2.2.1对数与对数运算(一)教案

合集下载

2.2.1 对数及对数运算(1)

2.2.1 对数及对数运算(1)
2 ln e x 4因为 ln e x, 所以
2
因此e x e2
于是x 2
P64 1,2,3
1 log3 1 0 2 lg1 0 3 log0.5 1 0 4 ln1 0
loga 1 0
a =1
0
1 log3 3 2 lg10 1

2

(2)
log2 log3 log4 x 0
log2 3
7 0.4
aa N
b
a 0, 且a 1
log a N b
(1)负数与零没有对数 (2) loga 1 0 (3) loga a 1
(4)对数恒等式:a
loga N
N
5 loga a
n
n
例3、求 x 的值: (1)
2
log2x 1 3x 2x 1 1
1 6
1 3 6

2 2
1 2
1 log10 10
3
3
2 log10 1
0
以10为底的对数叫做常用对数:
log10 N lg N
3 loge e
1
4 loge 1
0
以e为底的对数叫做自然对数:
loge N ln N
例1:将下列指数式化为对数式,对数式化 为指数式.
1
3 log0.5 0.5 1 4 ln e 1
loga a 1
a =a
1
1 log3 3 4 5 2 log0.9 0.9 5
4
loga a n
n
3 ln e
8

8
4 2 3 log 0.6 0.6 5 7 log 89 89 6 0.4

教学:高中数学 2.2.1 对数与对数运算教案 新人教A版必修1

教学:高中数学 2.2.1 对数与对数运算教案 新人教A版必修1

2.2.1 对数与对数运算第一课时 对数的概念 三维目标定向 〖知识与技能〗理解对数的概念,掌握对数恒等式及常用对数的概念,领会对数与指数的关系。

〖过程与方法〗 从指数函数入手,引出对数的概念及指数式与对数式的关系,得到对数的三条性质及对数恒等式。

〖情感、态度与价值观〗增强数学的理性思维能力及用普遍联系、变化发展的眼光看待问题的能力,体会对数的价值,形成正确的价值观。

教学重难点:指、对数式的互化。

教学过程设计 一、问题情境设疑引例1:已知2524,232==,如果226x =,则x = ? 引例2、改革开放以来,我国经济保持了持续调整的增长,假设2006年我国国内生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国内生产总值比2006年翻两番?分析:设经过x 年国内生产总值比2006年翻两番,则有a a x4%)81(=+,即1.08 x = 4。

这是已知底数和幂的值,求指数的问题,即指数式ba N =中,求b 的问题。

能否且一个式子表示出来?可以,下面我们来学习一种新的函数,他可以把x 表示出来。

二、核心内容整合1、对数:如果)10(≠>=a a N a x且,那么数x 叫做以a 为底N 的对数,记作Nx a log =。

其中a 叫做对数的底数,N 叫做真数。

根据对数的定义,可以得到对数与指数间的关系:当 a > 0且1a ≠时,Nx N a a x log =⇔=(符号功能)——熟练转化如:1318log 131801.101.1=⇔=x x ,4 2 = 16 ⇔ 2 = log 4 162、常用对数:以10为底10log N写成lg N ;自然对数:以e 为底log e N写成ln N (e = 2.71828…)3、对数的性质:(1)在对数式中N = a x > 0(负数和零没有对数);(2)log a 1 = 0 , log a a = 1(1的对数等于0,底数的对数等于1);(3)如果把b a N =中b 的写成log a N ,则有N a N a =log (对数恒等式)。

2.2.1对数与对数运算 第一课时

2.2.1对数与对数运算 第一课时
瞻前顾后
要点突破
典例精析
演练广场
考题赏析
2.2 2.2.1
对数函数 对数与对数运算
第 1 课时
首页
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
考题赏析
首页
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
考题赏析
想一想: 1. 一般地, 如果 ax=N(a>0, a≠1), 且 那么数 x 叫做以 a 为底 N 的对数, 记作 x=logaN, 其中 a 叫做对数的底数,N 叫做真数. 2.对数 loga N(a>0,且 a≠1)具有下列简单性质: (1)零和负数没有对数,即 N>0; (2)1 的对数为零,即 loga1=0; (3)底的对数等于 1,即 logaa=1. 3.常用对数:通常我们将以 10 为底的对数叫做常用对数.记作 lg_N. 4.自然对数:以 e 为底的对数称为自然对数.记作 ln_N. 5.对数与指数间的关系:当 a>0,a≠1 时,ax=N⇔x=logaN. 6.对数恒等式:alogaN=N.
首页
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
考题赏析
变式训练 11:已知 loga2=m,loga3=n,求 a2m
解:∵loga2=m,loga3=n ∴am=2,an=3 + ∴a2m 3n=a2m·3n=22×33=108. a
+ 3n
的值.
首页
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
考题赏析
对数的性质 【例 2】 求下列各式中 x 的值. (1)log2(log5x)=0; (2)log3(lg x)=1; 1 (3)log( 2-1) =x. 3+2 2

对数与对数运算第一课时(公开课精品课件).

对数与对数运算第一课时(公开课精品课件).

(1) lg36
1.5562
81 (2)lg 32
0.4034
例6
解法一:
7 计算 :lg14 2 lg lg 7 lg18 3
解法二:
7 lg 14 2 lg lg 7 lg 18 3 7 lg(2 7) 2 lg 3 lg 7 lg(2 32 )
1.计算下列各式的值.
1 32 4 1 —— (1). lg lg 8 lg 245 2 2 49 3 2 2 2 (2).lg 5 lg 8 lg 5. lg 20 lg 2 3 3 lg 2 lg 3 lg 10 1 —— (3). 2 lg1.8
1.对数的概念、表示.
• 3、数学思想小结 • 从特殊到一般——归纳法;
普通高中课程标准实验教科书数学必修一 2.2.1 对数
• 4、重点难点小结;
重点 :(1)对数的概念; (2)对数式与指数式的相 互转化。 难点 :对数概念的理解。
普通高中课程标准实验教科书数学必修一 2.2.1 对数
(一)必做 1、复习本节课的内容(明天提问) ; 2、课本 P74 习题 2.2 A 组 第 1、 2 题 (写在作业本上明天上交) ; 3、 《创新方案》 53 页变式之作 3, 《创新方案》 54 页课堂强化。
7 lg 14 2 lg lg 7 lg 18 3 7 2 lg14 lg( ) lg 7 lg18 3 14 7 lg 7 2 ( ) 18 3 lg1 0
lg 2 lg 7 2(lg 7 lg 3) lg 7 (lg 2 2 lg 3)
loga 1 0 “1”的对数等于零,即
等价
a 1
0

对数与对数运算(第一课时)教学设计

对数与对数运算(第一课时)教学设计
学生初次接触对数这一全新的概念,认识及应用需要一个过程.在教学过程中,借指数式演化到对数式,引导学生认清各部分关系,从而,将对数这一新知纳入已有的知识结构中.
教学内容分析
教学重点:对数式与指数式的互化以及对数运算性质
教学难点:推导对数运算性质
教学模式
“传递──接受式”与“探究式教学”相结合
教学主题
掌握对数的双基,即对数产生的意义、概念等基础知识,求对数及对数式与指数式间转化等基本技能的掌握
2.通过观察,探究,分析掌握指数式与对数式的互化。
(三)情感、态度和价值观
1.对数式与指数式的互化,从而培养学生的类比、分析、归纳能力;
2.通过对数的运算法则的学习,培养学生的严谨的思维品质;
3.在学习过程中培养学生探究的意识;
学情分析
高一学生已经学习了函数的概念、函数的表示方法与函数的一般性质,对函数有了初步的认识.学生已经完成了分数指数幂和指数函数的学习,了解了研究函数的一般方法,经历了从特殊到一般,具体到抽象的研究过程.
例题讲解(性质应用)
例2用 , , 表示下列各式:
(1) (2)
解:(1)
(2)
=
例3求下列各式的值:
(1) (2)
解:(1)
(2)
(七)评价与小结
1.对数定义(关键)
2.指数式与对数式互换(重点)
式子
名称
----幂的底数
----幂的指数
----幂值
----对数的底数
----以 为底 的对数
----真数
(停顿)这是因为 ,所以 。因此, 中真数N也要求大于零,所以在 , 的条件下,指数式与对数式是可以相互转化的。
由真数 ,得到负数与零一定没有对数。

对数与对数运算说课稿(精选5篇)

对数与对数运算说课稿(精选5篇)

对数与对数运算说课稿(精选5篇)以下是网友分享的关于对数与对数运算说课稿的资料5篇,希望对您有所帮助,就爱阅读感谢您的支持。

篇一§2.2.1对数与对数运算说课稿大家好,我是。

,我今天的讲课内容是对数与对数的运算。

我将从以下5个方面来进行今天的说课,第一是教学内容分析,第二是学生的学情分析,第三是教学方法的策略,第四是教学过程的设计,第五的教学反思。

一、教学内容分析对数与对数的运算是人教版高中教材必修一第二章第二节第一课时的内容。

本节课是第一课时,主要讲的就是认识对数和对数的一些基本运算性质。

本节课的学习蕴含着转化化规的数学思想,类比与对比等基本数学方法。

在上节课,我们学习了指数函数以及指数函数的性质,是本节课学习对数与对数的运算的基础,而下节课,我们又将学习对数函数与对数函数的性质,这节课恰好为下节课的学习做了一个铺垫。

二、学生学情分析接下来我将从认知、能力、情感三个方面来进行学生的学情分析。

首先是认知,该阶段的高中生已经学习了指数及指数函数的性质,具备了学习对数的基础知识;在能力方面,高一的学生已经初步具备运用所学知识解决问题的能力,但是大多数同学还缺乏类比迁移的能力;而在情感方面,大多数学生有积极的学习态度,能主动参与研究,但是还有部分的学生还是需要老师来加以引导的。

三、教学方法的策略根据教材的要求以及本阶段学生的具体学习情况,我制定了一下的教学目标。

首先是知识与技能,理解对数与指数的关系,能进行指对数互化并可利用对数的简单性质求值;接着是过程与方法,通过探究对数和指数之间的互化,培养发现问题、分析问题、解决问题的能力;最后是情感态度与价值观,通过对问题转化过程的引导,培养学生敢于质疑、勇于开拓的创新精神。

基于以上的分析,我制定了本节课的重难点。

本节课的教学重点是对数的定义,对数式与指数式的互化,对数的运算法则及其推导和应用;本节课的难点是对数概念的理解和对数运算法则的探究和证明;本节课我所采用的教学方法是探究式教学法,分为以下几个环节:教师创设问题情境,启发式地讲授,讲练结合,引导学生思考,最后鼓励学生自主探究学习。

对数与对数运算教案

对数与对数运算教案

对数与对数运算教案篇一:对数和对数的运算2.2.1对数与对数运算(三课时)教学目标:1.理解并记忆对数的定义,对数与指数的互化,对数恒等式及对数的性质.2.理解并掌握对数运算法则的内容及推导过程.3.熟练运用对数的性质和对数运算法则解题.4.对数的初步应用.教学重点:对数定义、对数的性质和运算法则教学难点:对数定义中涉及较多的难以记忆的名称,以及运算法则的推导教学方法:学导式教学过程设计第一课时师:(板书)已知国民生产总值每年平均增长率为7.2%,求20年后国民生产总值是原来的多少倍?20生:设原来国民生产总值为1,则20年后国民生产总值y=(1+7.2%)=1.07220,所20以20年后国民生产总值是原来的1.072倍.师:这是个实际应用问题,我们把它转化为数学中知道底数和指数,求幂值的问题.也就是上面学习的指数问题.师:(板书)已知国民生产总值每年平均增长率为7.2%,问经过多年年后国民生产总值是原来的4倍?师:(分析)仿照上例,设原来国民生产总值为1,需经某年后国民生产总值是原来的4某倍.列方程得:1.072=4.我们把这个应用问题转化为知道底数和幂值,求指数的问题,这是上述问题的逆问题,即本节的对数问题.师:(板书)一般地,如果a(a>0,a≠1)的某次幂等于N,就是aN,那么数某就叫做以a为底N的对数(logarithm),记作某=logaN,其中a叫做对数的底数,N叫做真数,式子logaN叫做对数式.对数这个定义的认识及相关例子:(1)对数式logaN实际上就是指数式中的指数某的一种新的记法.(2)对数是一种新的运算.是知道底和幂值求指数的运算.实际上aN这个式子涉及到了三个量a,某,N,由方程的观点可得“知二求一”.知道a,某可求N,即前面学过的指数运算;知道某(为自然数时)、N可求a,即初中学过的开根号运算,a;知道a,N可以求某,即今天要学习的对数运算,记作logaN=某.因此,对数是一种新的运算,一种知道底和幂值求指数的运算.而每学一种新的运算,首先要学习它的记法,对数运算的记法为logaN,读作:以a为底N的对数.请同学注意这种运算的写法和读法.师:实际上指数与对数只是数量间的同一关系的两种不同形式.为了更深入认识并记忆某某11(1)5625;(2)2;(3)5.7364346m练习2把下列对数形式写成指数形式:(1)log1164;(2)lg0.012;(3)ln102.3032练习3求下列各式的值:(两名学生板演练习1,2题(过程略),一生板演练习三.)2因为2=4,所以以2为底4的对数等于2.因为5=125,所以以5为底125的对数等于3.(注意纠正学生的错误读法和写法.)例题(教材第73页例题2)师:由定义,我们还应注意到对数式logaN=b中字母的取值范围是什么?生:a>0且a≠1;某∈R;N∈R.师:N∈R?(这是学生最易出错的地方,应一开始让学生牢牢记住真数大于零.)某生:由于在实数范围内,正数的任何次幂都是正数,因而a=N中N总是正数.师:要特别强调的是:零和负数没有对数.师:定义中为什么规定a>0,a≠1?(根据本班情况决定是否设置此问.)生:因为若a<0,则N取某些值时,某可能不存在,如某=log(-2)8不存在;若a=0,则当N不为0时,某不存在,如log02不存在;当N为0时,某可以为任何正数,是不唯一的,即log00有无数个值;若a=1,N不为1时,某不存在,如log13不存在,N为1时,某可以为任何数,是不唯一的,即log11有无数多个值.因此,我们规定:a>0,a≠1.某(此回答能培养学生分类讨论的数学思想.这个问题从a=N出发回答较为简单.)练习4计算下列对数:3lg10000,lg0.01,2log4,3log27,10lg105,51og1125.235师:请同学说出结果,并发现规律,大胆猜想.生:2生:3log24=4.这是因为log4=2,而2=4.22log327lg105=27.这是因为log327=3,而3=27.=105.logN1og11253生:10生:我猜想aaN,所以55=1125.师:非常好.这就是我们下面要学习的对数恒等式.师:(板书)alogaNN(a>0,a≠1,N>0).(用红笔在字母取值范围下画上曲线)(再次鼓励学生,并提出更高要求,给出严格证明.)(学生讨论,并口答.)生:(板书)证明:设指数等式a=N,则相应的对数等式为logaN=b,所以a=aaN师:你是根据什么证明对数恒等式的?生:根据对数定义.b师:(分析小结)证明的关键是设指数等式a=N.因为要证明这个对数恒等式,而现在我们有关对数的知识只有定义,所以显然要利用定义加以证明.而对数定义是建立在指数基础之上的,所以必须先设出指数等式,从而转化成对数等式,再进行证明.bblogN师:掌握了对数恒等式的推导之后,我们要特别注意此等式的适用条件.生:a>0,a≠1,N>0.师:接下来观察式子结构特点并加以记忆.(给学生一分钟时间.)师:(板书)2=?24=?log8log2生:22=8;24=2.师:第2题对吗?错在哪儿?师:(继续追问)在运用对数恒等式时应注意什么?(经历上面的错误,使学生更牢固地记住对数恒等式.)生:当幂的底数和对数的底数相同时,才可以用公式aaN.(师用红笔在两处a上重重地描写.)师:最后说说对数恒等式的作用是什么?生:化简!师:请打开书74页,做练习4.(生口答.略)师:对对数的定义我们已经有了一定认识,现在,我们根据定义来进一步研究对数的性质.师:负数和零有没有对数?并说明理由.某生:负数和零没有对数.因为定义中规定a>0,所以不论某是什么数,都有a>0,这某就是说,不论某是什么数,N=a永远是正数.因此,由等式某=logaN可以看到,负数和零没有对数.师:非常好.由于对数定义是建立在指数定义的基础之上,所以我们要充分利用指数的知识来研究对数.师:(板书)性质1:负数和零没有对数.师:1的对数是多少?生:因为a=1(a>0,a≠1),所以根据对数定义可得1的对数是零.师:(板书)1的对数是零.师;底数的对数等于多少?生:因为a=a,所以根据对数的定义可得底数的对数等于1.师:(板书)底数的对数等于1.师:给一分钟时间,请牢记这三条性质.练习:课本第74页练习1、2、3、4题。

2.2.1对数与对数运算(一)

2.2.1对数与对数运算(一)

2.2.1对数与对数运算(一)教学目标(一) 教学知识点1. 对数的概念;2.对数式与指数式的互化. (二) 能力训练要求1.理解对数的概念;2.能够进行对数式与指数式的互化;3.培养学生数学应用意识. (三)德育渗透目标1.认识事物之间的普遍联系与相互转化;2.用联系的观点看问题; 3.了解对数在生产、生活实际中的应用.教学重点对数的定义.教学难点对数概念的理解.教学过程一、复习引入:假设2002年我国国民生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍?()x %81+=2⇒x =?也是已知底数和幂的值,求指数.你能看得出来吗?怎样求呢? 二、新授内容:定义:一般地,如果 ()1,0≠>a a a 的b 次幂等于N ,就是N a b=,那么数 b 叫做以a 为底 N 的对数,记作 b N a =log ,a 叫做对数的底数,N 叫做真数.b N N a a b =⇔=log例如:1642= ⇔ 216log 4=; 100102=⇔2100log 10=;2421= ⇔212log 4=; 01.0102=-⇔201.0log 10-=. 探究:1。

是不是所有的实数都有对数?b N a =log 中的N 可以取哪些值?⑴ 负数与零没有对数(∵在指数式中 N > 0 )2.根据对数的定义以及对数与指数的关系,=1log a ? =a a log ? ⑵ 01log =a ,1log =a a ;∵对任意 0>a 且 1≠a , 都有 10=a ∴01log =a 同样易知: 1log =a a⑶对数恒等式如果把 N a b= 中的 b 写成 N a log , 则有 N aNa =log .⑷常用对数:我们通常将以10为底的对数叫做常用对数.为了简便,N 的常用对数N 10log 简记作lgN . 例如:5log 10简记作lg5; 5.3log 10简记作lg3.5.⑸自然对数:在科学技术中常常使用以无理数e=2.71828……为底的对数,以e 为底的对数叫自然对数,为了简便,N 的自然对数N e log 简记作lnN . 例如:3log e 简记作ln3; 10log e 简记作ln10.(6)底数的取值范围),1()1,0(+∞ ;真数的取值范围),0(+∞. 三、讲解范例:例1.将下列指数式写成对数式:(1)62554= (2)64126=- (3)273=a(4)73.531=m )( 解:(1)5log 625=4; (2)2log 641=-6; (3)3log 27=a ; (4)m =73.5log 31. 例2. 将下列对数式写成指数式:(1)416log 21-=; (2)7128log 2=; (3)201.0lg -=; (4)303.210ln =.解:(1)16)21(4=- (2)72=128; (3)210-=0.01; (4)303.2e =10.例3.求下列各式中的x 的值: (1)32log 64-=x ; (2)68log =x (3)x =100lg (4)x e =-2ln 例4.计算: ⑴27log 9,⑵81log 43,⑶()()32log 32-+,⑷625log 345.解法一:⑴设 =x 27log 9 则 ,279=x3233=x, ∴23=x ⑵设 =x 81log 43 则()8134=x, 4433=x , ∴16=x⑶令 =x ()()32log 32-+=()()13232log -++, ∴()()13232-+=+x, ∴1-=x⑷令 =x 625log 345, ∴()625534=x, 43455=x , ∴3=x解法二:⑴239log 3log 27log 239399===; ⑵16)3(log 81log 1643344== ⑶()()32log 32-+=()()132log 132-=+-+;⑷3)5(log 625log 334553434==四、练习:(书P64`)1.把下列指数式写成对数式(1) 32=8; (2)52=32 ; (3)12-=21; (4)312731=-.解:(1)2log 8=3 (2) 2log 32=5 (3) 2log 21=-1 (4) 27log 31=-312.把下列对数式写成指数式(1) 3log 9=2 ⑵5log 125=3 ⑶2log 41=-2 ⑷3log 811=-4 解:(1)23=9 (2)35=125 (3)22-=41 (4) 43-=811 3.求下列各式的值(1) 5log 25 ⑵2log 161⑶lg 100 ⑷lg 0.01 ⑸lg 10000 ⑹lg 0.0001 解:(1) 5log 25=5log 25=2 (2) 2log 161=-4 (3) lg 100=2 (4) lg 0.01=-2 (5) lg 10000=4 (6) lg 0.0001=-4 4.求下列各式的值(1) 15log 15 ⑵4.0log 1 ⑶9log 81 ⑷5..2log 6.25 ⑸7log 343 ⑹3log 243 解:(1) 15log 15=1 (2) 4.0log 1=0 (3) 9log 81=2 (4) 5..2log 6.25=2 (5) 7log 343=3 (6) 3log 243=5 五、课堂小结⑴对数的定义; ⑵指数式与对数式互换; ⑶求对数式的值.2.2.1对数与对数运算(二)教学目标(三) 教学知识点对数的运算性质. (四) 能力训练要求1.进一步熟悉对数定义与幂的运算性质; 2. 理解对数运算性质的推倒过程; 3.熟悉对数运算性质的内容; 4.熟练运用对数的运算性质进行化简求值; 5.明确对数运算性质与幂的运算性质的区别. (三)德育渗透目标1.认识事物之间的普遍联系与相互转化; 2.用联系的观点看问题.教学重点证明对数的运算性质.教学难点对数运算性质的证明方法与对数定义的联系.教学过程一、复习引入:1.对数的定义 b N a =l o g 其中 ),1()1,0(+∞∈ a 与 ,0(+∞∈N 2.指数式与对数式的互化)10( log ≠>=⇔=a a b N N a a b 且3.重要公式:⑴负数与零没有对数; ⑵01log =a ,log =a a⑶对数恒等式N aNa =log4.指数运算法则 )()(),()(),(R n b a ab R n m aa R n m a a a n n n mnnm n m n m ∈⋅=∈=∈=⋅+二、新授内容:1.积、商、幂的对数运算法则:如果 a > 0,a ≠ 1,M > 0, N > 0 有:)()()(3R)M(n nlog M log 2N log M log NM log 1N log M log (MN)log a n a a a a a a a ∈=-=+=证明:①设a log M =p , a log N =q . 由对数的定义可以得:M =pa ,N =qa . ∴MN = pa qa =qp a+ ∴a log MN =p +q , 即证得a log MN =a log M + a log N .②设a log M =p ,a log N =q . 由对数的定义可以得M =pa ,N =qa .∴q p q pa aa N M -== ∴p N M a -=log 即证得N M N M a a a log log log -=. ③设a log M =P 由对数定义可以得M =pa ,∴nM =npa ∴a log nM =np , 即证得a log nM =n a log M .说明:上述证明是运用转化的思想,先通过假设,将对数式化成指数式,并利用幂的运算性质进行恒等变形;然后再根据对数定义将指数式化成对数式. ①简易语言表达:“积的对数 = 对数的和”……②有时逆向运用公式:如110log 2log 5log 101010==+. ③真数的取值范围必须是),0(+∞:)5(log )3(log )5)(3(log 222-+-=-- 是不成立的. )10(log 2)10(log 10210-=-是不成立的. ④对公式容易错误记忆,要特别注意:N M MN a a a log log )(log ⋅≠,N M N M a a a log log )(log ±≠±.2.讲授范例:例1. 用x a log ,y a log ,z a log 表示下列各式:32log )2(;(1)log zyx zxya a . 解:(1)zxyalog =a log (xy )-a log z=a log x+a log y- a log z (2)32log zyx a=a log (2x3log )z y a -= a log 2x +a log 3log z y a -=2a log x+z y a a log 31log 21-.例2. 计算(1)25log 5, (2)1log 4.0, (3))24(log 572⨯, (4)5100lg 解:(1)5log 25= 5log 25=2 (2)4.0log 1=0.(3)2log (74×25)= 2log 74+ 2log 52= 2log 722⨯+ 2log 52 = 2×7+5=19.(4)lg 5100=52lg1052log10512==. 例3.计算:(1);50lg 2lg )5(lg 2⋅+ (2) ;25log 20lg 100+(3) .18lg 7lg 37lg214lg -+- 说明:此例题可讲练结合.解:(1) 50lg 2lg )5(lg 2⋅+=)15(lg 2lg )5(lg 2+⋅+=2lg 5lg 2lg )5(lg 2+⋅+=2lg )2lg 5(lg 5lg ++=2lg 5lg +=1;(2) 25log 20lg 100+=5lg 20lg +=100lg =2; (3)解法一:lg14-2lg37+lg7-lg18=lg(2×7)-2(lg7-lg3)+lg7-lg(23×2) =lg2+lg7-2lg7+2lg3+lg7-2lg3-lg2=0.解法二:lg14-2lg37+lg7-lg18=lg14-lg 2)37(+lg7-lg18=lg 01lg 18)37(7142==⨯⨯评述:此例题体现对数运算性质的综合运用,应注意掌握变形技巧,如(3)题各部分变形要化到最简形式,同时注意分子、分母的联系.(2)题要避免错用对数运算性质. 例4.已知3010.02lg =,4771.03lg =, 求45lg例5.课本P66面例5.20世纪30年代,里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大.这就是我们常说的里氏震级M ,其计算公式为 M =lg A -lg A 0.其中,A 是被测地震的最大振幅,A 0是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中的距离造成的偏差).(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是0.001,计算这次地震的震级(精确到0.1); (2)5级地震给人的震感已比较明显,计算7.6级地震的最大振幅是5级地震的最大振幅的多少倍(精确到1).3.课堂练习:教材第68页练习题1、2、3题. 4.课堂小结对数的运算法则,公式的逆向使用.=n a a log n2.2.1对数与对数运算(三)教学目标(五) 教学知识点1. 了解对数的换底公式及其推导;2.能应用对数换底公式进行化简、求值、证明; 3.运用对数的知识解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2.1对数及其运算(一)
教学目标:理解对数的概念、常用对数的概念,通过阅读材料,了解对数的发展历史及其对简化运算的作用 教学重点:理解对数的概念、常用对数的概念.
教学过程:
1、对数的概念:
复习已经学习过的运算
指出:加法、减法,乘法、除法均为互逆运算,指数运算与对数运算也为互逆运算:

,则 叫做以 为底 的对数。

记作:b N a =log (1,0≠>a a )
2、对数的性质
(1) 零和负数没有对数,即
中N 必须大于零; (2) 1的对数为0,即01log =
(3) 底数的对数为1,即1log =a a
3、对数恒等式:N a N a =log
4、常用对数:以10为底的对数叫做常用对数,记为:N N lg log 10=
5、例子:
(1) 将下列指数式写成对数式
62554=
64
126=- 373=a
73.5)31
(=m
(2) 将下列对数式写成指数式
416log 2
1-=
=
7
log
128
2
log
27
a
=
3
=
lg-
2
01
.0
(3)用计算器求值
2004
lg
lg
0168
.0
lg
370
.
125
lg
.1
732
小结:本节课学习了对数的概念、常用对数的概念,通过阅读材料,了解对数的发展历史及其对简化运算的作用
课后作业:习题2.2A组第1、2题.。

相关文档
最新文档