(完整版)七年级数学分式的运算测试题(沪科版)
分式的混合运算专项训练—2023-2024学年七年级数学下册(沪科版)(解析版)

分式的混合运算专项训练考卷信息:本套训练卷共40题,题型针对性较高,覆盖面广,选题有深度,可加强学生对分式的混合运算各种方法的理解!1.(2023上·山东菏泽·七年级统考期中)计算:(1)3x −61−x−x+5x2−x(2)x−yx+3y ÷x2−y2x2+6xy+9y2−2yx+y【答案】(1)8x(2)1【分析】(1)先对各个分式分子分母因式分解,再通分,利用分式加减运算法则运算后约分即可得到答案;(2)先对各个分式分子分母因式分解,根据分式混合运算顺序,先计算乘除,再利用分式加减运算法则运算后约分即可得到答案.【详解】(1)解:3x −61−x−x+5x2−x=3(x−1)x(x−1)+6xx(x−1)−x+5x(x−1)=8x−8 x(x−1)=8(x−1) x(x−1)=8x;(2)解:x−yx+3y ÷x2−y2x2+6xy+9y2−2yx+y=x−yx+3y ⋅(x+3y)2(x+y)(x−y)−2yx+y=x+3yx+y −2yx+y=x+y x+y=1.【点睛】本题考查分式混合运算,涉及通分、约分、因式分解等知识.掌握分式混合运算法则及运算顺序,熟记因式分解的方法,准确找到最简公分母通分是解决分式混合运算的关键.2.(2023上·天津东丽·七年级统考期末)计算(1)4a 3b⋅b 2a 4÷(1a )2 (2)a a−1÷a 2−a a 2−1−1a−1【答案】(1)23a ;(2)a a−1【分析】(1)先将除法写成乘法,再计算乘法,分子、分母约分化为最简分式;(2)先将除法写成乘法,计算乘法得到最简分式,再与后一项相减即可得到答案.【详解】(1)原式=4a 3b ⋅b 2a 4⋅a 2=23a ;(2)原式=a a−1⋅(a+1)(a−1)a(a−1)−1a−1=a+1a−1−1a−1=a a−1. 【点睛】此题考查分式的混合运算,先将除法化为乘法,再约分结果,再计算加减法.3.(2023上·山东菏泽·七年级统考期末)计算(1)12m 2−9−2m−3(2)(2a −12a a+2)÷a−4a 2+4a+4【答案】(1)−2m+3(2)2a 2+4a【分析】(1)通分计算即可;(2)先通分算减法,再算除法.【详解】(1)解:原式=12−2(m+3)(m+3)(m−3)=−2(m −3)(m +3)(m −3)=−2m+3;(2)解:原式=[2a(a+2)a+2−12a a+2]⋅(a+2)2a−4=2a 2+4a −12a a +2⋅(a +2)2a −4=2a 2−8a a +2⋅(a +2)2a −4=2a(a−4)a+2⋅(a+2)2a−4=2a(a+2)=2a2+4a,【点睛】此题考查分式的混合运算,通分、因式分解和约分是解答的关键.4.(2023下·江苏常州·七年级校考期中)计算:(1)2x+y −1x−y.(2)(1−1m+1)÷m2m+1.【答案】(1)x−3yx2−y2(2)1m【分析】(1)根据异分母分式减法运算法则,先通分,再根据同分母分数减法运算求解即可得到答案;(2)根据分式混合运算法则及运算顺序,先算括号里的异分母分式减法运算,再利用乘除互化将除法转化为乘法运算求解即可得到答案.【详解】(1)解:2x+y −1x−y=2(x−y)(x+y)(x−y)−x+y(x+y)(x−y)=2x−2y−x−y (x+y)(x−y)=x−3y (x+y)(x−y)=x−3yx2−y2;(2)解:(1−1m+1)÷m2m+1=(m+1m+1−1m+1)÷m2m+1=m+1−1m+1×m+1m2=mm+1×m+1m2=1m.【点睛】本题考查分式混合运算,涉及分式加减乘除运算、通分、约分等知识,熟练掌握分式混合运算法则及运算顺序是解决问题的关键.5.(2023下·江苏常州·七年级统考期中)计算:(1)4ac3b ⋅(−6b22ac2)(2)a+2a−3÷a2−42a−6(3)x23x−9−3x−3(4)(4a+2+a−2)÷aa+2【答案】(1)−4bc(2)2a−2(3)x+33(4)a【分析】(1)根据分式的乘法运算法则进行计算即可得到答案;(2)先将分式除法变为乘法,再根据分式的乘法运算法则和平方差公式进行计算即可得到答案;(3)先进行通分,再计算分式减法,最后利用平方差进行约分即可得到答案;(4【详解】(1)解:4ac3b ⋅(−6b22ac2)=−4bc;(2)解:a+2a−3÷a2−42a−6=a+2a−3×2(a−3)(a+2)(a−2)=2a−2;(3)解:x23x−9−3x−3=x23(x−3)−3×33(x−3)=x2−93(x−3)=(x+3)(x−3)3(x−3)=x+33;(4)解:(4a+2+a−2)÷aa+2=(4a+2+(a−2)(a+2)a+2)×a+2a=4+a2−4a+2×a+2a=a.【点睛】本题考查了分式的混合运算,平方差公式,熟练掌握相关运算法则是解题关键.6.(2023下·河南南阳·七年级统考期中)计算:(1)2x−6x2−6x+9÷3−xx2−9(2)(8a+3+a−3)÷a2+2a+1a+3【答案】(1)−2x+6x−3(2)a−1a+1【分析】(1)根据完全平方式、平方差公式化简,再把除法转化成乘法计算即可;(2)括号内先通分,再根据完全平方公式、平方差公式化简,再把除法转化成乘法计算即可.【详解】(1)解:原式=2(x−3)(x−3)2×(x+3)(x−3)3−x=−2x+6x−3(2)解:原式=(8+a2−9a+3)×a+3(a+1)2=(a+1)(a−1)×1(a+1)2=a−1a+1【点睛】本题考查分式计算,掌握完全平方式、平方差公式是关键.7.(2023下·江苏淮安·七年级校考期中)计算:(1)a2a−1−a−1(2)(a+2−42−a )÷(aa−2)【答案】(1)1a−1(2)a【分析】(1)先对原式通分变为同分母的分式,再相减即可解答本题;(2)先将括号内的进行计算,再将除法转换为乘法后,再约分即可得到答案.【详解】(1)a2a−1−a−1=a2 a−1−(a+1)(a−1)a−1=a2−(a+1)(a−1)a−1=a 2−(a 2−1)a−1 =a 2−a 2+1a−1=1a−1(2)(a +2−42−a )÷(a a−2)=(a +2+4a−2)÷(a a−2) =a 2−4+4a−2÷(a a−2) =a 2a−2×a−2a=a 【点睛】本题主要考查了分式的混合运算,解题的关键是明确分式混合运算的计算方法.8.(2023上·山东泰安·七年级统考期中)计算(1)x x−1−x 2+2x x 2−2x+1÷x+2x ; (2)(a+2a−2−a a+2)÷3a+2a 2+2a .【答案】(1)−x (x−1)2(2)2a a−2【分析】该题主要考查了分式的混合运算问题;(1)先算除法再算减法即可;(2)先算括号再算除法即可.【详解】(1)原式=x x−1−(x+2)x (x−1)2⋅x x+2=x x −1−x 2(x −1)2=x (x −1)−x 2(x −1)2=−x (x−1)2;=−x x 2−2x +1(2)原式=[(a+2)2(a−2)(a+2)−a(a−2)(a−2)(a+2)]÷3a+2a(a+2)=2(3a+2)(a−2)(a+2)⋅a(a+2)3a+2=2aa−2.9.(2023上·山东烟台·七年级统考期中)计算:(1)b2ca ×acb÷(−ca)2(2)a2−4a ÷(a+1−5a−4a)【答案】(1)a2b(2)a+2a−2【分析】(1)根据分式的乘除运算法则进行化简即可求出答案.(2)根据分式的加减运算以及乘除运算法则即可求出答案.【详解】(1)解:原式=bc2⋅a2c2=a2b.(2)解:原式=(a+2)(a−2)a ÷a2−4a+4a=(a+2)(a−2)a⋅a(a−2)2=a+2a−2.【点睛】本题考查分式的混合运算,解题的关键是熟练运用分式的加减运算法则以及乘除运算法则,本题属于基础题型.10.(2023上·山东东营·七年级校考期中)计算下列各式.(1)(−a2bc )3⋅(−c2a)2÷(bca)4;(2)a2a−1−a−1.【答案】(1)−a8bc3(2)1a−1【分析】(1)先根据积的乘方等于乘方的积,幂的乘方计算各分式,然后利用同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;进行分式的乘除运算即可;(2)先加括号,进行通分,根据平方差公式求解多项式乘多项式,然后进行加减运算即可.【详解】(1)解:(−a2bc )3⋅(−c2a)2÷(bca)4=−a6b3c3⋅c4a2÷b4c4a4=−a4b3c⋅a4 b4c4=−a8bc3;(2)解:a2a−1−a−1=a2a−1−(a+1)=a2−(a+1)(a−1)a−1=a2−a2+1a−1=1a−1.【点睛】本题考查了积的乘方,幂的乘方,分式的乘除混合运算,同底数幂的乘除运算,异分母分式的减法运算,平方差公式等知识.解题的关键在于熟练掌握各知识的运算法则并正确的运算.11.(2023上·河南许昌·七年级统考期末)计算:(3xx−1−xx+1)⋅x2−1x+1【答案】2x2+4xx+1【分析】利用分式的混合运算顺序:先括号内的分式减法运算,再括号外的分式2乘法运算即可化简原式.【详解】解:(3xx−1−xx+1)⋅x2−1x+1=3x(x+1)−x(x−1)(x−1)(x+1)⋅(x−1)(x+1)x+1=3x2+3x−x2+xx+1=2x2+4xx+1.【点睛】本题考查分式的混合运算,熟练掌握分式的混合运算法则并正确求解是解答的关键.12.(2023上·重庆沙坪坝·七年级重庆一中校考阶段练习)计算:(1)(x−y)2−x(x−3y)(2)m2−25m+3÷(1−8m+3)【答案】(1)xy+y2(2)m+5【分析】(1)先用完全平方公式与单贡式乘以多项式法则展开,再合并同类项即可.(2)先计算括号内的,再计算除法,用除法法则转化成乘法计算即可.【详解】(1)解:原式=x2−2xy+y2−x2+3xy=xy+y2;(2)解:原式=(m+5)(m−5)m+3÷m−5m+3=(m+5)(m−5)m+3⋅m+3m−5=m+5.【点睛】本题考查多项式混合运算,分式混合运算,熟练掌握多项式与分式混合运算法则是解题的关键.13.(2023上·山东菏泽·七年级统考期中)计算(1)4x22x−3+93−2x(2)3b24a2⋅(a−6b)(3)xx−1−x+3x2−1⋅x2+2x+1x+3(4)(1x−4+1x+4)÷2x2−16【答案】(1)2x+3(2)−b8a(3)−1x−1(4)x【分析】(1)利用分式的加法计算即可.(2)利用分式的乘法计算即可.(3)利用分式的混合运算法则计算即可.(4)利用分式的混合运算法则计算即可.【详解】(1)4x22x−3+93−2x=4x22x−3−92x−3=4x2−92x−3=(2x−3)(2x+3)2x−3=2x+3.(2)3b24a2⋅(a−6b)=−b8a.(3)xx−1−x+3x2−1⋅x2+2x+1x+3=xx−1−x+3(x−1)(x+1)⋅(x+1)2x+3=xx−1−x+1x−1=x−x−1x−1=−1x−1.(4)(1x−4+1x+4)÷2x2−16=(1x−4+1x+4)×(x+4)(x−4)2=1x−4×(x+4)(x−4)2+1x+4×(x+4)(x−4)2=x+42+x−42=x.【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.14.(2023下·重庆南岸·七年级统考期末)计算:(1)a−ba+b ÷a2−aba3−ab2;(2)(2x−3−1x)⋅x2−3xx2+6x+9【答案】(1)a−b(2)1x+3【分析】(1)直接根据分式的除法法则进行计算即可;(2)先将括号里面通分运算,再利用分式的混合运算法则计算得出答案.【详解】(1)解:原式=a−ba+b ⋅a3−ab2 a2−ab=a−ba+b⋅a(a2−b2)a(a−b)=(a+b)(a−b)a+b=a−b;(2)解:原式=[2x−(x−3)x(x−3)]⋅x(x−3)(x+3)2=x+3x(x−3)⋅x(x−3)(x+3)2=1x+3.【点睛】本题考查的是分式的混合运算,熟知分式的混合运算法则是解答此题的关键.15.(2023下·重庆北碚·七年级统考期末)计算:(1)2a2b÷(−a2b )2⋅a4b2;(2)(a2+3aa−3−3)÷a2+9a2−9.【答案】(1)2ab(2)a+3【分析】(1)先算乘方,再算乘除,即可解答;(2)先利用异分母分式加减法法则计算括号里,再算括号外,即可解答.【详解】(1)原式=2a2b⋅4b2a2⋅a 4b2=2ab(2)原式=(a2+3aa−3−3a−9a−3)⋅a2−9a2+9=a2+9a−3⋅(a+3)(a−3)a2+9=a+3【点睛】本题考查了分式的混合运算,准确熟练地进行计算是解题的关键.16.(2023下·广东清远·七年级统考期中)分式计算:(1)3x−3−xx−3(2)yxy+x +1xy−x(3)x2x+1−x+1(4)(3xx−2−xx+2)÷xx2−4.【答案】(1)−1(2)y2+1xy2−x(3)1x+1(4)2x+8【分析】(1)根据同分母的分式的加减法进行计算即可求解;(2)根据异分母的分式的加法进行计算即可求解;(3)根据分式与整式的运算进行计算即可求解;(4)先计算括号的分式的减法,再将除法转化为乘法进行计算即可求解.【详解】(1)3x−3−xx−3=3−xx−3 =−1;(2)yxy+x +1xy−x=y(y−1)+y+1x(y+1)(y−1)=y2+1xy2−x;(3)x2x+1−x+1=x2−(x−1)(x+1)x+1=x2−x2+1x+1=1x+1;(4)(3xx−2−xx+2)÷xx2−4=3x(x+2)−x(x−2)(x−2)(x+2)⋅(x+2)(x−2)x=3(x+2)−(x−2)=3x+6−x+2=2x+8.【点睛】本题考查了分式的混合运算,熟练掌握分式的运算法则是解题的关键.17.(2023上·山东济宁·七年级统考期末)计算:(xx+2−2x+2)÷x2−4x+4x+2.【答案】1x−2【分析】首先运用同分母分式减法法则计算括号内的,再利用分式除法运算法则求解即可.【详解】解:(xx+2−2x+2)÷x2−4x+4x+2=x−2x+2÷x2−4x+4x+2=x−2x+2⋅x+2x2−4x+4=x−2x+2⋅x+2(x−2)2=1x−2.【点睛】本题主要考查了分式的混合运算,解题的关键是熟练运用分式的减法运算法则和乘除运算法则18.(2023上·山东泰安·七年级统考期中)计算:(1)2x2x−y +yy−2x;(2)1−x−yx+2y ÷x2−y2x2+4xy+4y2.【答案】(1)1(2)−yx+y【分析】(1)本题考查了分式的加减,利用同分母分式加减法法则进行计算,即可解答;(2)本题考查了分式的混合运算,先算分式的除法,再算加减,即可解答;【详解】(1)解:原式=2x−y2x−y=2x−y 2x−y=1;(2)解:原式=1−x−yx+2y ×(x+2y)2(x+y)(x−y)=1−x+2y x+y=−yx+y.19.(2023下·江苏常州·七年级常州市第二十四中学校考期中)计算:(1)6x+3+2xx+3;(2)a2−b2a ÷(a+b2−2aba).【答案】(1)2(2)a+ba−b【分析】(1)根据同分母分式加法计算法则求解即可;(2)根据分式的混合计算法则求解即可.【详解】(1)解:6x+3+2xx+3=6+2x x+3=2(x+3) x+3=2;(2)解:a2−b2a ÷(a+b2−2aba)=a2−b2a÷a2+b2−2aba=(a+b)(a−b)a÷(a−b)2a=(a+b)(a−b)a⋅a(a−b)2=a+ba−b.【点睛】本题主要考查了分式的混合计算,同分母分式加法,熟知相关计算法则是解题的关键.20.(2023上·山东菏泽·七年级统考期末)计算:(1)4x2−1−2x2+x;(2)(2x2x−2−x−2)÷2x2+8x2−4.【答案】(1)2x2−x(2)x+22【分析】(1)利用提公因式和平方差公式进行计算即可; (2)利用提公因式和平方差公式进行计算即可. 【详解】(1)4x 2−1−2x 2+x=4(x +1)(x −1)−2x (x +1)=4x −2(x −1)x (x +1)(x −1)=2x +2x (x +1)(x −1)=2x 2−x ; (2)(2x 2x−2−x −2)÷2x 2+8x 2−4=[2x 2x −2−(x +2)(x −2)x −2]÷2x 2+8x 2−4=(2x 2−x 2+4x −2)⋅(x +2)(x −2)2(x 2+4)=x 2+4x −2⋅(x +2)(x −2)2(x 2+4) =x+22.【点睛】本题考查了分式的混合运算,熟练运用分式运算法则和平方差公式是解题的关键. 21.(2023下·江西鹰潭·七年级统考期末)先化简x 2−4x+4x 2−1÷x−2x+1+2x−1,再从−2,−1,1,2中选一个合适的整数作为x 的值代入求值. 【答案】x x−1,x =−2时,原式=23【分析】先把除法转化为乘法,再约分,然后计算加法,由分式有意义的条件确定x 的值,最后代入化简后的式子即可求出答案. 【详解】解:x 2−4x+4x 2−1÷x−2x+1+2x−1=(x −2)2(x +1)(x −1)⋅x +1x −2+2x −1 =x −2x −1+2x −1=xx−1,由分式有意义的条件可知:x ≠−1,x ≠1,x ≠2, ∴x =−2, 当x =−2时, 原式=−2−2−1=23.【点睛】本题考查分式的化简求值,熟练掌握运算法则是解题的关键. 22.(2023下·福建宁德·七年级统考期末)先化简,再求值:(1−a a+1)÷a+3a 2+2a+1,其中a =−5.【答案】a+1a+3,2【分析】先根据分式的减法法则算括号内的减法,再根据分式的除法法则把除法变成乘法,再根据分式的乘法法则进行计算,最后代入求出答案即可. 【详解】解:(1−aa+1)÷a+3a 2+2a+1 =1a +1⋅(a +1)2a +3 =a +1a +3当a =−5时,原式=a+1a+3=−5+1−5+3=2.【点睛】本题考查了分式的化简求值,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序. 23.(2023下·江西景德镇·七年级统考期末)先化简,再求值:(x 2+2x+1x 2−1−3x−1)÷x 2−2x x−1其中x =17【答案】1x ,代数式的值为7【分析】根据乘法公式,分式的性质,分式的加减乘除混合运算化简,再代入求出即可. 【详解】解:(x 2+2x+1x 2−1−3x−1)÷x 2−2x x−1=[(x +1)2(x +1)(x −1)−3x −1]÷x(x −2)x −1=(x +1x −1−3x −1)×x −1x(x −2)=x −2x −1×x −1x(x −2)=1x ,当x =17时,原式=1x=117=7.【点睛】本题主要考查分式的化简求值,掌握乘法公式,分式的性质,分式的混合运算法则是解题的关键.24.(2023下·江苏淮安·七年级统考期末)先化简,再求值:当a =2时,求代数式(a −aa+1)÷a 2−2a a 2−4×1a+2的值.【答案】aa+1;23【分析】运用乘法公式,分式的性质,分式的混合运算进行化简,再代入求值即可. 【详解】解:(a −a a+1)÷a 2−2a a 2−4×1a+2=(a 2+a a +1−a a +1)÷a(a −2)(a +2)(a −2)×1a +2=a 2a +1×a +2a ×1a +2 =a a+1,当a =2时,原式=aa+1=22+1=23.【点睛】本题主要考查分式的化简求值,掌握乘法公式,分式的性质,分式的混合运算法则,代入求值等知识是解题的关键.25.(2023上·四川绵阳·七年级校联考阶段练习)先化简,再求值:(2x+2x 2−1+1)÷x+1x 2−2x+1,其中x =4 【答案】x −1,3【分析】根据分式混合运算法则先化简,再代值求解即可得到答案. 【详解】解:(2x+2x 2−1+1)÷x+1x 2−2x+1 =(2x +2x 2−1+x 2−1x 2−1)×x 2−2x +1x +1=x 2+2x+1x 2−1×x 2−2x+1x+1, =(x+1)2(x+1)(x−1)×(x−1)2x+1,=x −1;当x =4时,原式=4−1=3.【点睛】本题考查了分式的混合运算和求值,能正确运用分式的运算法则进行化简是解此题的关键. 26.(2023上·湖北武汉·七年级武汉外国语学校(武汉实验外国语学校)校考期末)(1)计算:[3a 3⋅a 3+(−3a 3)2]÷(−2a −2)3;(2)先化简,再求值:(a 2a−1−a −1)÷a−a 2a 2−2a+1,其中a =2.【答案】(1)−32a 12;(2)−1a ,−12【分析】(1)根据幂的混合运算法则求解即可;(2)首先根据分式的混合运算法则求解,然后将a =2代入求解即可. 【详解】解:(1)[3a 3⋅a 3+(−3a 3)2]÷(−2a −2)3 =(3a 6+9a 6)÷(−8a −6) =12a 6÷(−8a −6) =−32a 12; (2)(a 2a−1−a −1)÷a−a 2a 2−2a+1=(a 2a −1−a 2−1a −1)÷−a (a −1)(a −1)2=1a −1⋅a −1−a=−1a ,当a =2时,原式=−12.【点睛】此题考查了幂的混合运算,分式的混合运算,解题的关键是熟练掌握以上运算法则. 27.(2023上·吉林白山·七年级统考期末)先化简,再求值:1﹣x−2y x+y ÷x 2−4xy+4y 2x 2−y 2,其中x =﹣2,y =12.【答案】﹣yx−2y ,16.【分析】原式利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,之后将x 、y 代入计算即可求得答案. 【详解】解:原式=1﹣x−2yx+y ⋅(x+y )(x−y )(x−2y )2=1−x−y x−2y =﹣yx−2y ,当x =﹣2,y =12时,原式=16.【点睛】本题考查了分式的化简求值,熟练的掌握分式的运算法则是解本题的关键,在解题的时候,要注意式子的整理和约分.28.(2023上·广东惠州·七年级统考期末)已知A =xy−y 2y 2−x 2÷(1x−y −1x+y ). (1)化简A ;(2)当x 2+y 2=13,xy =−6时,求A 的值;(3)若|x −y |+√y +2=0,A 的值是否存在,若存在,求出A 的值,若不存在,说明理由.【答案】(1)−x−y2;(2)A=−52或52;(3)不存在,理由见详解.【分析】(1)先把括号里面的通分,再计算整式除法即可;(2)利用完全平方公式,求出x-y的值,代入化简后的A中,求值即可;(3)利用非负数的和为0,确定x、y的关系,把x、y代入A的分母,判断A的值是否存在.【详解】解:(1)A=xy−y2y2−x2÷(1x−y−1x+y)=y(x−y) (y−x)(y+x)×(x+y)(x−y)x+y−x+y=−y(x−y)(x−y)(x+y)×(x+y)(x−y)2y=−x−y2;(2)∵x2+y2=13,xy=-6∴(x-y)2=x2-2xy+y2=13+12=25∴x-y=±5,当x-y=5时,A=−52;当x-y=-5时,A=52.(3)∵|x−y|+√y+2=0,∴x-y=0,y+2=0当x-y=0时,A的分母为0,分式没有意义.∴当|x−y|+√y+2=0时,A的值不存在.【点睛】本题考查了分式的加减乘除运算、完全平方公式、非负数的和及分式有无意义的条件.题目综合性较强.初中阶段学过的非负数有:a的偶次幂,a(a≥0)的偶次方根,a|的绝对值.29.(2023上·山东泰安·七年级统考期中)(1)计算:3x(x−3)2−x3−x(2)计算:(x+1x2−1+xx−1)÷x+1x2−2x+1(3)先化简,再求值:已知ab =3,求a2+4ab+4b2a−b÷(3b2a−b−a−b)的值.【答案】(1)x2(x−3)2;(2)x﹣1;(3)a+2b2b−a,﹣5.【分析】(1)直接通分运算进而利用分式的混合运算法则计算得出答案; (2)直接将括号里面通分进而利用分式的混合运算法则计算得出答案; (3)直接将括号里面通分进而利用分式的混合运算法则计算得出答案. 【详解】解:(1)原式=3x+x(x−3)(x−3)2=x 2(x−3)2;(2)原式=x+1+x(x+1)(x−1)(x+1)⋅(x−1)2x+1=(x+1)2(x−1)(x+1)⋅(x−1)2x+1=x −1;(3)原式=(a+2b)2a−b÷3b 2−a(a−b)−b(a−b)a−b=(a+2b)2a−b⋅a−b(2b+a)(2b−a)=a+2b2b−a∵ab =3,∴a =3b ,所以原式=3b+2b 2b−3b=−5.【点睛】本题考查的知识点是分式的化简求值,掌握分式化简的一般步骤以及分式的混合运算法则是解此题的关键,注意化简过程中各项的符号变化. 30.(2023上·山东潍坊·七年级统考期中)计算: (1)aa+1+a−1a 2−1;(2)2aa+1−2a−4a 2−1÷a−2a 2−2a+1;(3)先化简再求值:(1−3x+2)÷x−1x 2+x−2,其中x 是﹣2,1,2中的一个数值. 【答案】(1)1;(2)2a+1;(3)x ﹣1,x =2时,原式=1. 【分析】(1)先约分,再相加即可求解;(2)先因式分解,将除法变为乘法约分,再通分,相减即可求解;(3)先计算括号里面的减法,再因式分解,将除法变为乘法约分化简,再把x =2代入计算即可求解. 【详解】(1)a a+1+a−1a 2−1,=aa+1+1a+1, =a+1a+1, =1;(2)2aa+1−2a−4a 2−1÷a−2a 2−2a+1, =2aa+1−2(a−2)(a+1)(a−1)⋅(a−1)2a−2,=2a a+1−2(a−1)a+1,=2a−2(a−1)a+1,=2a+1; (3)(1−3x+2)÷x−1x 2+x−2,=x+2−3x+2⋅(x−1)(x+2)x−1,=x ﹣1,∵x +2≠0,x ﹣1≠0, ∴x ≠﹣2,x ≠1,当x =2时,原式=2﹣1=1.【点睛】此题考查分式的混合运算及化简求值,正确将分式的分子与分母因式分解是解题的关键. 31.(2023上·吉林白城·七年级统考期末)先化简,再求值:x 2−1x 2−2x+1÷x+1x−1·1−x1+x,其中x =12.【答案】1−x1+x ,13.【分析】先将分式的分子和分母分解因式,将分式约分化简得到最简结果,再将未知数的值代入计算即可. 【详解】x 2−1x 2−2x+1÷x+1x−1·1−x1+x , =(x +1)(x −1)(x −1)2⋅x −1x +1⋅1−x1+x=1−x1+x ,当x =12时,原式=1−121+12=13.【点睛】此题考查分式的化简求值,化简时需先分解因式约去公因式得到最简分式,再将未知数的值代入求值即可.32.(2023上·山东烟台·七年级统考期中)先化简(a 2−4a+4a 2−4﹣aa+2)÷a−1a+2,再从a ≤2的非负整数解中选一个适合的整数代入求值. 【答案】−2a−1,2【分析】先将分式的分子和分母分解因式,再根据分式的化简求值的过程计算即可求解. 【详解】解:原式=[(a−2)2(a−2)(a+2)−aa+2]⋅a+2a−1,=(a−2a+2−aa+2)⋅a+2a−1,=−2a+2⋅a+2 a−1,=−2a−1.∵a≤2的非负整数解有0,1,2,又∵a≠1,2,∴当a=0时,原式=2.【点睛】此题考查分式的化简求值,化简时需先分解因式约去公因式得到最简分式,求值时选的数需满足分母不为0的数才可代入求值.33.(2023下·江苏盐城·七年级东台市三仓镇中学校考期中)先化简,再求值:x2−1(x−1)2÷x2+xx−1+2x,其中x为你喜欢的一个使原式有意义的整数.【答案】3x,1【详解】分析:根据据分式的混合运算的法则和步骤,先算乘除,再算加减,然后约分化简,最后代入求值即可,注意选择使分母不为零的数代入.详解:x2−1(x−1)2÷x2+xx−1+2x=(x+1)(x−1)(x−1)2÷x(x+1)x−1+2x=(x+1)(x−1)(x−1)2·x−1x(x+1)+2x=1 x +2x=3x当x=3时,原式=1.点睛:本考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.34.(2023上·四川泸州·七年级统考期中)先化简,再求值:(3a+1−a+1)÷a2−4a+4a+1,其中a=4.【答案】−a+2a−2,-3.【详解】试题分析:先根据分式的混合运算的法则,先算括号里面的(通分后计算),再把除法化为乘法约分化简,最后代入求值即可.试题解析:(3a+1−a+1)÷a2−4a+4a+1=3−a2+1a+1×a+1(a−2)2,=−(a+2)(a−2)a+1×a+1(a−2)2=−a+2a−2,当a=4时,原式=-3.35.(2023上·北京昌平·七年级校考期中)先化简,再求值:xx2−1⋅(x−1x−2),其中x(x+1)=2(x+1).【答案】−1x−1,-1【详解】试题分析:先根据分式的混合运算的法则,先把分式的化简,然后再根据方程求出符合条件的x代入求值,注意分式有意义的条件,即分母不能为零.试题解析:原式==.由解得或.因为x不能等于-1,所以当=2时,原式=.36.(2023下·湖南郴州·七年级校考期中)先化简,再求值:(x2x−1+91−x)÷x+3x−1,x在1,2,-3中选取适当的值代入求值.【答案】x-3,当x=2时,原式=-1【详解】解:(x2x−1+91−x)÷x+3x−1=(x+3)(x−3)x−1⋅x−1 x+3=x−3要是原式有意义,则x≠1,−3,则x=2原式=-137.(2023上·浙江杭州·七年级统考期中)先化简,再求值:(4x+6x2−1−2x−1)÷x+2x2−2x+1,其中x是不等式组{x+4>01−2x>3的整数解.【答案】2x−2x+1,4.【分析】原式中先计算分子,约分得到最简结果,求出不等式组的解集,找出解集中的整数解确定出x的值,代入计算即可求出值.【详解】原式= 4x+6−2(x+1)(x+1)(x−1)×(x−1)2x+2= 2(x+2)(x+1)(x−1)×(x−1)2x+2= 2(x−1)x+1=2x−2x+1解不等式组{x+4>01−2x>3得:-4<x<-1所以不等式组的整数解为-3,-2,即x=-3,-2.∵x≠-2∴x=-3,∴原式= 2(−3−1)−3+1=4.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.38.(2023上·重庆·七年级西南大学附中校考期中)先化简,再求值:(2a−2−6a2−2a)÷a2−6a+9a−2,其中a满足2a2−6a+3=0.【答案】2a2−3a ,−43【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.【详解】(2a−2−6a2−2a)÷a2−6a+9a−2=[2aa(a−2)−6a(a−2)]÷(a−3)2a−2=2(a−3)a(a−2)×a−2(a−3)2=2a(a−3)=2a2−3a∵2a2−6a+3=0∴2a2−6a=−3∴a2−3a=−32∴原式=2a2−3a =2−32=−43.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.39.(2023上·山东聊城·七年级校考期末)(1)计算:(x2−4x+4x2−4−xx+2)÷x−1x+2(2)先化简a2−2aa2−1÷(2a−1a−1−a−1),然后从−2≤a≤2的范围内选取一个合适的整数作为a的值代入求值.【答案】(1)21−x ;(2)−1a+1,1【分析】(1)先计算括号内的分式减法,再计算分式的除法即可得;(2)先计算括号内的分式减法,再计算分式的除法,然后根据分式有意义的条件选取合适的a的值,代入计算即可得.【详解】解:(1)原式=[(x−2)2(x+2)(x−2)−xx+2]⋅x+2x−1=(x−2x+2−xx+2)⋅x+2x−1=−2x+2⋅x+2x−1=21−x;(2)原式=a(a−2)(a+1)(a−1)÷[2a−1a−1−(a+1)(a−1)a−1]=a(a−2)(a+1)(a−1)÷(2a−1a−1−a2−1a−1)=a(a−2)(a+1)(a−1)÷2a−1−a2+1a−1=a(a−2)(a+1)(a−1)÷2a−a2a−1=a(a−2)(a+1)(a−1)⋅a−12a−a2=a(a−2)(a+1)(a−1)⋅a−1a(2−a)=−1a+1,∵a+1≠0,a−1≠0,a≠0,2−a≠0,∴a≠−1,a≠1,a≠0,a≠2,∵a是−2≤a≤2的范围内的一个整数,∴a=−2,则原式=−1−2+1=1.【点睛】本题考查了分式的化简求值,熟练掌握分式的运算法则是解题关键. 40.(2023上·山东滨州·七年级统考期末)(1)计算:3(x−1)(x+2)−xx−1+1;(2)先化简,再求值:a−1a 2−4a+4÷(1+1a−2),请从1,2,3中选一个合适的数作为a 的值,代入求值. 【答案】(1)−1x+2;(2)1a−2,1.【分析】(1)根据分式的四则运算求解即可;(2)根据分式的四则运算进行化简,然后代数求解即可. 【详解】解:(1)3(x−1)(x+2)−xx−1+1 =3(x −1)(x +2)−x (x +2)(x −1)(x +2)+(x −1)(x +2)(x −1)(x +2)=3−x 2−2x +x 2+x −2(x −1)(x +2)=1−x(x −1)(x +2)=−1x +2(2)a−1a 2−4a+4÷(1+1a−2) =a −1(a −2)2÷(a −1a −2) =a −1(a −2)2×(a −2a −1) =1a−2,由题意可得:a −2≠0,a −1≠0 ∴a ≠1,a ≠2将a =3代入得,原式=13−2=1.【点睛】此题考查了分式的四则运算,化简求值,解题的关键是熟练掌握分式的四则运算以及分式的有关知识.。
精品试题沪科版七年级数学下册第9章 分式达标测试试题(含答案及详细解析)

沪科版七年级数学下册第9章分式达标测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若分式32aa-有意义,则a的取值范围是()A.a≠2B.a≠0C.a<2 D.a≥22、已知分式2aba b+的值为25,如果把分式2aba b+中的,a b同时扩大为原来的3倍,那么新得到的分式的值为()A.25B.45C.65D.4253、已知分式211xx-+的值等于0,则x的值为()A.0 B.1 C.1-D.1或1-4、已知关于x的分式方程329+33x mxx x----=﹣1无解,则m的值为()A.1 B.4 C.3 D.1或45、用换元法解分式方程2211x xx x+-++1=0时,如果设21xx+=y,那么原方程可以变形为整式方程()A .y 2﹣3y ﹣1=0B .y 2+3y ﹣1=0C .y 2﹣y ﹣1=0D .y 2+y ﹣1=06、如果关于x 的分式方程21155m x x ++=--无解,则m 的值为( ) A .5 B .3 C .1 D .-17、下列各分式中,当x =﹣1时,分式有意义的是( )A .121x +B .11x +C .21x x -D .22x x + 8、下列分式中,是最简分式的是( )A .()211x x ++B .a b a b -+C .23ax ayD .22a b a b-- 9、当x 分别取2020、2018、2016、…、4、2、0、12、14、…、12016、12018、12020时,计算分式11x x -+的值,再将所得的结果全部相加,则其和等于( ). A .-1 B .1 C .0 D .202010、一辆汽车以60千米/时的速度行驶,从A 城到B 城需t 小时,如果该车的速度每小时增加v 千米,那么从A 城到B 城需要( )小时.A .60t vB .6060t v +C .60vt v +D .60vt 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若2410x x -+=,则2421x x x ++的值为________. 2、计算:2121m m m m +=++______. 3、计算下列各题:(1)|3﹣4|﹣1=_____;(2_____;(3)30=_____;(4)32y xy x+=_____. 4、如果分式4123x x -+的值为0,则x 的值是__________. 5、当12x =时,计算22244242x x x x x x-+-÷-+的结果等于_______. 三、解答题(5小题,每小题10分,共计50分)1、人工智能在物流行业有广泛的应用,其中自主移动机器人可以实现高效的搬运和拣货作业. 某物流园区利用A ,B 两种自主移动机器人搬运化工原料,A 型机器人比B 型机器人每小时多搬运30kg ,A 型机器人搬运750kg 所用时间与B 型机器人搬运600kg 所用时间相等,两种机器人每小时分别搬运多少化工原料?2、列方程解应用题:随着我国科技事业的不断发展,国产无人机大量进入快递行业.现有A ,B 两种型号的无人机都被用来运送快件,A 型机比B 型机平均每小时多运送30件,A 型机运送800件所用时间与B 型机运送500件所用时间相等,两种无人机平均每小时分别运送多少快件?3、解分式方程:42155x x x+=--. 4、材料:已知1ab =,求证11111a b+=++. 证法一:原式()()()()112211112b a a b a b a b ab a b a b+++++++====+++++++. 证法二:原式()111111111ab ab b ab a b a b b b b +=+=+=++++++. 证法三:∵1ab =∴1a b=∴原式111111111b b b bb =+=+=++++. 阅读上述材料,解决以下问题:(1)已知1ab =,求11a b a b+++的值; (2)已知1abc =,求证1111111a ab b bc c ac ++=++++++. 5、解方程:(1)213x x x +=+; (2)2236111x x x +=+--. -参考答案-一、单选题1、A【分析】根据分式的分母不能为0即可得.【详解】解:由题意得:20a -≠,解得2a ≠,故选:A .【点睛】本题考查了分式有意义的条件,掌握理解分式的分母不能为0是解题关键.2、C【分析】直接利用分式的基本性质进而化简得出答案.【详解】解:把分式2aba b+中的,a b都扩大为原来的3倍,则分式223392263333()55ab a b aba b a b a b===⨯=+++,故选:C.【点睛】本题主要考查了分式的基本性质,解题的关键是正确化简分式.3、B【分析】根据分式值为0的条件,分子为0分母不为0列式进行计算即可得.【详解】解:∵分式211xx-+的值为零,∴21010xx⎧-=⎨+≠⎩,解得:x=1,故选B.【点睛】本题主要考查了分式值为0的条件,熟知分式值为0的条件是解题的关键.4、D【分析】先解分式方程得(m ﹣1)x =9,再由方程无解可得m ﹣1=3或m =1,求出m 即可.【详解】 解:329+33x mx x x----=﹣1, 方程两边同时乘以x ﹣3,得3﹣2x +mx ﹣9=3﹣x ,移项、合并同类项,得(m ﹣1)x =9,∵方程无解,∴x =3或m ﹣1=0,∴m ﹣1=3或m =1,∴m =4或m =1,故选:D .【点睛】本题考查了根据分式方程的无解求参数的值,是需要识记的内容.分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.5、D【分析】 根据换元法,把21x x +换成y ,然后整理即可得解. 【详解】 解:∵21x x +=y , ∴原方程化为110y y -+=. 整理得:y 2+y ﹣1=0.故选D .【点睛】本题考查的是换元法解分式方程,换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.6、C【分析】先将分式方程化成整式方程,再根据分式方程无解可得5x =,然后将5x =代入整式方程求出m 的值即可得.【详解】 解:21155m x x++=--, 方程两边同乘以5x -化成整式方程为2(1)5m x -+=-,关于x 的分式方程21155m x x++=--无解, 50x ∴-=,即5x =,将5x =代入方程2(1)5m x -+=-得:2(1)0m -+=,解得1m =,故选:C .【点睛】本题考查了分式方程无解问题,根据分式方程无解得出方程的增根是解题关键.7、A【分析】根据分式有意义的条件:分母不为零,进行逐一判断即可.【详解】解:A 、当x =﹣1时,分母2x +1=﹣1≠0,所以分式121x +有意义;故本选项符合题意; B 、当x =﹣1时,分母x +1=0,所以分式11x +无意义;故本选项不符合题意; C 、当x =﹣1时,分母x 2﹣1=0,所以分式21x x -无意义;故本选项不符合题意; D 、当x =﹣1时,分母x 2+x =0,所以分式22x x +无意义;故本选项不符合题意; 故选A .【点睛】 本题主要考查了分式有意义的条件,熟知分式有意义的条件是解题的关键.8、B【分析】直接利用分式的基本性质结合最简分式的定义:分子与分母不含公因式的分式叫做最简分式,进而判断即可.【详解】解:A 、()211x x ++的分子与分母含公因式(x +1),不属于最简分式,不符合题意; B 、a b a b-+的分子与分母不含公因式,属于最简分式,符合题意; C 、23ax ay的分子与分母含公因式a ,不属于最简分式,不符合题意; D 、22a b a b--的分子与分母含公因式(a ﹣b ),不属于最简分式,不符合题意; 故选:B .【点睛】此题主要考查了最简分式,正确掌握最简分式的定义(分子与分母不含公因式的分式叫做最简分式)是解题关键.9、A【分析】把互为倒数的两个数代入分式可得它们的和是0,把0代入分式得-1,故得出结果为-1.【详解】解:当x=a(a≠0)时,1111x ax a--=++,当x=1a 时,11111111x aax aa---==-+++,即互为倒数的两个数代入分式的和为0,当x=0时,111xx-=-+,故选:A【点睛】本题考查数字的变化规律,总结出数字的变化规律是解题的关键.10、B【分析】根据题意求出全程,及后来行驶的速度,相除即可得到时间.【详解】解:一辆汽车以60千米/时的速度行驶,从A城到B城需t小时,故全程为60t千米,该车的速度每小时增加v千米后的速度为每小时(60+v)千米,则从A城到B城需要6060tv+小时,故选:B.【点睛】此题考查了分式的实际应用,正确理解题意是解题的关键.二、填空题1、115【分析】根据x 2-4x +1=0可得到x 2=4x -1,x 2+1=4x ,然后把原式的分子分母进行降次,再约分即可.【详解】解:∵x 2-4x +1=0,∴x 2=4x -1,x 2+1=4x ∴2421x x x ++=()22211x x x ++=()24141x x x -+=221641x x x -+=()41164141x x x ---+=115. 故答案为115. 【点睛】本题考查了分式的化简求值,灵活变形是解答本题的关键.2、221m m + 【分析】根据同分母分式相加法则计算即可.【详解】解:2212121m m m m m m +=+++, 故答案为:221m m +. 【点睛】本题考查了分式的加法,解题关键是明确同分母分式相加,分母不变,分子相加.3、0 3 1 5 x【分析】(1)先化简绝对值,再计算减法运算即可得;(2)先计算有理数的乘方,再计算算术平方根即可得;(3)计算零指数幂即可得;(4)根据分式的加法运算法则即可得.【详解】解:(1)原式11110=--=-=,故答案为:0;(2)原式3==,故答案为:3;(3)原式1=,故答案为:1;(4)原式325x x x+==,故答案为:5x.【点睛】本题考查了零指数幂、算术平方根、分式的加法等知识点,熟练掌握各运算法则是解题关键.4、14##【分析】分式的值为零时,分子等于零,即410x -=.【详解】解:由题意知,410x -=. 解得14x =. 此时分母07223x +=≠,符合题意. 故答案是:14. 【点睛】本题主要考查了分式的值为零的条件,解题的关键是掌握分式值为零的条件是分子等于零且分母不等于零.5、12【分析】 先因式分解成()()()()222222x x x x x x -+⨯-+-,约分后得出最简分式,最后代入求值即可. 【详解】 解:22244242x x x x x x -+-÷-+ ()()()()222222x x x x x x -+=⨯-+- x = 当12x =时,∴原式=12 故答案为:12【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.三、解答题1、A型机器人每小时搬运150 kg化工原料,B型机器人每小时搬运120 kg化工原料【分析】设B型机器人每小时搬运x kg化工原料,则A,B两种自主移动机器人完成各自工作的工作时间为75030 x+小时,600x小时,再利用时间相等建立方程,再解方程即可.【详解】解:设B型机器人每小时搬运x kg化工原料.根据题意,得75060030x x=+.解得120.x=经检验,120x=是原分式方程的解,且符合题意.30150.x+=答:A型机器人每小时搬运150 kg化工原料,B型机器人每小时搬运120 kg化工原料.【点睛】本题考查的是分式方程的应用,准确的表示A,B两种自主移动机器人搬运化工原料的工作时间是解本题的关键.2、A型机平均每小时运送快递80件,B型机平均每小时运送快递50件【分析】设A型机平均每小时运送快递x件,则B型机平均每小时运送快递(x﹣30)件,根据时间相等列方程求解即可.【详解】解:设A 型机平均每小时运送快递x 件,则B 型机平均每小时运送快递(x ﹣30)件, 根据题意得:80050030x x =-, 解得:x =80,经检验,x =80是原分式方程的根,且符合题意,∴80﹣30=50,答:A 型机平均每小时运送快递80件,B 型机平均每小时运送快递50件.【点睛】本题考查了分式方程的应用,正确寻找等量关系,是解题的关键.3、13x =【分析】观察可得最简公分母是(x −5),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】解:去分母,得542x x -+=-.化简,得31x =. 解得13x =. 检验:把13x =代入最简公分母50x -≠. 所以13x =是原分式方程的解.【点睛】此题考查了分式方程的求解方法.注意掌握转化思想的应用,注意分式方程需检验.4、(1)1(2)见解析【分析】(1)由题意把原式第一项分母里的“1”换为ab ,约分后利用同分母分式的加法法则计算即可求出值;(2)根据题意把左边第一、二项分母中的“1”换为abc ,约分后再将第一项分母中的“1”换为abc ,计算得到结果,与右边相等即可求证.(1)解::∵ab =1, ∴11a b a b+++ 1a b ab a b=+++ 111b b b=+++ 11b b +=+ 1=;(2)证明:∵abc =1, ∴111111a ab b bc c ac++++++++ 11abc abc abc a ab abc b bc c ac=++++++++ 111bc ac bc abc b ac c c ac=++++++++ 1111c ac c ac ac c c ac =++++++++11c ac c ac ++=++ 1=.【点睛】本题考查代数式求值以及分式的加法运算,熟练掌握分式的加法运算法则和运用题干所给方法进行求值是解答本题的关键.5、(1)6x =(2)无解【分析】(1)先给方程两边同时乘以x (x +3)去分母化为整式方程,然后求出整式方程的解并检验即可解答;(2)先给方程两边同时乘以()()11x x -+去分母化为整式方程,然后求出整式方程的解并检验即可解答.(1) 解:213x x x +=+ 22(3)(3)x x x x ++=+,22326x x x x ++=+,6x =.检验:当6x =时,(3)0x x +≠.所以,原分式方程的解为6x =.(2)解:2236111x x x +=+-- 2(-1)316x x ++=(),2x -2+3x +3=61x=.检验:当1x=时,(1(1)0x x +-=). ∴1x=不是原分式方程的解.所以,原分式方程无解.【点睛】本题主要考查了解分式方程,掌握解分式方程的步骤是解答本题的关键,最后的检验是解答本题的易错点.。
七年级数学下册《第九章 分式》单元测试卷及答案解析-沪科版

七年级数学下册《第九章 分式》单元测试卷及答案解析-沪科版一、单选题1.当x=-2时下列各式哪个无意义( )A .-1x x B .224x - C .2224x x -+D .24x x ++ 2.约分225a bab-的结果是( ) A .15-B .5a b-C .15b-D .15a-3.若1111M x x +=-- ,则 M 为( ) A .0B .21x - C .2(1)(1)xx x ---D .21x - 4.化简111a a a+-- 的结果为( ) A .1-B .0C .1±D .15.关于x 的方程3x 2x 1-+ - mx 1+ =2有增根,则m 的值是( ) A .-5B .5C .-7D .26.若将分式x y2xy-中的x 和y 都扩大到原来的10倍,则分式的值( ) A .缩小到原来的110B .不变C .扩大到原来的10倍D .缩小到原来的11007.下列运算正确的是( )A .22()a a b b=B .1x yx y--=-- C .112a b a b+=+ D .341a a a÷= 8.计算2111a a a a -⎛⎫÷- ⎪⎝⎭,结果正确的是( )A .aB .a -C .1aD .1a-9.已知关于x 的分式2222x a ax x-+=--的解为非负数,则a 的范围为( ) A .43a ≤且23a ≠ B .23a ≥且43a ≠ C .13a ≤-且23a ≠- D .13a ≥且23a ≠ 10.随着快递业务的增加,南浔某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x 件,可列方程为( ) A .3000420080x x =- B .3000420080x x += C .4200300080x x=- D .3000420080x x =+ 二、填空题11.若使分式xx 3-有意义的取值范围是 . 12.计算:221239x x -=-- . 13.已知 21m n mn +==-, ,则11m n n m+++ = . 14.小明家购进一台扫拖一体机器人.该机器人识别出小明家需要扫地和拖地的面积均为60平方米,小明让机器人对识别的面积先扫地再拖地,发现拖地的时间比扫地的时间多100分钟,且扫地的速度是拖地的3倍.若拖地的速度为每分钟x 平方米,则可列方程为 .三、计算题15.计算: 22221111a b a b a b a b⎛⎫+-÷ ⎪+---⎝⎭ .16.解方程:25310111x x x -=+-- 四、解答题17.若分式2396a a a --- 的值恒为正数,求a 的取值范围.18.以下是圆圆计算2x 1x 11x+--的解答过程.解:222x 1x 1x 1x 11x x 1x 1x 1++=+=-----. 圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.19.以下是琦琦同学解《作业本》中的一个分式方程51144x x x-+=-- 的解答过程. 解:去分母,得 511x --= 移项,合并同类项,得 3x =检验:将 3x = 代入最简公分母 43410x -=-=-≠ ∴3x = 是原方程的根.琦琦的解答过程对吗?如果不对,请写出正确的解答过程.五、综合题20.如图,为建设美丽农村,村委会打算在正方形地块甲和长方形地块乙上进行绿化。
七年级下沪科版数学第九章分式测试卷共四套

第九章分式单元测试1一, 选择题(每题3分,共30分)1.下列分式中是最简分式的是 ( )A.a by x 1242 B x y x 3+ C 22ba ba -- D22222y xy x y x ++-2.当a 为任何实数时,下列分式中一定有意义的一个是 ( ) A.21a a + B.11+aC.112++a aD.112++a a 3.下列分式中,计算正确的是 ( )A.)(3)(2c b a c b +++=32+aB.b a b a b a +=++222 C.22)()(b a b a +- =-1 D. xy y x xy y x -=---12224.若已知分式,若分式4242--x x 的值为零,则x 等于( )A.2B.-2C.2±D. 0 5.分式2ab 32b -与的最简公分母是 ( )A.B.C.D.6.如果分式方程1x m1x x +=+无解,则m 的值为 ( ) A. -2B. 0C. 1D. -17.如果分式方程4x x22x 12x 22-=-++有增根,那么增根是 ( ) A. -2 B. 0 C. 2 D. 2±8,把分式2222-+-+-x x x x 化简的正确结果为 ( )A.482--x xB.482+-x xC.482-x x D.48222-+x x9若分式23x x -的值为正数,则x 的取值范围是 ( )A .x >3B .x <3C .x <3且x ≠0D .x >-3且x ≠010,化肥厂原计划x 天生产120吨化肥,实际每天多生产3吨,因此提前2天完成任务求x 的方程应为 ( ) A.31202120-=-xx B. 32120120--=x x C. 31202120-=+xx D. 32120120-+=x x 二、填空题(每空3分,共18分)11.计算:()=-014.3π 12..若x +x1=4,则x 2+21x =____________.13、当x= 时,分式22--x x 的值为零;当x 时,分式33+-x x 有意义. 14、若4)1(2=+x x ,则221xx += ,2)1(x x -= . 15、计算:2422---a a a = .1111-++x x =16、已知关于x 的方程(1)x m m x +-=45的解为x=15,则m=______ 三、计算17 、化简(每小题5分,共10分)(1)22121122111m m m m m m m +⎛⎫⎛⎫⋅-- ⎪ ⎪-+-+⎝⎭⎝⎭(2)2))((2b a b a ab+-÷)(2222ba b a b a b a +---+18.(6分) 化简求值2x x )4x 4x 42x 2x (2-÷+-+-+其中 x=119、解方程(每小题6分,共12分) (1)1112132-=+--x x x (2)()22104611x x x x -=--四、综合题(共24分)20.已知1a - 1b =3,求分式2a+3ab-2ba-ab-b 的值.(8分)21.已知753z y x ==且满足3632=++z y x 求))()((x z z y y x ---的值(8分)22.已知M=11+++b ba a ,N=1111+++b a ,试比较M,N 的大小(8分)23、已知关于x 的方程1121+-=--x mx x (10分)(1)若方程有增根,求m 的值(2)若方程无解,则m 的值是多少24、某工程,甲工程队单独做30天完成;若乙工程队单独做20天后,甲、乙两工程队再合作,则10天完成.求乙工程队单独做需要多少天完成? (10分)第九章分式测试题2一、选择题:(每小题3分,共30分)1、下列各式y x +15、x x 22、4322b a -、2-a 2、m 1、πxy 5:其中分式共有 ( )A 、2B 、3C 、4D 、5 2、无论x 取什么数时,总是有意义的分式是( )A .122+x x B.12+x x C.133+x x D.25x x - 3、下列各式正确的是( )A 、11++=++b a x b x aB 、22x y x y =C 、()0,≠=a mana m n D 、a m an m n --=4、下列各分式中,最简分式是 ( )A 、()()y x y x +-8534B 、y x x y +-22 C 、2222xy y x y x ++ D 、()222y x y x +- 5、关于x 的方程4332=-+x a ax 的解为x=1,则a = ( )A 、1B 、3C 、-1D 、-36、小明通常上学时走上坡路,通常的速度为m 千米/时,放学回家时,沿原路返回,通常的速度为n 千米/时,则小明上学和放学路上的平均速度为( )千米/时 ( )A 、2nm + B 、nm mn+ C 、n m mn +2 D 、mnnm + 7、若把分式xyyx 2+中的x 和y 都扩大3倍,那么分式的值( )A 、扩大3倍B 、不变C 、缩小3倍D 、缩小6倍 8、若0≠-=y x xy ,则分式=-xy 11( )A 、xy1B 、x y -C 、1D 、-19、A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程 ( )A 、9448448=-++x x B 、9448448=-++x x C 9448=+x D 9496496=-++x x10、已知222,06⎪⎭⎫⎝⎛-+>>=+b a b a b a ab b a 则且的值为( )A 、0.25B 、4C 、2D 、0.5二、填空题:(每小题3分,共21分)11、分式392--x x 当x __________时分式的值为零。
(完整版)七年级数学分式的运算测试题(沪科版)

y y2 中是最简分式的是
1、 24 x4 y 8x2 y2 5a
2
、 x2 x
1 x2 6 x3
36 x
。 。
x2
5.能使分式 x2
4x
的值为零的所有
4
x 的值是(
)
A. x 2
B. x 2
C. x 2 或 x 2
D. x 2 或 x 1
6.下列四种说法( 1)分式的分子、分母都乘以(或除以)
a 2 ,分式的值不变; ( 2)分式 3 的 8y
1;
C.
ab
a b ; D. 2
11 ab
8、下列各式正确的是(
)
2
3 a 25
5、
6.
a 3 3 a a2 9
x
31
3
2x
3
4x2
1 9 2 2x
3
a2 b2
(4)
(1 a2 b2 ) 其中 a 5
11 , b
3
11
a2b ab2
2ab
四、(28 分)先化简,再求值:
( 1)
x
2
3
3 ,其中 x 1 .
x
值可以等于零; (3)
的最小值为零;其中正确的说法有…………(
)
x2 1
4
2
1
x2 4 x 2 x 2
x2 2x
x
4. (
)
x1 x1 x1
A .1 个
B.2 个
C. 3 个
D. 0 个
7.一份工作,甲单独做需 a 天完成,乙单独做需 b 天完成,则甲乙两人合作一天的工作量是(
)
A. a+b;
B.
初中数学沪科版七年级下册第9章 分式9.2 分式的运算-章节测试习题(7)

章节测试题1.【答题】化简的结果是()A.B.C.D.【答案】D【分析】根据分式的乘除运算计算即可.【解答】解:原式选D.2.【答题】已知M=,N=,若a≠1,则M与N的大小关系为()A. M>NB. M<NC. M≤ND. M≥N【答案】C【分析】根据分式的加减运算计算即可.【解答】∵M=,N=,∴M-N=-===-≤0,∴M≤N.选C.3.【答题】若=,则++的值为()A.B.C. 2D. 4【答案】B【分析】根据分式的加减运算计算即可. 【解答】++=-+===.∵=,∴设a=5k,b=3k,∴原式==.4.【答题】若+M=,则M为()A.B.C.D.【答案】B【分析】根据分式的加减运算计算即可.【解答】∵+M=,∴M=.选B.5.【答题】计算的结果为()B. xC.D.【答案】A【分析】根据分式的加减运算计算即可.【解答】解:原式选A.6.【答题】化简的结果是()A. 1B.C.D. -1【答案】B【分析】根据分式的混合运算计算即可.【解答】解:)===.选B.7.【答题】分式a-b+的值为()A.B. a+bC.D. 以上都不对【答案】C【分析】根据分式的加减运算计算即可. 【解答】解:a-b+==.选C.8.【答题】计算得()A.B.C.D. 2【答案】D【分析】本题考查了分式的加减运算,解决此题的关键是把4b-a转化为-(a-4b).【解答】解:=====2选D.9.【答题】化简等于()A.B.C.D.【答案】C【分析】根据分式的加减运算计算即可. 【解答】解:==.选C.10.【答题】化简的结果是()A. 1B.C.D. -1【答案】B【分析】根据分式的混合运算计算即可.【解答】解:===.选B.11.【答题】如果分式,那么的值()A. 1B. -1C. 2D. -2【答案】B【分析】此题考查了分式的化简求值,解题的关键是通过把已知式子进行变形,得到a2+b2=-ab,再以整体的形式代入.【解答】解:∵,∴(a+b)2=ab,即a2+b2+2ab=ab,a2+b2=-ab,原式====-1,选B.12.【答题】分式x-y+的值为()A.B. x+yC.D. 以上都不对【答案】C【分析】本题考查了整式与分式的加法运算,计算时可将整式看作是分母为1的分式,然后通分相加即可.【解答】解:原式===.选C.13.【答题】若,则分式的值为()A. 0B. 1C. -1D. -2【答案】C【分析】本题考查了分式的值的计算,将已知条件转化为x2=1是解题的关键.【解答】解:∵即x2=1,==x2-2=1-2=-1,选C.14.【答题】计算的结果是()A. -B.C. -1D. 1【答案】A【分析】根据分式的混合运算计算即可.【解答】解:原式故答案是A选项选A.15.【答题】计算的结果是()A. -B.C.D.【答案】C【分析】根据分式的加减运算计算即可.【解答】解:原式===.选C.16.【答题】计算等于()A.B.C.D.【答案】D【分析】根据分式的加减运算计算即可. 【解答】解:原式===.选D.17.【答题】的结果是()A.B.C.D.【答案】D【分析】根据分式的加减运算计算即可.【解答】解:原式==.选D.18.【答题】计算的结果是()A.B.C.D.【答案】D【分析】根据分式的加减运算计算即可.【解答】解:原式====.选D.19.【答题】计算的结果是()A.B.C.D. -【答案】C【分析】根据分式的加减运算计算即可.【解答】解:原式=+==.选C.20.【答题】化简的结果是()A.B.C.D.【答案】D【分析】根据分式的乘除运算计算即可.【解答】解:原式选D.。
2021-2022学年最新沪科版七年级数学下册第9章 分式综合测评试题(含详细解析)

沪科版七年级数学下册第9章分式综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在代数式32x+,32x+,32x+,32xx+,πx中,分式的个数为().A.2 B.3 C.4 D.52、若分式32aa-有意义,则a的取值范围是()A.a≠2B.a≠0C.a<2 D.a≥23、若关于x的方程2222x mx x++=--有增根,则m的取值是()A.0 B.2 C.-2 D.1 4、下列分式中是最简分式的是()A.269xxB.22x yx y++C.2442x xx+++D.211xx--5、在3mn,3x y+,1x,3a b+中,分式的个数是()A.1 B.2 C.3 D.46、使分式11x-+有意义的x取值范围是()A .1x >-B .1x <-C .1x ≠-D .1x =-7、若整数a 使关于x 的不等式组2062x a x x->⎧⎨->⎩有解,且最多有2个整数解,且使关于y 的分式方程2ay y +-412y=-的解为整数,则符合条件的所有整数a 的和为( ) A .4- B .4 C .2- D .28、下列分式中,是最简分式的是( )A .()211x x ++B .a b a b -+C .23ax ayD .22a b a b-- 9、若关于x 的一元一次不等式组()21122x x x m ⎧+-<+⎨-≤⎩的解集为1x <;关于x 的分式方程2422x m m x x ++=--的解为非负整数.则满足条件的整数m 的值之和是( )A .13B .12C .14D .1510、某生产厂家更新技术后,平均每天比更新技术前多生产3万件产品,现在生产50万件产品与更新技术前生产40万件产品所需时间相同,设更新技术前每天生产产品x 万件,则可以列方程为( )A .50403x x =+B .40503x x =+C .40503x x =-D .50403x x=- 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、要使分式232x +有意义,则x 的取值范围是 _____. 2、已知x 2+21x =3,求2421x x x ++=______. 3、计算:2121m m m m +=++______. 4、计算下列各题:(1)|3﹣4|﹣1=_____;(2_____;(3)30=_____;(4)32y xy x+=_____. 5、若分式21x x -+的值为0,则x 的值是______. 三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值:22121244x x x x x x +-⎛⎫+÷ ⎪--+⎝⎭,其中3x =. 2、计算(1)2241a b a b a b b a-÷-+-; (2)(2x xy y +﹣2y x xy +)÷(1﹣222x y xy+). 3、(1)21(1)(2)2⎛⎫--+- ⎪⎝⎭x x x ; (2)计算:211a a a ---; (3)先化简,再请你用喜爱的数代入求值2232122444x x x x x x x x x+-+⎛⎫-÷ ⎪--+-⎝⎭. 4、某水果批发店销售粑粑柑和苹果,均按整箱出售,粑粑柑比苹果每箱贵30元.某天粑粑柑销售额为1800元,苹果销售额为3600元,该日苹果销售量恰好是粑粑柑销售量的3倍.(1)求粑粑柑、苹果每箱各是多少元?(2)某单位决定去该水果批发店购买粑粑柑、苹果共30箱,恰逢批发店对售价进行调整,苹果单价提高了5%,粑粑柑按九折销售,本次购买预算总费用不超过2100元,那么可最多购买多少箱粑粑柑?5、受新冠肺炎疫情持续影响,医用防护服和防护面罩的需求大大增加,为保障一线医护人员的健康安全,重庆一医疗器械有限公司组织甲、乙两个生产组进行防护服生产.甲生产组工人的人数比乙生产组工人人数多10人,由于乙生产组采用的新生产技术,所以乙生产组每天人均生产的防护服套数是甲生产组每天人均生产的防护服套数的43倍.甲生产组每天可生产防护服2160套,乙生产组每天可生产防护服1920套.(1)求甲、乙两个生产组各有工人多少名?(2)随着天气转凉,疫情有所反弹,医用防护服的需求量急增,该公司紧急组织甲、乙两个生产组加班生产一批防护服,并且在每个生产组都加派了生产工人.甲生产组的总人数比原来增加了13,每天人均生产的防护服套数比原来增加了5%2a;乙生产组的总人数比原来增加了5%a,每天人均生产的防护服套数比原来增加了24套,现在两个生产组每天共生产防护服7200套.求a的值.-参考答案-一、单选题1、A【分析】根据分式的定义解答即可.【详解】解:32x+、32xx+的分母中含字母,是分式,32x+、32x+、xπ的分母中不含字母,不是分式,故选:A.【点睛】本题主要考查分式的定义,判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,注意π不是字母,是常数,所以分母中含π的代数式不是分式,是整式.2、A【分析】根据分式的分母不能为0即可得.【详解】a-≠,解:由题意得:20解得2a≠,故选:A.【点睛】本题考查了分式有意义的条件,掌握理解分式的分母不能为0是解题关键.3、A【分析】方程两边都乘以最简公分母(x-2),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值.【详解】方程两边都乘以(x-2)得:-2+x+m=2(x-2),∵分式方程有增根,∴x-2=0,解得x=2,∴-2+2+m=2×(2-2),解得m=0.故答案为:A.【点睛】此题考查分式方程的增根,掌握运算法则是解题关键.4、B根据最简分式的定义逐一判定即可解答. 【详解】解:A.26293x xx=,故A不是;B.22x yx y++,B是最简分式;C.2442x xx+++=2x+ , 故C不是;D.211xx--=x+1, 故D不是故答案为:B【点睛】本题考查最简分式,约分,解的关键是正确理解最简分式的定义,本题属于基础题型.5、C【分析】根据分式的定义逐个分析判断即可.【详解】解:在3mn,3x y+,1x,3a b+中,分式有3mn,1x,3a b+共3个,3x y+是整式.故选:C.【点睛】本题考查了分式的判断,掌握分式的定义是解题的关键.一般地,如果A、B(B不等于零)表示两个整式,且B中含有字母,那么式子AB就叫做分式,其中A称为分子,B称为分母.6、C令分母x +1≠0,求解即可.【详解】 ∵分式11x -+有意义, ∴x +1≠0,即1x ≠-,故选C .【点睛】本题考查了分式有意义的条件,让分母不等于零转化为不等式求解是解题的关键.7、D【分析】根据题意先解不等式,确定a 的范围,进而根据分式方程的解为整数,确定a 的值,再求其和即可.【详解】解:2062x a x x ->⎧⎨->⎩①②解不等式①得:2ax >解不等式②得:2x < 不等式组有解,则22a x <<且最多有2个整数解,则122a -≤< 解得24a -≤<2,1,0,1,2,3a ∴=--分式方程去分母得:42ay y -=- 解得21y a =- 分式方程2ay y +-412y =-的解为整数, 21a ∴-是整数,且2,10y a ≠-≠ 2,1,2a ∴≠-1,0,3a ∴=-1032∴-++=即符合条件的所有整数a 的和为2,故选D【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.8、B【分析】直接利用分式的基本性质结合最简分式的定义:分子与分母不含公因式的分式叫做最简分式,进而判断即可.【详解】解:A 、()211x x ++的分子与分母含公因式(x +1),不属于最简分式,不符合题意; B 、a b a b-+的分子与分母不含公因式,属于最简分式,符合题意; C 、23ax ay的分子与分母含公因式a ,不属于最简分式,不符合题意; D 、22a b a b--的分子与分母含公因式(a ﹣b ),不属于最简分式,不符合题意;故选:B .【点睛】此题主要考查了最简分式,正确掌握最简分式的定义(分子与分母不含公因式的分式叫做最简分式)是解题关键.9、B【分析】由关于x 的一元一次不等式组可得m ≥-1,关于x 的分式方程的解为83m x -=,根据题意得出所有满足条件的整数m 的值,求和即可.【详解】解:解不等式组2(1)122x x x m +-<+⎧⎨-≤⎩得,12x x m <⎧⎨≤+⎩, 因为不等式组的解集为1x <;所以21m +≥,解得,1m ≥-; 解分式方程2422x m m x x ++=--得,83m x -=, 因为关于x 的分式方程2422x m m x x ++=--的解为非负数. 所以,803m -≥且823m -≠, 解得,8m ≤且2m ≠,又因为方程的解是非负整数,则整数m 的值为-1,5,8;它们的和为:-1+5+8=12;故选:B【点睛】本题主要考查了分式方程的解,一元一次不等式组的解集,有理数的混合运算.考虑解分式方程可能产生增根是解题的关键.10、A【分析】更新技术前每天生产产品x万件,可得更新技术后每天生产产品(x+3)万件.根据现在生产50万件产品与更新技术前生产40万件产品所需时间相同列出方程50403x x=+即可.【详解】解:∵更新技术前每天生产产品x万件,∴更新技术后每天生产产品(x+3)万件.依题意得50403x x=+.故选:A.【点睛】本题考查列分式方程解应用题,掌握列分式方程解应用题的方法与步骤,抓住等量关系列出方程是解题关键.二、填空题1、任意实数【分析】根据分式有意义的条件,分母不为0,进而即可求得x的取值范围.【详解】解:∵分式23 2x+有意义∴220x+≠x 为任意实数故答案为:任意实数【点睛】本题考查了分式有意义的条件,理解分式有意义的条件是“分母不为0”是解题的关键.2、14. 【分析】原式分子分母除以x 2化简后,把已知等式代入计算即可求出值.【详解】解:∵x 2+21x =3, ∴原式=2211==1311x x +++14. 故答案为:14. 【点睛】此题考查了已知式子的值求分式的值,正确将所求分式的分子分母除以x 2化简,把已知等式代入计算是解题的关键.3、221m m + 【分析】根据同分母分式相加法则计算即可.【详解】 解:2212121m m m m m m +=+++, 故答案为:221m m +. 【点睛】本题考查了分式的加法,解题关键是明确同分母分式相加,分母不变,分子相加.4、0 3 1 5 x【分析】(1)先化简绝对值,再计算减法运算即可得;(2)先计算有理数的乘方,再计算算术平方根即可得;(3)计算零指数幂即可得;(4)根据分式的加法运算法则即可得.【详解】解:(1)原式11110=--=-=,故答案为:0;(2)原式3==,故答案为:3;(3)原式1=,故答案为:1;(4)原式325x x x+==,故答案为:5x.【点睛】本题考查了零指数幂、算术平方根、分式的加法等知识点,熟练掌握各运算法则是解题关键.5、2【分析】根据分式值为零的条件:分子为零,分母不为零即可求解.【详解】依题意可得x -2=0,x +1≠0∴x =2故答案为:2.【点睛】此题主要考查分式值为零的条件,解题的关键是熟知分式的值为零的条件.三、解答题1、21x x-,53. 【分析】先计算括号内的分式加法,再计算分式的除法,然后将3x =代入计算即可得.【详解】 解:原式()()2212222x x x x x x x -+-⎛⎫=+÷ ⎪--⎝⎭- ()()222122x x x x x --=⋅-- 21x x-=, 将3x =代入得:原式231533⨯-==. 【点睛】本题考查了分式的化简求值,熟练掌握分式的运算法则是解题关键.2、(1)()a b b a b +-(2)2x y-- 【分析】(1)先把除法写成乘法计算,再把异分母化为同分母算减法即可;(2)先算括号里面的,再把除号化为乘号计算即可.(1) 原式41()()a b a a b a b a b b-=-⨯+-+, 4()()()a ab a b a b b a b -=++-+, 24()()()()()ab a b b a b a b b a b a b -=++-+-, 2242()()ab a ab b b a b a b +-+=+-, 2()()()a b b a b a b +=+-, ()a b b a b +=-; (2) 原式222[]()()()22x y xy x y y x y x x y xy xy+=-÷-++, 222()[]()()2x y x y xy x y xy x y xy--=-÷++, 2()()2()()x y x y xy xy x y x y +-=⋅+--, 2x y =--. 【点睛】本题考查分式的混合运算,掌握分式的运算法则和运算顺序是解题的关键.3、(1)94;(2)11a -;(3)42x x --,当x =1时,原式=3. 【分析】 (1)分别运用完全平方公式和多项式乘多项式法则展开后,合并即可;(2)先通分,再计算加减即可;(3)先计算括号内的减法(通分后按同分母的分式相加减法则计算)同时把除法变成乘法,再根据分式的乘法法则约分,最后代入求出即可.【详解】解:(1)21(1)(2)2⎛⎫--+- ⎪⎝⎭x x x =221(22)4x x x x x -+--+- =221224x x x x x -+-+-+ =94;(2)211a a a --- =2(1)(1)11a a a a a -+--- =22111a a a a ---- =11a -; (3)2232122444x x x x x x x x x +-+⎛⎫-÷⎪--+-⎝⎭ =2212(2)(2)(2)(2)x x x x x x x x x ⎡⎤+-+-÷⎢⎥--+-⎣⎦=22(2)(2)(1)1(2)(2)(2)x x x x x x x x x x ⎡⎤+---÷⎢⎥---⎣⎦ =24(2)(2)x x x x x -⋅-- =42x x --, ∵要使式子有意义,∴x 2−2x ≠0,x 2−4x +4≠0,x 3−4x ≠0,x +2≠0,∴x 不能是0、2、−2,当x =1时,原式=1412--=3. 【点睛】本题考查了整式的乘法、分式的混合运算及化简求值等知识点,分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.4、(1)苹果每箱60元,粑粑柑每箱90元(2)最多可购买11箱粑粑柑【分析】(1)设苹果每箱x 元,则粑粑柑每箱(x +30)元,然后根据某天粑粑柑销售额为1800元,苹果销售额为3600元,该日苹果销售量恰好是粑粑柑销售量的3倍,列出方程求解即可;(2)设可以购买m 箱粑粑柑,则购买(30﹣m )箱苹果,然后根据某单位决定去该水果批发店购买粑粑柑、苹果共30箱,恰逢批发店对售价进行调整,苹果单价提高了5%,粑粑柑按九折销售,本次购买预算总费用不超过2100元,列出不等式求解即可.(1)解:设苹果每箱x 元,则粑粑柑每箱(x +30)元,依题意得:36001800330x x =⋅+, 解得:x =60,经检验,x =60是原方程的解,且符合题意,∴x +30=60+30=90.答:苹果每箱60元,粑粑柑每箱90元.(2)解:设可以购买m 箱粑粑柑,则购买(30﹣m )箱苹果,依题意得:90×0.9m +60×(1+5%)(30﹣m )≤2100,解得:m ≤1123,又∵m 为正整数,∴m 的最大值为11.答:最多可购买11箱粑粑柑.【点睛】本题主要考查了分式方程和一元一次不等式的实际应用,解题的关键在于能够正确理解题意列出方程和不等式求解.5、(1)甲生产组有工人30名,乙生产组有工人20名(2)10【分析】(1)设甲生产组有工人x 名,则乙生产组有工人()10x -名,根据“乙生产组每天人均生产的防护服套数是甲生产组每天人均生产的防护服套数的43倍”列出分式方程,即可求解;(2)结合(1)的结果得到甲、乙生产组原每天人均生产套数,根据题意得到甲、乙生产组紧急组织后的总人数和每天人均生产套数,再根据“两个生产组每天共生产防护服7200套”列出方程,即可求解.(1)解:设甲生产组有工人x 名,则乙生产组有工人()10x -名, 由题意得:216041920310x x ⋅=-, 解得30x =.经检验,30x =是原方程的解.∴10301020x -=-=(名).答:甲生产组有工人30名,乙生产组有工人20名.(2)解:甲生产组原每天人均生产套数为21603072÷=(套),乙生产组原每天人均生产套数为19202096÷=(套). 由题意得:1530(1)72(1%)(9624)20(15%)720032a a ⨯+⨯+++⨯+=,解得10a =.答:a 的值为10.【点睛】本题是实际问题与方程.利用方程的思想解决实际问题,简单便捷.在求解分式方程时,要注意对解进行检验.。
精品试题沪科版七年级数学下册第9章 分式综合测评试卷(含答案详解)

沪科版七年级数学下册第9章 分式综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若分式23x x +-有意义,则x 的取值范围是( ) A .x ≥3 B .x ≠3且x ≠-2 C .x ≠-2 D .x ≠32、若分式22x x -有意义,则x 的取值范围是( ) A .任意实数 B .2x > C .2x ≠ D .0x ≠3、若把x 、y 的值同时扩大为原来的2倍,则下列分式的值保持不变的是( )A .11x y ++B .2x y x y -+C .2x yD .xy x y+ 4、若整数a 使关于x 的不等式组2062x a x x ->⎧⎨->⎩有解,且最多有2个整数解,且使关于y 的分式方程2ay y +-412y=-的解为整数,则符合条件的所有整数a 的和为( ) A .4- B .4 C .2- D .25、下列各式从左到右变形正确的是( )A .2362x x x =B .11n n m mC .n m n m m n mn --=D .22n n m m= 6、华华同学借了一本书,共280页,要在1周借期内读完.当他读了一半时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( )A .140140721x x +=-B .280280721x x +=+C .140140721x x +=+D .1010121x x +=+ 7、已知:1115a b -=-,则ab b a -的值是( ) A .15 B .15- C .5 D .﹣58、若分式2x x -的值为0,则x 的值是( ) A .0B .2C .2或﹣2D .﹣2 9、分式12x x --有意义,则x 满足的条件是( ) A .1x ≠ B .2x ≠ C .2x = D .2x >10、一辆汽车以60千米/时的速度行驶,从A 城到B 城需t 小时,如果该车的速度每小时增加v 千米,那么从A 城到B 城需要( )小时.A .60t vB .6060t v +C .60vt v +D .60vt 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、要使分式13x -有意义,则x 的取值范围________ 2、已知:关于x 的方程11x a x a +=+的两个解为x 1=a ,x 2=1a ,方程22x a x a +=+的两个解为x 1=a ,x 2=2a ,方程33x a x a +=+的两个解为x 1=a ,x 2=3a ,则关于x 的方程101011x a x a +=+--的两个解为______________.3、计算:22x y x y y x +=--_______. 4、若m n mn -=,则11m n-=_______. 5、分式方程1213x x=+的解是______. 三、解答题(5小题,每小题10分,共计50分)1、(1)先化简,再求值:213(1)2⎛⎫--÷+ ⎪⎝⎭m m m m ,其中3m =-. (2)解分式方程:31523162x x -=-- 2、列方程解应用题.某工程队承担了750米长的道路改造任务,工程队在施工完210米道路后,引进了新设备,每天的工作效率比原来提高了20%,结果共用22天完成了任务.求引进新设备前工程队每天改造道路多少米?3、(1)计算:2ab 2c ﹣2÷(a ﹣2b )2.(2)计算:(x +6)(4x ﹣1).4、(101π+.(2)计算:(2--. (3)先化简,再求值:22131693x x x x x x x -+-÷+-+-,其中x (4)解方程:3111x x x -=-+. 5、为了响应打赢“蓝天保卫战”的号召,黄老师上下班的交通方式由驾车改为骑自行车,黄老师家距离学校的路程是9千米,在相同的路线上,驾车的平均速度是骑自行车的平均速度的3倍,所以黄老师每天上班要比开车早出发20分钟,才能按原驾车的时间到达学校.(1)求黄老师驾车的平均速度;(2)据测算,黄老师的汽车在上下班行驶过程中平均每小时碳排放量约为2.4千克,按这样计算,求黄老师一天(按一个往返计算)可以减少的碳排放量.-参考答案-一、单选题1、D【分析】根据分式有意义的条件求解即可.【详解】解:∵分式23xx+-有意义,∴30x-≠,解得:3x≠,故选D.【点睛】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.2、C【分析】根据分式有意义的条件列不等式求解.【详解】解:由题意可得:x-2≠0,解得:x≠2,故选:C.【点睛】本题考查了分式有意义的条件,理解分式有意义的条件(分母不能为零)是解题关键.3、B【分析】根据分式的基本性质逐项判断即可得.【详解】解:A、211211x xy y++≠++,此项不符题意;B、222222x y x yx y x y⨯--=++,此项符合题意;C、222(2)4222x x xy y y==,此项不符题意;D、22222x y xyx y x y⋅=++,此项不符题意;故选:B.【点睛】本题考查了分式的基本性质,熟练掌握分式的基本性质是解题关键.4、D【分析】根据题意先解不等式,确定a的范围,进而根据分式方程的解为整数,确定a的值,再求其和即可.【详解】解:2062x a x x ->⎧⎨->⎩①②解不等式①得:2ax >解不等式②得:2x < 不等式组有解,则22a x <<且最多有2个整数解,则122a -≤< 解得24a -≤<2,1,0,1,2,3a ∴=--分式方程去分母得:42ay y -=- 解得21y a =- 分式方程2ay y +-412y =-的解为整数, 21a ∴-是整数,且2,10y a ≠-≠ 2,1,2a ∴≠-1,0,3a ∴=-1032∴-++=即符合条件的所有整数a 的和为2,故选D【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.5、A【分析】根据分式的基本性质逐个判断即可.【详解】解:A.2362x xx=,故本选项正确,符合题意;B.11nm mn++≠,故本选项错误,不符合题意;C.22n m n mm n mn--=,故本选项错误,不符合题意;D.22n nm m≠,例如1,2n m==,1124≠,故本选项错误,不符合题意;故选:A.【点睛】本题考查了分式的基本性质,解题的关键是能熟记分式的基本性质,注意:分式的基本型性质是:分式的分子和分母都乘或除以同一个不等于0的整式,分式的值不变.6、C【分析】根据相等关系:读前一半所用的天数+读后一半所用的天数=7,即可列出方程得到答案.【详解】读前一半所用的天数为:140x天,读后一半所用的天数为:14021x+天根据题意得:140140721x x+=+故选:C【点睛】本题考查了分式方程的应用,关键是理解题意,找到等量关系并列出方程.【分析】首先分式方程去分母化为整式方程,求出(b ﹣a )的值,把(b ﹣a )看作一个整体代入分式约分即可.【详解】 解:∵1115a b -=-,∴b ﹣a =15-ab , ∴ab b a -=﹣15ab ab =﹣5; 故选:D .【点睛】本题考查了分式的加减法、分式的值,熟练掌握这一类型的解题方法,首先分式方程去分母化为整式方程,把(b-a )看作一个整体代入所求分式约分是解题关键.8、B【分析】根据分式的值为0的条件,可得20x -=,且0x ≠,解出即可.【详解】∵20x -=,0x ≠,∴2x =,故选:B .【点睛】本题主要考查了分式的值为0的条件,熟练掌握当分式的分子为0,分母不等于0时,分式的值为0是解题的关键.【分析】根据分式有意义的条件,分母不为0,即可求解.【详解】解:∵分式12xx--有意义,∴20x-≠2x∴≠故选B【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件即分母不为0是解题的关键.10、B【分析】根据题意求出全程,及后来行驶的速度,相除即可得到时间.【详解】解:一辆汽车以60千米/时的速度行驶,从A城到B城需t小时,故全程为60t千米,该车的速度每小时增加v千米后的速度为每小时(60+v)千米,则从A城到B城需要6060tv+小时,故选:B.【点睛】此题考查了分式的实际应用,正确理解题意是解题的关键.二、填空题1、3x ≠【分析】根据分式的分母不能为0即可得.【详解】 解:要使分式13x -有意义,则30x -≠, 解得3x ≠,故答案为:3x ≠.【点睛】本题考查了分式有意义的条件,掌握理解分式的分母不能为0是解题关键. 2、x 1=a ,x 2=91a a +-【分析】根据关于x 的方程11x a x a +=+的两个解为x 1=a ,x 2=1a ,方程22x a x a +=+的两个解为x 1=a ,x 2=2a ,方程33x a x a +=+的两个解为x 1=a ,x 2=3a,得到规律求解即可. 【详解】解:∵关于x 的方程11x a x a +=+的两个解为x 1=a ,x 2=1a ,方程22x a x a +=+的两个解为x 1=a ,x 2=2a ,方程33x a x a +=+的两个解为x 1=a ,x 2=3a ,1010(1)(1)11x a x a -+=-+--, ∴依规律,得x -1=a -1或x -1=101a -,解得:x 1=a ,x 2=91a a +-.故答案为:x 1=a ,x 2=91a a +-.【点睛】本题主要考查了与分式有关的规律型问题,解题的关键在于根据题意找到规律并且构造1010(1)(1)11x a x a -+=-+--. 3、x y +【分析】根据同分母分式加减法法则进行变形后,将分子因式分解后再约分即可得到答案.【详解】 解:原式22x y x y x y=--- ()()x y x y x y -+=-x y =+故答案为:x+y【点睛】此题主要考查了同分母的分式加减法,熟练掌握运算法则:同分母分式的相加减,分母不变,分子相加减,是解答本题的关键.4、1-【分析】 根据题利用异分母的分式减法运算法则可得11n m m n m n--=-,进而代入条件计算即可. 【详解】 解:111n m n m n m m n mn mn mn m n ---=-===--. 故答案为:1-.【点睛】本题考查代数式求值,熟练掌握异分母的分式减法运算法则以及利用整体代入法进行计算是解题的关键.5、2x =【分析】按照解分式方程的方法解方程即可.【详解】 解:1213x x=+, 方程两边同乘3(1)x x +得,32(1)=+x x ,解整式方程得,2x =,当2x =时,3(1)0x x +≠,2x =是原方程的解,故答案为:2x =.【点睛】本题考查了解分式方程,解题关键是熟练运用解分式方程的方法解方程,注意:分式方程要检验.三、解答题1、(1)1m m +,32;(2)x =109. 【分析】(1)先对原式化简,再将m =-3代入化简后的式子即可解答本题;(2)先把分式方程变形成整式方程,求解后再检验即可.【详解】解:(1)213(1)2⎛⎫--÷+ ⎪⎝⎭m m m m 22213(1)m m m m+-=-÷21(1)m m m-=-÷ (1)(1)(1)m m m m =-⋅+- =1m m+, 当m =-3时,原式=()33132-=+-; (2)原方程变形为3152312(31)x x -=-- 方程两边同乘以2(3x -1),得3(3x -1)-2= 5,去括号得,9x -3-2=5,整理得,9x =10,解得x =109, 检验:当x =109时,2(3x -1)≠0, ∴x =109是原分式方程的解. 【点睛】本题考查了解分式方程,分式的化简求值,解题的关键是明确分式化简求值的方法.解分式方程注意要检验.2、30米【分析】设引进新设备前工程队每天建造道路x 米,则引进新设备后工程队每天改造(120%)x +米,利用工作时间=工作总量÷工作效率,结合共用22天完成了任务,即可得出关于x 的分式方程,解之经检验后即可得出结论.解:设引进新设备前工程队每天建造道路x 米,则引进新设备后工程队每天改造(120%)x +米, 依题意得:75021022(1221%)00x x -+=+,解得:30x =,经检验,30x =是所列方程的解,且符合题意.答:引进新设备前工程队每天建造道路30米.【点睛】本题考查了分式方程的应用,解题的关键是找准等量关系,正确列出分式方程.3、(1)522a c ;(2)24236x x +-. 【分析】(1)先计算积的乘方与幂的乘方,再计算整式的除法、负整数指数幂即可得;(2)根据多项式乘多项式法则即可得.【详解】解:(1)原式2242)2(ab c a b --÷=522a c=; (2)原式24246x x x =-+-24236x x =+-.【点睛】本题考查了积的乘方与幂的乘方、整式的除法、负整数指数幂、多项式乘多项式,熟练掌握各运算法则是解题关键.4、(1)2;(2)22;(3)1x ,2;(4)2.(1)先根据立方根、算术平方根、绝对值、零次幂的知识化简,然后再计算即可;(2)先运用二次根式的乘方法则和平方差公式计算,然后再运用二次根式的加减运算法则计算即可;(3)先运用分式的四则混合运算法则化简,然后代入计算即可;(4)按照解分式方程的步骤解答即可.【详解】解:(101π+=211-++=2;(2)(2-- =2453-+=22; (3)22131693x x x x x x x -+-÷+-+- =()()2133113x x x x x x ---⨯++- =()1111x x x +++ =()11x x x ++ =1x当x =1x == (4)3111x x x -=-+ x (x +1)-(x +1)(x -1)=3(x -1)x 2+x -x 2+1=3x -3-2x =-4x =2.经检验x =2是分式方程的解.【点睛】本题主要考查了实数的运算、分式的化简求值、解分式方程等知识点,灵活运用相关运算法则成为解答本题的关键.5、(1)54千米/小时(2)0.8千克【分析】(1)可设黄老师骑自行车的平均速度为x 千米/小时,根据时间的等量关系列出方程即可求解;(2)由(1)可得黄老师开车的平均速度,再计算黄老师一天(按一个往返计算)可以减少碳排放量多少千克.(1)解:设黄老师骑自行车的平均速度为x 千米/小时, 依题意有,99133x x -=, 解得x =18,经检验,x =18是原方程的解.则354,x故黄老师驾车的平均速度为54千米/小时;(2)解:由(1)可得黄老师开车的平均速度为18×3=54(千米/小时),9×2×2.4=0.8(千克).54故可以减少碳排放量0.8千克.【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)
—,其中:x=—2。
x21
Q- P,请选择其中一种进行化简求值,其中a=3,b=2.
3.如果把分式a 2b中的x和y都扩大2倍,即分式的值(
ab
1、
若代数式
有意义,
的取值范围是
D.—b
)
D缩小2倍
2、
3、
2(a
把分式(a b)(a
b)b)约分得
—时,a、b必须满足的条件为
a b
当x=
时,
分式
J的值为0。
x
小明的做法是:原式
(x
3)(x
2)
x
2
厶
x
x 6 x
2
厶
x
8.
x24
2x
4
x24
分式的运算测试题
班级:
选择题:(24分)
abx(x3)5xab亠口八—/、
1•在,,,中,是分式的有()
a214
A、2个B、3个C、4个
2.计算(号b)的结果是()
a2b
a
a b
、填空题:
a
a b
(20分)
D、
A、扩大4倍;
B、扩大2倍;
C、不变;
4.学完分式运算后,
老师出了一道题
化简:
x32x”
x2x24
2ab
四、(28分)先化简,再求值:
(1)莓卫—,其中x1.
x9x3
五解答题(12分)
2x y
1.已知x—3y=0,求一^2(x y)的值
x 2xy y
(2)
(x 1
8)x 3
x 1) x 1
其中x 2
2b2
2.已知P旦^__2,Q
a b
三2,用“+ ”或“—”连接
a2b2
P, Q共有三种不同的形式:
2x
;
4
小亮的做法是:原式
(x
3)(x
2)
(2
x)
2x
x 6 2
x
2x
4;
小芳的做法是:原式
x
3
x
2
x 3
1
x
3 1
1.
x
2 (x
2)(x
2)
x 2
x 2
x
2
其中正确的是(
)
A.小明
B.
小亮
C.
小芳
D
.没有正确的
4、
5、
三、计算:
1、
24x4y
5a
x
2
x 2x
2 x
的最简公分母是
x2x
,2
a
(36分)
x21
421
2
x 4x2x2
乞)
A .1个B.2个
C.3个
D.0个
7.—份工作,甲单独做需
A.a+b;B.
a天完成,乙单独做需b天完成,则甲乙两人合作一天的工作量是(
1a b11
;C.;D.
a b2a b
&下列各式正确的是
a 25
x
2x 3
1
4x29 2 2x 3
a2b2
⑷z(1
a2b2)其中a 52
中是最简分式的是
2*2
x 1 x 36
3
x 6 x
x
2的值为零的所有
5.能匕使分式
x2
4x4
A.x 2
B.x 2
6.下列四种说法(1)分式的分子、分母都乘以(或除以)
x的值是()
C.x 2或x 2
D.x 2或x 1
3
a2,分式的值不变;⑵分式厂的
x
值可以等于零;(3)一的最小值为零;其中正确的说法有()