是A.该反应的还原剂是S Cu 2B.当1mol 2O 发生反应时,还原剂所失去电子的物质的量为4molC.2O 发生了氧化反应D.4CuSO 即是氧化产物,又是还原产物4. 25℃时,用浓度为0.100mol/L 的氢氧化钠溶液分别滴定20.00mL 浓度均为0.100mol/L 的二种酸HX 、HY (忽略体积变化),实验数据如下表,下列判断正确的是A.在相同温度下,同浓度的两种酸溶液的导电能力顺序HY HX <B.由表中数据可估算出()510-≈HY K aC.HY 和HX 混合,达到平衡时满足质子守恒D.上述②反应后的HY 溶液中:()()()()+--+H c OH c Y c Na c >>>5. 下列叙述正确的是A.高温下用焦炭还原2SiO 生产硅和一氧化碳属于置换反应B.4BaSO 的水溶液不导电,故4BaSO 是弱电解质C.元素的第一电离能越小,其金属性一定越强 D.化合物可分为醇类、芳香烃类和羧酸类6. 按以下实验方案可从海洋动物柄海鞘中提取具有机抗肿瘤的天然产物下列各步实验操作原理与方法错误的是7. S H 2受热分解的反应为:()()()g S g H g S H 22222+→←。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)求通项公式 an; (2)设 bn=S1n,求数列{bn}的前 n 项和 Tn。
18.(本小题满分 12 分)在△ABC 中,角 A,B,C 所对的边分别为 a,b,c,已知 2cosA·(bcosC+ccosB)=a. (1)求角 A; (2)若 a= 7,b+c=5,求△ABC 的面积.
(1)根据频率分布直方图估计抽取样本的平均每天阅读时间的平均数 x 和众数 m(同一组中的数据用该
组区间的中点値作代表);
(2)记平均每天阅读时间为 80 分钟以上(含 80 分钟)的学生为“阅读达人”。请填写下面的列联表,问
能否在犯错误的概率不超过 0.01 的前提下认为“阅读达人”与性别有关?
非阅读达人 阅读达人 合计
A.0
B.1
C.-1 或 0
D.0 或 1
x y 0
5.已知实数
x,y
满足
y
1
x
,则
2x+y
的最大值为
y 1
A.-3
B.32
C.2
D.3
6.为了反映国民经济各行业对仓储物流业务的需求变化情况,以及重要商品库存变化的动向,中国物流与
采购联合会和中储发展股份有限公司通过联合调查,制定了中国仓储指数。如图所示的折线图是 2017
2
2 22
19(12 分)解:(1)众数 m 70 ,平均数 x =10×0.10+30×0.18+50×0.22+70×0.25+90×0.2+110
用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。 3.回答第Ⅱ卷时,将答案写在答题卡上。写在本试卷上无效。 4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷
一、选择题(本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目
要求的)
1.已知集合 A x 1 x 3 , B x R x2 2 ,则 A (CRB)
天府大联考·高三文科数学 第 1 页(共 10 页)
根据上面的折线图,下列说法最合理的一项是
A.2017 年各月的仓储指数最大值在 3 月份
B.2017 年 1 月至 12 月的仓储指数的中位数为 54%
C.2018 年 1 月至 7 月的仓储指数较 2017 年同期波动小
D.2018 年 3 月、4 月的仓储指数持续上升,仓储物流业务发展向好
A.(- 2, 2)
B.[-1, 2)
2.复数 z 5i ,则 z 2i
A.1-2i
B.1+2i
3.函数 f(x)=1-e|x|的图像大致是
C.[-1,2) C.-1+2i
D.(-2,2) D..-1-2i
4.已知直线 l1:mx+y-2=0 余直线 l2:(m-2)x+my-4=0 垂直,则 m=
B. 130
C.136
D.43
10.若函数 y cos(2x ) (其中 >0)的图像关于点( 2 ,0) 对称,那么 的最小值为 3
A. π6
B. π4
C.π3
D.π2
11.设 P 是直线 y=2 上的动点,若圆 O:x2+y2=4 上存在点 Q,使得∠OPQ=45°,则该点 P 的横坐标 x0 的取值
23.(本小题满分 10 分)选修 4-5:不等式选讲
已知函数 f(x)=|2x+a|+|x-2|(其中 a∈R). (1)当 a=-2 时,求不等式 f(x)≥6 的解集;
(2)若关于 x 的不等式 f(x)≥5a2—|2—x|恒成立,求 a 的取值范围。
天府大联考·高三文科数学 第 4 页(共 10 页)
(2) an的前
n
项和 Sn
An2Bn, N(其中A
d 2
1 2
,B
a1
d 2
1 2
)(7
分)
整理: Sn
n2
2
n
(n
N
)
,所以
bn
1 Sn
2 n2 n
(8
分)
所以Tn
b1
b2
贩bn1
bn
2 11
2 2 (2 1)
2 3 (3 1)
19.(本小题满分 12 分)世界读书日全称为世界图书与版权日, 又称“世界图书日”。设立目的是希望散居在世界各地的人,
无论你是是年老还是年轻,无论你是贫穷还是富裕,无论你是 患病还是健康,都能享受阅读的乐趣,都能尊重和感谢为人类 文明做出过巨大贡献的文学、文化、科学、思想大师们,都能 保护知识产权。在今年世界读书日当天,某校为了了解学生的 阅读情况,随机抽取了 100 名学生进行调查,统计其平均每天 阅读时间( 单位: 分钟) ,并按照 [0,20),[20,40),[40,60),[60,80),[80,100),[100,120]分成 6 组,制成如图所示的频率分布直方图。
…
第Ⅱ卷
二、填空题(本大题共 4 小题,每小题 5 分,共 20 分.将答案填在答题卡上) 13.已知角 θ 的顶点在坐标原点,始边与 x 轴的非负半轴重合,终边在直线 y=2x 上,则 sinθcosθ=______。 14.已知 a=(m+2,-2),b=(2,m),且(a+b)⊥(a-b),则 m 的值是______。 15.已知 x>0,y>0,x+2y=2,则1x+2y的最小值为_____。 16.已知函数 f(x)=x2-alnx+a,若 x∈(0,+∞),f(x)>0,则实数 a 的取值范围是______。
7.等差数列{an}中,已知 a7>0,a2+a10<0,则{an}的前 n 项和 Sn 的最大值为
A.S4
B.S5
C.S6
D.S7
8.已知 sin( ) 1 ,则 cos(4 )
6
3
3
A.- 2 2 3
B.-13
C.13
D.23 2
9.已知某几何体的三视图如图所示,则该几何体的体积为 A. 136
………………○………………内………………○………………装………………○………………订………………○……………… 线………………○………………
封
密
不
订
装
只
卷
此
………………○………………外………………○…… …………装………………○………………订………………○……………… 线………………○………………
………………○………………外………………○………………装………………○………………订………………○……………… 线………………○………………
?..
2 (n -1) n
2 n (n
1)
整理:Tn 2
[1 1 1 1 1 ](10 分) 23 3 4 (n 1) n n (n 1)
所以 Tn
2n n 1
(
12 分)在这里[1 1 1 1 1 ] n 裂项相减法 23 3 4 (n 1) n n (n 1) n 1
年 1 月至 2018 年 7 月的中国仓储指数走势情况。
(考试时间:120 分钟 试卷满分:150 分)
注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考
证号填写在答题卡上。 2.回答第Ⅰ卷时,选出每小题答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑。如需改动,
………………○………………外………………○………………装………………○………………订………………○……………… 线………………○………………
【考试时间:2018 年 12 月 5 日 适用地区:四川省】
姓名__________班级__________
高中 2019 届毕业班综合能力检测(五)
文科数学
0<A< A 因为
,所以
(6 分) [ 来源:Z. X.X .K]
3
(2)由余弦定理得 a2 b2 c2 2b cos A
得 7 (b c)2 3bc 25 - 3bc ,所以 bc 6 (9 分)
故△ABC 的面 积 S 1 bcsinA 1 6 3 3 3 (12 分)
(2)证明:当 0<a<12时,有两个零点 x1,x2 且-3<x1+x2<-2.
请考生在第 22、23 两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题 目计分. 22.(本小题满分 10 分)选修 4-4:坐标系与参数方程
已知在平面直角坐标系中,曲线
C1
的参数方程是
x
…
学 校 : ______________姓名 : _____________班 级 :_______________考 号 : ______________________
………………○………………内………………○………………装………………○………………订………………○……………… 线………………○………………
(1)求圆 C 的方程; (2)已知 l1、l2 是过点(0,1)且互相垂直的两条直线,且 l1 与 C 交于 A,B 两点,l2 于 C 交于 P、Q 两点,求 四边形 APBQ 面积的最大值.
21.(本小题满分 12 分) 已知 f(x)=axex—(a-1)(x+1)e(其中,e 为自然对数的底数,e=2.71828···). (1)若 f(x)仅有一个极值点,求 a 的取值范围;