高考数学复习 第76课时第九章 直线、平面、简单几何体空间向量及其运算名师精品教案 新人教A版
高考数学复习 第九章 直线、平面、简单几何体(B)9(B)-3课件

(1)求证:BC⊥面D1DB; (2)求D1B与平面D1DCC1所成角的大小. 答案: 解法一: (1) 证明: ∵ ABCD - A1B1C1D1 为直四棱柱, ∴DD1⊥平面ABCD ∴BC⊥D1D ∵AB∥CD,AB⊥AD, ∴四边形ABCD为直角梯形. 又∵AB=AD=1,CD=2, ∴BC⊥DB. ∵D1D∩DB=D, ∴BC⊥平面D1DB.
PC的中线, ∴DE⊥PC,①又由PD⊥平面ABCD,得PD⊥BC. ∵底面ABCD是正方形,CD⊥BC, ∴BC⊥平面PDC.
而DE⊂平面PDC.∴BC⊥DE.②
由①和②推得DE⊥平面PBC.而PB⊂平面PBC, ∴DE⊥PB,又DF⊥PB且DE∩DF=D, 所以PB⊥平面EFD.
【例2】 已知:正方体ABCD-A1B1C1D1中(如图).
⑤若m⊥α,α∥β,则m⊥β(√)
⑥若m⊥α,n⊥α,则m∥n(√)
⑦若α∩β=l,α⊥γ,β⊥γ,则l⊥γ(√)
⑧若α⊥β,m∥β,则m⊥α(×)
⑨若线段 AB 、 CD 在同一平面 α 内的射影相等.则 AB =CD(×) ⑩在平面α内总能找到一条直线与直线m垂直(√)
2.(2009·北京丰台一模)已知直线m⊂平面α,直线n⊂
(1)求证:B1D⊥BC1; (2)求证:B1D⊥面ACD1; (3)若B1D与面ACD1交于O,求证:DO OB1=1 2.
[证明] (1)∵ABCD-A1B1C1D1为正方体,
∴ DC⊥ 面 BCC1B1 , B1D 在 面 BCC1B1 内 的 射 影 为
B1C.∵BCC1B1为正方形,∴BC1⊥B1C. ∴BC1⊥B1D,即B1D⊥BC1.(三垂线定理) (2)(1)中证明了体对角线B1D与面对角线BC1垂直, 同理可证:B1D⊥AD1,B1D⊥AC.∴B1D⊥平面ACD1.
高考数学复习 第73课时第九章 直线、平面、简单几何体-直线和平面平行及平面与平面平行名师精品教

第73课时:第九章 直线、平面、简单几何体——直线和平面平行及平面与平面平行课题:直线和平面平行及平面与平面平行 一.复习目标:1.了解直线和平面的位置关系;掌握直线和平面平行的判定定理和性质定理. 2.了解平面和平面的位置关系;掌握平面和平面平行的判定定理和性质定理. 二.课前预习:1.已知直线a 、b 和平面α,那么b a //的一个必要不充分的条件是( D )()A α//a ,α//b ()B α⊥a ,α⊥b ()C α⊂b 且α//a ()D a 、b 与α成等角2.α、β表示平面,a 、b 表示直线,则α//a 的一个充分条件是 ( D )()A βα⊥,且β⊥a ()B b =βα ,且b a // )(C b a //,且α//b ()D βα//,且β⊂a3.已知平面//α平面β,P 是βα,外一点,过点P 的直线m 与βα,分别交于点C A ,,过点P 的直线n 与βα,分别交于点D B ,,且6=PA ,9=AC ,8=PD ,则BD 的长为( B )()A 16 ()B 24或524()C 14 ()D 20 4.空间四边形ABCD 的两条对角线4=AC ,6=BD ,则平行于两对角线的截面四边形的周长的取值范围是 .答案:(8,12)三.例题分析:例1.正方体ABCD —A 1B 1C 1D 1中. (1)求证:平面A 1BD ∥平面B 1D 1C ;(2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD . 证明:(1)由B 1B ∥DD 1,得四边形BB 1D 1D 是平行四边形, ∴B 1D 1∥BD ,又BD ⊄平面B 1D 1C ,B 1D 1⊂平面B 1D 1C , ∴BD ∥平面B 1D 1C . 同理A 1D ∥平面B 1D 1C . 而A 1D ∩BD =D ,A1∴平面A 1BD ∥平面B 1CD .(2)由BD ∥B 1D 1,得BD ∥平面EB 1D 1. 取BB 1中点G ,∴AE ∥B 1G .从而得B 1E ∥AG ,同理GF ∥AD . ∴AG ∥DF . ∴B 1E ∥DF .∴DF ∥平面EB 1D 1.∴平面EB 1D 1∥平面FBD .说明 要证“面面平面”只要证“线面平面”,要证“线面平行”,只要证“线线平面”,故问题最终转化为证线与线的平行.例2.如图,已知M 、N 、P 、Q 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 的中点. 求证:(1)线段MP 和NQ 相交且互相平分;(2)AC ∥平面MNP ,BD ∥平面MNP . 证明:(1) ∵M 、N 是AB 、BC 的中点,∴MN ∥AC ,MN =21AC . ∵P 、Q 是CD 、DA 的中点,∴PQ ∥CA ,PQ =21CA . ∴MN ∥QP ,MN =QP ,MNPQ 是平行四边形. ∴□MNPQ 的对角线MP 、NQ 相交且互相平分.(2)由(1),AC ∥MN .记平面MNP (即平面MNPQ )为α.显然AC ⊄α. 否则,若AC ⊂α, 由A ∈α,M ∈α,得B ∈α; 由A ∈α,Q ∈α,得D ∈α,则A 、B 、C 、D ∈α,与已知四边形ABCD 是空间四边形矛盾.又∵MN ⊂α,∴AC ∥α, 又AC ⊄α,∴AC ∥α,即AC ∥平面MNP .同理可证BD ∥平面MNP .小结:例3.已知正四棱锥ABCD S -的底面边长为a ,侧棱长为a 2,点Q P ,分别在BD 和SC 上,并且2:1:=PD BP ,//PQ 平面SAD ,求线段PQ 的长.解:延长CP 交DA 延长线于点R ,连SR ,可证得PQ ∥SR ,由PBC ∆与PDR ∆相似及已知求得2DR a =。
2019-2020年高考数学复习第71课时第九章直线、平面、简单几何体-平面的基本性质名师精品教案

2019-2020年高考数学复习 第71课时第九章直线、平面、简单几何体-课题:平面的基本性质一•复习目标:掌握平面的基本性质,会用斜二测画法画水平放置的平面图形的直观图. 二•课前预习: 1.、、表示不同的点,、表示不同的直线,、表示不同的平面,下列推理不正确的是(C )A 丨,A 三 *,B 丨,B :=丨二:;一,B——二:--AB 直线,且不共线与重合2. 一个水平放置的平面图形的斜二测直观图是一个底角为, 腰和上底边均为1的等腰梯形,则这个平面图形的面积是 (D )例2.已知:a , b , c , d 是不共点且两两相交的四条直线,求证: a , b , c , d 共面. 证明1 o 若当四条直线中有三条相交于一点,不妨设 a , b , c 相交于一点A , 但A'd ,如图1.3•对于空间三条直线,有下列四个条件: ①三条直线两两相交且不共点;②三条直线两两平行; ③三条直线共点;④有两条个由这五个点为顶点只构造出四个三棱锥,则这五AB// CD 直线AB BC AD DC 分别与平面a 相交于点 AB T A/D--CH2, 即先证明这些点都是某二• a , b , c , d 四条直线在同一平面 a 内.说明:证明若干条线(或若干个点)共面的一般步骤是:首先根据公理3或推论,由题给条件 中的部分线(或点)确定一个平面,然后再根据公理 1证明其余的线(或点)均在这个平面内•本题最容易忽视“三线共点”这一种情况•因此,在分析题意时,应仔细推敲问题中每 一句话的含义.例3•如图,点 A , B , C 确定的平面与点 D, E , F 确定的 平面相交于直线I ,且直线AB 与 I 相交于点G,直线EF 与 l 相交于点H,试作出平面 ABD 与平面CEF 的交线.解:如图3,在平面ABC 内,连结 AB 与I 相交于点G, 则G€平面DEF 在平面DEF 内,连结DG 与EF 相交于点M 则M€平面 ABD 且M€平面CEF 所以,M 在平面ABD 与平面CEF 的交线上.同理,可作出点N N 在平面ABD 与平面CEF 的交线上•连结 MN 直线MN 即为所求.例4.如图,已知平面 a , 3 ,且a3= I .设梯形 ABCDh , AD// BC 且ABa , CD 3 ,求证: AB CD I 共点(相交于一点).证明 •••梯形 ABCD^ , AD// BC • AB, CD 是梯形ABCD 勺两条腰. • AB CD 必定相交于一点,• ••直线d 和A 确定一个平面a.又设直线d 与a , b , c 分别相交于E, F , 则 AE ,F , G€ a .T A , E € a , A , E € a ,「. a a . 同理可证b a, c a .• a , b , c , d 在同一平面a 内.2当四条直线中任何三条都不共点时,如图•••这四条直线两两相交,则设相交直线 a , 面a .设直线c 与a , b 分别交于点H K,则H 又 H, K € C ,「. c a .同理可证d a . 、Aa/ .• r... d /a E Fb G c图12.b 确定一个平H" K ad /K € a .ab c图2G例3I DB设ABC& M又T ABa , CD3 , • ME a ,且M€ 3 . • M€ a 3 . 又T a 3 = I , —M€ I ,即AB CD l 共点.说明:证明多条直线共点时,一般要应用公理 2,这与证明多点共线是一样的.四•课后作业:1 •在空间四边形的边、、、上分别取点,如果与相交于一点,那么 ( ) 一定在直线上一定在直线上可能在直线上,也可能在直线上 既不在直线上,也不在直线上 2.有下列命题:①空间四点中有三点共线,则这四点必共面; ②空间四点中,其中任何三点不共线,则这四 点不共面;③用斜二测画法可得梯形的直观图仍为梯形; ④垂直于同一直线的两直线平行⑤ 两组对边相等的四边形是平行四边形.其中正确的命题是 _______________ . 答案:①③ 3.—个平面把空间分成 __2__部分,两个平面把空间最多分成 _4___部分,三个平面把空间 最多分成__8__部分. 4 .四边形中,AB 二BC 二CD 二DA 二BD =1,则成为空间四面体时,的取值范围 答案:. 5.如图,P 、Q R 分别是四面体 ABC 啲棱AB ACAD 上的点,若直线PQ 与直线BC 的交点为 M 直线RQ M 与直线DC 的交点为 N,直线PR 与直线DB 的交点为L , 试证明M N,L 共线.证明:易证 M N , L €平面 PQR 且 M N, L €平面BCD所以M N, L €平面PQF 平面BCD 即M N, L 共线.6. 如图,P 、Q R 分别是正方体 ABCD-ABCD 的棱AA ,DD 上的三点,试作出过 P , Q, R 三点的截面图. 作法 ⑴连接PQ 并延长之交 AB 的延长线于T ;⑵连接PR 并延长之交AD 的延长线于S ; ⑶连接ST 交CD 、BC 分别于M N,则线段 MN 为平面PQF 与面ABCD 的交线.⑷连接RMQN 则线段RMQN 分别是平面PQF 与面DCCD , 面BCGB 的交线.得到的五边形 PQNM 即为所求的截面图(如图 4). 说明 求作二平面的交线问题,主要运用公理1.解题关键是直接或间接找出二平面的两个确定的公共 占 八、、♦有时同时还要运用公理 2、3及公理的推论等知识.7.如图,在平行六面体 ABC -A i B CD 的中,A i CBD = O , BD 平面A i BC = P. 求证:P € BO.S图4证明在平行六面体 ABC D ABC D 中,•/ BD 平面 ABC = P,「. P € 平面 ABC , P € BD. •/ BD 平面 BBDD. ••• P € 平面 ABC ,且 P € 平面 BBDD.••• P €平面 ABC 平面 BBDD,••• A i C B i D = O , AC 平面 ABC , BD 平面 BBD D, •••O €平面 ABC,且 O €平面 BBDD.又B €平面A i BC , 且 B €平面BBDD, •平面 A i BC 平面 BBDD = BO .「. P € BO.说明一般地,要证明一个点在某条直线上,只要证明这 个点在过这条直线的两个平面上.2019-2020年高考数学复习 第72课时第九章直线、平面、简单几何体-空间直线名师精品教案课题:空间直线 一. 复习目标:1. 了解空间两条直线的位置关系.2. 掌握两条直线所成的角和距离的概念,会计算给出的异面直线的公垂线段的长. 二. 课前预习: 1. 下列四个命题:(1 )分别在两个平面内的两条直线是异面直线 (2) 和两条异面直线都垂直的直线有且只有一条 (3) 和两条异面直线都相交的两条直线必异面 (4 )若与是异面直线,与是异面直线,则与也异面 其中真命题个数为 (D )3212.在正方体中,、分别是棱和的中点,为上底面的中心,则直线与所成的角为( A )0 0 03045 603. ______________________________________________ 在棱长为的正四面体中,相对两条棱间的距离为 ____________________________________________ .(答案:)4. ________________________________________ 两条异面直线、间的距离是 1cm,它们所成的角为60°,、上各有一点 A B ,距公垂线的 垂足都是10cm,贝U A 、B 两点间的距离为 .答案:三. 例题分析:CC例1.已知不共面的三条直线、、相交于点,,,,,求证:与是异面直线.证一:(反证法)假设AD和BC共面,所确定的平面为a,那么点P、A B C D都在平面a内,.••直线a 、b 、c 都在平面a 内,与已知条件 a 、b 、c 不共面矛盾,假设不成立,二 AD 和BC 是异面 直线。
高考数学专题复习第9单元直线平面简单几何体(下)课件文大纲人教版

[证明] 设正方体的棱长为 1,以 D 点为原点,D→A、D→C、D→D1 为坐标向量,建立空间直角坐标系 D-xyz,如图所示.
(1)易知 A(1,0,0)、E1,1,12、F0,12,0、D1(0,0,1).∵A→E =0,1,12,D→1F=0,12,-1.
又A→E·D→1F=0,1,12·0,12,-1=0, ∴AE⊥D1F.
第57讲 │ 知识梳理
知识梳理
1.空间向量的加减和数乘的坐标表示 设 a=(a1,a2,a3),b=(b1,b2,b3),则 (1)a+b=_(_a_1_-__b_1, ___a_2-__b_2_,__a_3_-__b_3_) ___; (2)a-b=__(_a_1_+__b_1_,__a_2+__b_2_,__a_3_+__b_3_) ____; (3)λa=___(λ_a_1_,__λ_a_2_,__λ_a_3)_(_λ_∈__R_)_______; (4)a∥b(b≠0)⇔_a_1=__λ_b_1_,__a_2_=__λ_b_2,__a_3_=__λ_b_3_(λ. ∈R)
则 B(1,1,0),E11,34,1, D(0,0,0),F10,14,1, ∴B→E1=0,-41,1,D→F1=0,14,1,
第57讲 │ 要点探究
∴|B→E1|=|D→F1|= 417,B→E1·D→F1=0×0+-14×14+1×1=1156, 15cos〈B→EFra bibliotek,D→F1〉=
高考数学复习 第九章 直线、平面、简单几何体(A)9(A)-1课件

这类题目既可以考查多面体的概念和性质,又能够考查空
间的线面关系,并将论证和计算有机地结合在一起,可以 比较全面、准确地考查学生的空间想象能力、思维能力以 及分析问题和解决问题的能力. 3.利用开放题检测考生的素质和能力.在连续两年
的高考立体几何填空题中都出现了开放题.这种题型在考
查考生思维能力、推动素质教育健康发展的过程中具有独 特的功效和导向作用,应予以重视.
选择典型的例题,总结出解题方法,对于空间位置关系的
论证及空间角与距离的求解,通过一题多解,使学生把所 学知识真正学活、会用.
2.抓主线攻重点,可以针对一些重点内容进行训练,
平行和垂直是位置关系的核心,而线面垂直又是核心中的
核心,线面角、二面角、距离均与线面垂直密切相关.因 此对于这部分内容复习时要强化. 3.复习中要加强数学思想方法的总结与提炼,立体 几何中蕴涵着丰富的思想方法,如割补思想、降维转化思
(3)异面直线
①定义:不同在任何一个平面内的两条直线 叫做异面
直线. ②两条异面直线所成的角(或夹角) 对于两条异面直线 a , b ,经过空间任一点 O 作直线 锐角(或直角 ) a′∥a,b′∥b,则a′与b′所成的 叫做异面
直线a与b所成的角(或夹角).
若两条异面直线所成的角是直角 ,则称这两条异面直 线互相垂直. 异面直线所成的角的范围是(0, ].
想(即化空间问题到平面图形中去解决 ),又如证线面间的
位置关系常需经过多次转换才能获得解决,这些无不体现 着化归转化的思想.因此自觉地学习和运用数学思想方法 去解题,常能收到事半功倍的效果.
●基础知识 一、平面的基本性质
平面的基本性质是研究空间图形性质的理论基础,即
三个公理和公理3的三个推论. 公理1:如果一条直线上的两点在一个平面个公共点,那么它们还有 其它公共点,且所有这些公共点的集合是 过这个公共点 的一条直线 .
高考数学基础知识复习 第九章 直线、平面、简单的几何体

2008高考数学基础知识复习第九章直线、平面、简单的几何体引言立体几何的学习,主要把握对图形的识别及变换(分割,补形,旋转等),因此,既要熟记基本图形中元素的位置关系和度量关系,也要能在复杂背景图形中“剥出”基本图形.平面及空间直线1.平面的基本性质:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内.公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条直线. 公理3:经过不在同一条直线上的三点有且只有一个平面(不共线的三点确定一平面).推论1:经过一条直线和这条直线外的一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3;经过两条平行直线有且只有一个平面.注:⑴水平放置的平面图形的直观图的画法——用斜二测....画.法..其规则是:①在已知图形取水平平面,取互相垂直的轴,Ox Oy,再取0z轴,使90xOz∠=,且90yOz∠=;②画直观图时,把它们画成对应的轴,,O x O y O z'''''',使45x O y'''∠=(或135),90x O z'''∠=,x Oy''所确定的平面表示水平平面;③已知图形中平行于x轴、y轴或z轴的线段,在直观图中分别画成平行于x'轴、y'轴或z'轴的线段;④已知图形中平行于x轴和z轴的线段,在直观图中保持长度不变;平行于y轴的线段,长度为原来的一半.⑵运用平面的三个公理及推论,能证明共点、共线、共面一类问题。
2.空间两条直线位置关系有:相交、平行、异面.⑴相交直线───共面有且只有一个公共点;⑵平行直线───共面没有公共点;①公理4:平行于同一条直线的两条直线互相平行;②等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.推论:如果两条相交直线和另两条相交直线分别平行那么这两组直线所成的锐角(或直角)相等.⑶异面直线───不同在任.一平面内.平面 及空间直线(Ⅰ)两条异面直线所成的角(或夹角):对于两条异面直线,a b ,经过空间任一点O 作直线a '∥a ,b '∥b ,则a '与b '所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).若两条异面直线所成的角是直角,则称这两条异面直线互相垂直.异面直线所成的角的范围是(0,90⎤⎦. (Ⅱ)两条异面直线的距离:和两条异面直线都垂直相交的直线叫做两条异面直线的公垂线. 两条异面直线的公垂线段的长度,叫做两条异面直线的距离.注:①如图:设异面直线a ,b 所成角为θ, 则EF 2=m 2+n 2+d 2±2mnc os θ 或AB EF d AB⋅=②证明两条直线是异面直线一般用反证法。
2019-2020年高考数学复习 第72课时第九章 直线、平面、简单几何体-空间直线名师精品教案 新人教A版

2019-2020年高考数学复习 第72课时第九章 直线、平面、简单几何体-空间直线名师精品教案 新人教A 版 课题:空间直线一.复习目标:1.了解空间两条直线的位置关系.2.掌握两条直线所成的角和距离的概念,会计算给出的异面直线的公垂线段的长.二.课前预习:1.下列四个命题:(1)分别在两个平面内的两条直线是异面直线(2)和两条异面直线都垂直的直线有且只有一条(3)和两条异面直线都相交的两条直线必异面(4)若与是异面直线,与是异面直线,则与也异面其中真命题个数为 ( D )3 2 1 02.在正方体中,、分别是棱和的中点,为上底面的中心,则直线与所成的角为( A )300 450 6003.在棱长为的正四面体中,相对两条棱间的距离为__ _.(答案:)4.两条异面直线、间的距离是1cm ,它们所成的角为600,、上各有一点A 、B ,距公垂线的垂足都是10cm ,则A 、B 两点间的距离为_______.答案:三.例题分析:例1.已知不共面的三条直线、、相交于点,,,,,求证:与是异面直线. 证一:(反证法)假设AD 和BC 共面,所确定的平面为α,那么点P 、A 、B 、C 、D 都在平面α内,∴直线a 、b 、c 都在平面α内,与已知条件a 、b 、c 不共面矛盾,假设不成立,∴AD 和BC 是异面直线。
证二:(直接证法)∵a ∩c=P ,∴它们确定一个平面,设为α,由已知C 平面α,B ∈平面α,AD 平面α,BAD ,∴AD 和BC 是异面直线。
例2. 一条长为的线段夹在互相垂直的两个平面、之间,AB与所成角为,与所成角为,且,,,、是垂足,求(1)的长;(2)与所成的角 解:(1)连BC 、AD ,可证AC ⊥β,BD ⊥α,∴ABC=300,∠BAD=450 ,Rt △ACB 中,BC=AB ·cos300= , 在Rt △ADB 中,BD=AB ·sin450=在Rt △BCD 中,可求出CD=1cm (也可由AB 2=AC 2+BD 2+CD 2-2AC ·BD ·cos900求得)(2)作BE//l ,CE//BD ,BE ∩CE ,则∠ABE 就是AB 与CD 所成的角,连AE ,由三垂线定理可证BE ⊥AE ,先求出AE=,再在Rt △ABE 中,求得∠ABE=600。
数学高考复习名师精品教案:第76课时:第九章 直线、平面、

数学高考复习名师精品教案
第76课时:第九章直线、平面、简单几何体——空间向量及其运算
课题:空间向量及其运算
一.复习目标:理解空间向量的概念、掌握空间向量的有关运算及其性质.
二.主要知识:
1.向量共线的充要条件:;
2.三点共线:;
3.三向量共面:;
4.四点共面:;
5.两向量夹角的范围;
三.课前预习:
1.如图:在平行六面体中,为
与的交点。
若,,,则下列向量中与
相等的向量是()
2.有以下命题:
①如果向量与任何向量不能构成空间向量的一组基底,那么的关系是不共线;
②为空间四点,且向量不构成空间的一个基底,那么点一定共面;
③已知向量是空间的一个基底,则向量,也是空间的一个基底。
其中正确的命题是()
①②①③②③①②③
3.下列命题正确的是()
若与共线,与共线,则与共线;向量共面就是它们所在的直线共面;
零向量没有确定的方向;若,则存在唯一的实数使得;
4.已知A、B、C三点不共线,O是平面ABC外的任一点,下列条件中能确定点M与点A、B、C一定共面的是()
四.例题分析:
1.已知在正三棱锥中,分别为中点,为
例
例2.已知分别是空间四边形的边的中点,
(1)用向量法证明四点共面;
(2)用向量法证明:∥平面;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学复习 第76课时第九章 直线、平面、简单几何体
空间向量及其运算名师精品教案 新人教A 版
课题:空间向量及其运算
一.复习目标:理解空间向量的概念、掌握空间向量的有关运算及其性质. 二.主要知识:
1.,a b 向量共线的充要条件: ; 2.三点共线: ; 3.三向量共面: ; 4.四点共面: ; 5.两向量夹角的范围 ; 三.课前预习:
1.如图:在平行六面体1111D C B A ABCD -中,M 为11C A 与11D B 的交点。
若AB
a =,
AD b =,1AA c =,则下列向量中与BM
是( )
()A 1122a b c -++ ()B 1122
a b c ++ ()C 1122
a b c -
-+ ()D c b a +-21
21
2.有以下命题:
①如果向量,a b 与任何向量不能构成空间向量的一组基底,那么,a b 的关系是不共线; ②,,,O A B C 为空间四点,且向量,,OA OB OC 不构成空间的一个基底,那么点,,,O A B C 一定共面;
③已知向量,,a b c 是空间的一个基底,则向量,,a b a b c +-,也是空间的一个基底。
其中正确的命题是 ( )
()A ①② ()B ①③ ()C ②③ ()D ①②③
3.下列命题正确的是 ( )
()A 若a 与b 共线,b 与c 共线,则a 与c 共线;()B 向量,,a b c 共面就是它们所在的直线
共面;
()C 零向量没有确定的方向; ()D 若//a b ,则存在唯一的实数λ使得a b λ=;
C1
4.已知A 、B 、C 三点不共线,O 是平面ABC 外的任一点,下列条件中能确定点M 与点A 、B 、C 一定共面的是 ( )
()A OC OB OA OM ++= ()B OC OB OA OM --=2
()C 3121++= ()D 3
1
3131++=
四.例题分析:
例1.已知在正三棱锥ABC P -中,N M ,分别为BC PA ,中点,G 为MN 中点,求证:
BC PG ⊥
例2.已知H G F E ,,,分别是空间四边形ABCD 的边DA CD BC AB ,,,的中点, (1) 用向量法证明H G F E ,,,四点共面; (2)用向量法证明:BD ∥平面EFGH ;
(3)设M 是EG 和FH 的交点,求证:对空间任一点O ,有
1
()4OM OA OB OC OD =+++
例3.在平行六面体1111D C B A ABCD -中,底面ABCD 是边长为a 的正方形,侧棱1AA 长为b ,且 1111120AA B AA D ∠=∠=︒,求(1)1AC 的长;(2)直线1BD 与AC 所成角的
余弦值。
1B 1A 1C
1D O
M
G
F
A
B
C
D
E H G N
A B
C P
M
五.课后作业:
1.对于空间任意一点O 和不共线三点,,A B C ,点P 满足OP xOA yOB zOC =++是点
,,,P A B C 共面的 ( )
()A 充分不必要条件 ()B 必要不充分条件 ()C 充要条件 ()D 既不充分也不必要条件
2.棱长为a 的正四面体中,AB BC AC BD ⋅+⋅= 。
3.向量,,a b c 两两夹角都是60,||1,||2,||3a b c ===,则||a b c ++= 。
4.已知正方体1111ABCD A B C D -,点,E F 分别是上底面11A C 和侧面1CD 的中心,求下列各式中的,x y 的值:
(1)11()AC x AB BC CC =++,则x = ;
(2)1AE AA x AB y AD =++,则x = ;y = ; (3)1AF AD xAB y AA =++,则x = ;y = ;
5.已知平行六面体1111ABCD A B C D -,化简下列向量表达式,并填上化简后的结果向量: (1)111AB C B CD -+= ; (2)1AB AD AA ++= 。
6.设1111ABCD A B C D -是平行六面体,M 是底面ABCD 的中心,N 是侧面11BCC B 对角线1BC 上的点,且13BN NC =,设1MN a AB bAD cAA =++,试求,,a b c 的值。
7.空间四边形OABC 中,8,6,4,5,45,60OA AB AC BC OAC OAB ====∠=∠=,求OA
与BC 夹角的余弦值。
8.如图,在平行六面体1111ABCD A B C D -中,,,,,,E F G H K L 分别为平行六面体棱的中点,
求证:(1)0LE FG HK ++=
(2),,,,,E F G H K L 六点共面.
1。