计算方法实验报告(Newton迭代法)
数学数学实验Newton迭代法

数学实验题目4 Newton 迭代法摘要0x 为初始猜测,则由递推关系产生逼近解*x 的迭代序列{}k x ,这个递推公式就是Newton 法。
当0x 距*x 较近时,{}k x 很快收敛于*x 。
但当0x 选择不当时,会导致{}k x 发散。
故我们事先规定迭代的最多次数。
若超过这个次数,还不收敛,则停止迭代另选初值。
前言利用牛顿迭代法求的根程序设计流程问题1(1 程序运行如下:r = NewtSolveOne('fun1_1',pi/4,1e-6,1e-4,10) r = 0.7391(2 程序运行如下:r = NewtSolveOne('fun1_2',0.6,1e-6,1e-4,10) r = 0.5885问题2(1 程序运行如下:否 是否是是定义()f x输入012,,,x N εε开 始1k =01()f x ε<0100()()f x x x f x =-'102||x x ε-<k N =输出迭代失败标志输出1x输出奇 异标志结 束01x x = 1k k =+ 否r = NewtSolveOne('fun2_1',0.5,1e-6,1e-4,10)r = 0.5671(2)程序运行如下:r = NewtSolveOne('fun2_2',0.5,1e-6,1e-4,20)r = 0.5669问题3(1)程序运行如下:①p = LegendreIter(2)p = 1.0000 0 -0.3333p = LegendreIter(3)p = 1.0000 0 -0.6000 0p = LegendreIter(4)p =1.0000 0 -0.8571 0 0.0857p = LegendreIter(5)p = 1.0000 0 -1.1111 0 0.2381 0②p = LegendreIter(6)p = 1.0000 0 -1.3636 0 0.4545 0 -0.0216r = roots(p)'r= -0.932469514203150 -0.6612 0.9324695142031530.6612 -0.238619186083197 0.238619186083197用二分法求根为:r = BinSolve('LegendreP6',-1,1,1e-6)r = -0.932470204878826 -0.661212531887755 -0.2386200573979590.2386 0.661192602040816 0.932467713647959(2)程序运行如下:①p = ChebyshevIter(2)p = 1.0000 0 -0.5000p = ChebyshevIter(3)p = 1.0000 0 -0.7500 0p = ChebyshevIter(4)p = 1.0000 0 -1.0000 0 0.1250p = ChebyshevIter(5)p = 1.0000 0 -1.2500 0 0.3125 0②p = ChebyshevIter(6)p = 1.0000 0 -1.5000 0 0.5625 0 -0.0313r = roots(p)'r = -0.965925826289067 -0.7548 0.9659258262890680.7547 -0.258819045102521 0.258819045102521用二分法求根为:r = BinSolve('ChebyshevT6',-1,1,1e-6)r = -0.965929926658163 -0.7755 -0.2588289221938780.2588 0.7020 0.965924944196429与下列代码结果基本一致,只是元素顺序稍有不同:j = 0:5;x = cos((2*j+1)*pi/2/(5+1))x =0.965925826289068 0.7548 0.258819045102521-0.258819045102521 -0.7547 -0.965925826289068(3)程序运行如下:①p = LaguerreIter(2)p = 1 -4 2p = LaguerreIter(3)p = 1 -9 18 -6p = LaguerreIter(4)p = 1 -16 72 -96 24p = LaguerreIter(5)p =1.0000 -25.0000 200.0000 -600.0000 600.0000 -120.000②p = LaguerreIter(5)p =1.0000 -25.0000 200.0000 -600.0000 600.0000 -120.000r = roots(p)'r =12.6432 7.8891 3.5964257710407111.4520 0.263560319718141用二分法求根为:r = BinSolve('LaguerreL5',0,13,1e-6)r = 0.263560314567722 1.4789 3.5964257656311507.0720 12.6490(4)程序运行如下:①p = HermiteIter(2)p = 1.0000 0 -0.5000p = HermiteIter(3)p = 1.0000 0 -1.5000 0p = HermiteIter(4)p = 1.0000 0 -3.0000 0 0.7500p = HermiteIter(5)p = 1.0000 0 -5.0000 0 3.7500 0②p = HermiteIter(6)p = 1.0000 0 -7.5000 0 11.2500 0 -1.8750r = roots(p)'r =-2.3587 2.3588 -1.3358490740136961.335849074013698 -0.4367 0.4366用二分法求根为:r = BinSolve('HermiteH6',-3,3,1e-6)r =-2.3516 -1.335849********* -0.43630.4366 1.335848983453244 2.3504所用到的函数function r = NewtSolveOne(fun, x0, ftol, dftol, maxit)% NewtSolveOne 用Newton法解方程f(x)=0在x0附近的一个根%% Synopsis: r = NewtSolveOne(fun, x0)% r = NewtSolveOne(fun, x0, ftol, dftol)%% Input: fun = (string) 需要求根的函数及其导数% x0 = 猜测根,Newton法迭代初始值% ftol = (optional)误差,默认为5e-9% dftol = (optional)导数容忍最小值,小于它表明Newton法失败,默认为5e-9 % maxit = (optional)迭代次数,默认为25%% Output: r = 在寻根区间内的根或奇点if nargin < 3ftol = 5e-9;endif nargin < 4dftol = 5e-9;endif nargin < 5maxit = 25;endx = x0; %设置初始迭代位置为x0k = 0; %初始化迭代次数为0while k <= maxitk = k + 1;[f,dfdx] = feval(fun,x); %fun返回f(x)和f'(x)的值if abs(dfdx) < dftol %如果导数小于dftol,Newton法失败,返回空值r = [];warning('dfdx is too small!');return;enddx = f/dfdx; %x(n+1) = x(n) - f( x(n) )/f'( x(n) ),这里设dx = f( x(n) )/f'( x(n) )x = x - dx;if abs(f) < ftol %如果误差小于ftol,返回当前x为根r = x;return;endendr = []; %如果牛顿法未收敛,返回空值function p = LegendreIter(n)% LegendreIter 用递推的方法计算n次勒让德多项式的系数向量Pn+2(x) = (2*i+3)/(i+2) * x*Pn+1(x) - (i+1)/(i+2) * Pn(x)%% Synopsis: p = LegendreIter(n)%% Input: n = 勒让德多项式的次数%% Output: p = n次勒让德多项式的系数向量if round(n) ~= n | n < 0error('n必须是一个非负整数');endif n == 0 %P0(x) = 1p = 1;return;elseif n == 1 %P1(x) = xp = [1 0];return;endpBk = 1; %初始化三项递推公式后项为P0pMid = [1 0]; %初始化三项递推公式中项为P1for i = 0:n-2pMidCal = zeros(1,i+3); %构造用于计算的x*Pn+1pMidCal(1:i+2) = pMid;pBkCal = zeros(1,i+3); %构造用于计算的PnpBkCal(3:i+3) = pBk;pFwd = (2*i+3)/(i+2) * pMidCal - (i+1)/(i+2) * pBkCal; %勒让德多项式三项递推公式Pn+2(x) = (2*i+3)/(i+2) * x*Pn+1(x) - (i+1)/(i+2) * Pn(x)pBk = pMid; %把中项变为后项进行下次迭代pMid = pFwd; %把前项变为中项进行下次迭代endp = pFwd/pFwd(1); %把勒让德多项式最高次项系数归一化function p = ChebyshevIter(n)% ChebyshevIter 用递推的方法计算n次勒让德-切比雪夫多项式的系数向量Tn+2(x) = 2*x*Tn+1(x) - Tn(x)%% Synopsis: p = ChebyshevIter(n)%% Input: n = 勒让德-切比雪夫多项式的次数%% Output: p = n次勒让德-切比雪夫多项式的系数向量if round(n) ~= n | n < 0error('n必须是一个非负整数');endif n == 0 %T0(x) = 1p = 1;return;elseif n == 1 %T1(x) = xp = [1 0];return;endpBk = 1; %初始化三项递推公式后项为T0pMid = [1 0]; %初始化三项递推公式中项为T1for i = 0:n-2pMidCal = zeros(1,i+3); %构造用于计算的x*Tn+1pMidCal(1:i+2) = pMid;pBkCal = zeros(1,i+3); %构造用于计算的PnpBkCal(3:i+3) = pBk;pFwd = 2*pMidCal - pBkCal; %勒让德-切比雪夫多项式三项递推公式Tn+2(x) = 2*x*Tn+1(x) - Tn(x)pBk = pMid; %把中项变为后项进行下次迭代pMid = pFwd; %把前项变为中项进行下次迭代endp = pFwd/pFwd(1); %把勒让德-切比雪夫多项式最高次项系数归一化function p = LaguerreIter(n)% LaguerreIter 用递推的方法计算n次拉盖尔多项式的系数向量Ln+2(x) = (2*n+3-x)*Ln+1(x) - (n+1)*Ln(x)%% Synopsis: p = LaguerreIter(n)%% Input: n = 拉盖尔多项式的次数%% Output: p = n次拉盖尔多项式的系数向量if round(n) ~= n | n < 0error('n必须是一个非负整数');endif n == 0 %L0(x) = 1p = 1;return;elseif n == 1 %L1(x) = -x+1p = [-1 1];return;endpBk = 1; %初始化三项递推公式后项为L0pMid = [-1 1]; %初始化三项递推公式中项为L1for i = 0:n-2pMidCal1 = zeros(1,i+3); %构造用于计算的x*Ln+1(x)pMidCal1(1:i+2) = pMid;pMidCal2 = zeros(1,i+3); %构造用于计算的Ln+1(x)pMidCal2(2:i+3) = pMid;pBkCal = zeros(1,i+3); %构造用于计算的Ln(x)pBkCal(3:i+3) = pBk;pFwd =( (2*i+3)*pMidCal2 - pMidCal1 - (i+1)*pBkCal )/ (i+2); %拉盖尔多项式三项递推公式Ln+2(x) = (2*n+3-x)*Ln+1(x) - (n+1)^2*Ln(x)pBk = pMid; %把中项变为后项进行下次迭代pMid = pFwd; %把前项变为中项进行下次迭代endp = pFwd/pFwd(1); %把拉盖尔多项式最高次项系数归一化function p = HermiteIter(n)% HermiteIter 用递推的方法计算n次埃尔米特多项式的系数向量Hn+2(x) = 2*x*Hn+1(x) - 2*(n+1)*Hn(x)%% Synopsis: p = HermiteIter(n)%% Input: n = 埃尔米特多项式的次数%% Output: p = n次埃尔米特多项式的系数向量if round(n) ~= n | n < 0error('n必须是一个非负整数');endif n == 0 %H0(x) = 1p = 1;return;elseif n == 1 %H1(x) = 2*xp = [2 0];return;endpBk = 1; %初始化三项递推公式后项为L0pMid = [2 0]; %初始化三项递推公式中项为L1for i = 0:n-2pMidCal = zeros(1,i+3); %构造用于计算的x*Hn+1(x)pMidCal(1:i+2) = pMid;pBkCal = zeros(1,i+3); %构造用于计算的Hn(x)pBkCal(3:i+3) = pBk;pFwd =2*pMidCal - 2*(i+1)*pBkCal; %埃尔米特多项式三项递推公式Hn+2(x) = 2*x*Hn+1(x) - 2*(n+1)*Hn(x)pBk = pMid; %把中项变为后项进行下次迭代pMid = pFwd; %把前项变为中项进行下次迭代endp = pFwd/pFwd(1); %把拉盖尔多项式最高次项系数归一化function r = BinSolve(fun, a, b, tol)% BinSolve 用二分法解方程f(x)=0在区间[a,b]的根%% Synopsis: r = BinSolve(fun, a, b)% r = BinSolve(fun, a, b, tol)%% Input: fun = (string) 需要求根的函数% a,b = 寻根区间上下限% tol = (optional)误差,默认为5e-9%% Output: r = 在寻根区间内的根if nargin < 4tol = 5e-9;endXb = RootBracket(fun, a, b); %粗略寻找含根区间[m,n] = size(Xb);r = [];nr = 1; %初始化找到的根的个数为1maxit = 50; %最大二分迭代次数为50for i = 1:ma = Xb(i,1); %初始化第i个寻根区间下限b = Xb(i,2); %初始化第i个寻根区间上限err = 1; %初始化误差k = 0;while k < maxitfa = feval(fun, a); %计算下限函数值fb = feval(fun, b); %计算上限函数值m = (a+b)/2;fm = feval(fun, m);err = abs(fm);if sign(fm) == sign(fb) %若中点处与右端点函数值同号,右端点赋值为中点b = m;else %若中点处与左端点函数值同号或为0,左端点赋值为中点a = m;endif err < tol %如果在a处函数值小于tolr(nr) = a; %一般奇点不符合该条件,这样可以去除奇点nr = nr + 1; %找到根的个数递增k = maxit; %改变k值跳出循环endk = k + 1; %二分迭代次数递增endendfunction X = powerX(x,a,b)% powerX 对给定向量(x1, x2,..., xn)返回增幂矩阵(x1^a, x2^a,..., xn^a; x1^a+1, x2^a+1,..., xn^a+1; ...; x1^b, x2^b,..., xn^b;)%% Synopsis: X = powerX(x,a,b)%% Input: x = 需要返回增幂矩阵的向量% a,b = 寻根区间上下限%% Output: X = 增幂矩阵(x1^a, x2^a,..., xn^a; x1^a+1, x2^a+1,..., xn^a+1; ...; x1^b, x2^b,..., xn^b;)if round(a) ~= a | round(b) ~= berror('a,b must be integers');elseif a >= berror('a must be smaller than b!');endx = x(:)';row = b-a+1;col = length(x);X = zeros(row, col);for i = b:-1:aX(b-i+1,:) = x.^i;Endfunction [f, dfdx] = fun1_1(x)f = cos(x) - x;dfdx = -sin(x) - 1;function [f, dfdx] = fun1_2(x)f = exp(-x) - sin(x);dfdx = -exp(-x) - cos(x);function [f, dfdx] = fun2_1(x)f = x - exp(-x);dfdx = 1 + exp(-x);function [f, dfdx] = fun2_2(x)f = x.^2 - 2*x*exp(-x) + exp(-2*x);dfdx = 2*x - 2*exp(-x) + 2*x*exp(-x) - 2*exp(-2*x);function y = LegendreP6(x)p = LegendreIter(6);X = powerX(x,0,6);y = p*X;function y = ChebyshevT6(x)p = ChebyshevIter(6);X = powerX(x,0,6);y = p*X;function y = LaguerreL5(x)p = LaguerreIter(5);X = powerX(x,0,5);y = p*X;function y = HermiteH6(x)p = HermiteIter(6);X = powerX(x,0,6);y = p*X;思考题(1)由于Newton法具有局部收敛性,所以在实际问题中,当实际问题本身能提供接近于根的初始近似值时,就可保证迭代序列收敛,但当初值难以确定时,迭代序列就不一定收敛。
牛顿迭代法实验报告

材料科学与工程实验教学中心实验报告课程名称实验名称牛顿迭代法方程求根专业班级学号姓名实验日期材料科学与工程实验教学中心实验报告一.实验目的通过对牛顿迭代法作编程练习与上机运算,进一步体会牛顿迭代法的不同特点二.实验原理(方法)给定初始值x0,ε为根的容许误差,η为|f(x)|的容许误差,N为迭代次数的容许值。
①如果f′(x0)=0或迭代次数大于N,则算法失败,结束;否则执行②②计算x1=x0-f(x0)/f′(x0)。
③若|x1-x0|<ε或|f(x1)|<η,则输出x1,程序结束;否则执行④④令x0=x1,转向①三.实验仪器设备及操作步骤电脑一台操作步骤:打开电脑,打开VB程序,编辑程序四.实验数据及处理(N-S图和程序)f(x)=x³+x²-3x-3结束Private Sub Command1_Click()Dim x0, x!, eps!, kx0 = Val(InputBox("x=0", "ÊäÈë³õÖµ", 0.5))eps = Val(InputBox("eps=", "ÊäÈëepsµÄÖµ", 0.000005)) x = x0 - f(x0) / p(x0)k = 1PrintDo While Abs(x - x0) >= epsPrint "k=" & k, "x=" & x, "f(x)" & f(x)x0 = xk = k + 1x = x0 - f(x0) / p(x0)LoopEnd SubFunction f(ByVal x!) As Singlef = x ^ 3 + x ^ 2 - 3 * x - 3End FunctionFunction p(ByVal x!) As Singlep = 3 * x ^ 2 + 2 * x - 3End Function五.实验结果分析及结论(算例及结果)六.思考题成绩指导教师日期Welcome To Download !!!欢迎您的下载,资料仅供参考!。
研究生数值分析(5)牛顿(Newton)迭代法

称为埃特肯算法。
例7 用迭代法求方程
f ( x) x 2 x 0 在[0,1]内根 x *
的近似值,精确到
xk 1 xk 104
解:取初始近似根 x0 0.5 xk 1 2 x 1.用简单迭代法 2.用牛顿迭代法 3.用埃特肯算法
1 1 0 m
这表明直接用牛顿迭代法对方程 只有线性收敛速度。
f ( x) 0
求重根
对 x* 是方程 则 x* 是方程
f ( x) 0
重根的情形,如将方程改写成
(其中 F ( x) f ( x) / f ' ( x) )
F ( x) 0
F ( x) 0
的单根,再对
F ( x) 0
f ' ( x) 0
;
在 [a, b] 上保号,
则当初值 x0 [a, b] ,且 f ( x0 ) f '' ( x0 ) 0 时, 牛顿迭代公式产生的迭代序列 { xk } 收敛于方程
f ( x) 0 在 [a, b] 上的唯一实根 x* 。
定理5的简要几何说明:
条件(1)保证了曲线 y=f (x)的连续性和光滑性; 条件(2)保证了方程y = f (x) 在[a ,b]内至少有 一实根; 条件(3)说明在[a ,b]上恒有
135.607
使其精确至7位有效数字。 解:作函数 f ( x) x2 c , 则f (x)=0的正根 x* 就是 c
f ( x) 0 的牛顿迭代公式为
2 f ( xk ) xk c 1 c xk 1 xk ' xk ( xk ) f ( xk ) 2 xk 2 xk
MATLAB计算方法迭代法牛顿法二分法实验报告

MATLAB计算方法迭代法牛顿法二分法实验报告实验报告一、引言计算方法是数学的一门重要应用学科,它研究如何用计算机来解决数学问题。
其中,迭代法、牛顿法和二分法是计算方法中常用的数值计算方法。
本实验通过使用MATLAB软件,对这三种方法进行实验研究,比较它们的收敛速度、计算精度等指标,以及它们在不同类型的问题中的适用性。
二、实验方法1.迭代法迭代法是通过不断逼近解的过程来求得方程的根。
在本实验中,我们选择一个一元方程f(x)=0来测试迭代法的效果。
首先,我们对给定的初始近似解x0进行计算,得到新的近似解x1,然后再以x1为初始近似解进行计算,得到新的近似解x2,以此类推。
直到两次计算得到的近似解之间的差值小于规定的误差阈值为止。
本实验将通过对复杂方程的迭代计算来评估迭代法的性能。
2.牛顿法牛顿法通过使用函数的一阶导数来逼近方程的根。
具体而言,对于给定的初始近似解x0,通过将f(x)在x0处展开成泰勒级数,并保留其中一阶导数的项,得到一个近似线性方程。
然后,通过求解这个近似线性方程的解x1,再以x1为初始近似解进行计算,得到新的近似解x2,以此类推,直到两次计算得到的近似解之间的差值小于规定的误差阈值为止。
本实验将通过对不同类型的方程进行牛顿法的求解,评估它的性能。
3.二分法二分法是通过将给定区间不断二分并判断根是否在区间内来求方程的根。
具体而言,对于给定的初始区间[a,b],首先计算区间[a,b]的中点c,并判断f(c)与0的大小关系。
如果f(c)大于0,说明解在区间[a,c]内,将新的区间定义为[a,c],再进行下一轮的计算。
如果f(c)小于0,说明解在区间[c,b]内,将新的区间定义为[c,b],再进行下一轮的计算。
直到新的区间的长度小于规定的误差阈值为止。
本实验将通过对复杂方程的二分计算来评估二分法的性能。
三、实验结果通过对一系列测试函数的计算,我们得到了迭代法、牛顿法和二分法的计算结果,并进行了比较。
牛顿迭代法实验

一、牛顿—迭代法迭代程序1.M文件function [p0,err,k,y]=newton(f,df,p0,delta,epsilon,max1)%Input - f is the object function input as a string 'f'% - df is the derivative of f input as a string 'df'% - p0 is the initial approximation to a zero of f% - delta is the tolerance for p0% - epsilon is the tolerance for the function values y% - max1 is the maximum number of iterations%Output - p0 is the Newton-Raphson approximation to the zero% - err is the error estimate for p0% - k is the number of iterations% - y is the function value f(p0)% NUMERICAL METHODS: Matlab Programs% (c) 2004 by John H. Mathews and Kurtis D. Fink% Complementary Software to accompany the textbook:% NUMERICAL METHODS: Using Matlab, Fourth Edition% ISBN: 0-13-065248-2% Prentice-Hall Pub. Inc.% One Lake Street% Upper Saddle River, NJ 07458for k=1:max1p1=p0-feval(f,p0)/feval(df,p0);err=abs(p1-p0);relerr=2*err/(abs(p1)+delta);p0=p1;y=feval(f,p0);if (err<delta)|(relerr<delta)|(abs(y)<epsilon),break,endend应用牛顿-拉夫森迭代程序求函数3=-+的二重根p=1,这里p0=1.2。
实验15 Newton迭代法

《数值分析》实验15一.实验名称:Newton 迭代法二、实验目的:(1) 掌握求解非线性方程的Newton 迭代法;(2) 了解Newton 迭代法的一些变体算法。
三、实验要求(1) 按照题目要求完成实验内容(2) 写出相应的语言程序(3) 给出实验原理、实验结果(4) 写出相应的实验报告。
四、实验题目1、用Newton 迭代法,割线法求方程3()310f x x x =--=在02x =附近的根,要求误差不超过410ε-=。
(给出每次迭代的结果,结果保留4位小数) 程序:#include<stdio.h>#include<math.h>#include<stdlib.h>double f(double x){return pow(x,3)-x-1;}void main(){int i,j,k,nn=1000,n,m;double t,err=1e-4,dx=1;double x[nn],y[nn];x[0]=1,x[1]=2;printf("x 估值 前后误差 迭代次数\n");for(k=1;k<nn&&dx>err;k++){x[k+1]=x[k]-f(x[k])*(x[k]-x[k-1])/(f(x[k])-f(x[k-1])); dx=fabs(x[k+1]-x[k]);printf("%0.4f %0.4f %d\n",x[k],dx,k);}}结果:x 估值 前后误差 迭代次数2.0000 0.4545 01.5455 0.1858 11.3596 0.0338 21.3258 0.0011 31.3247 0.0000 4程序:#include<stdio.h>#include<math.h>#include<stdlib.h>double f(double x){return pow(x,3)-x-1;}void main(){int i,j,k,nn=1000,n,m;double t,err=1e-4,dx=1;double x[nn],y[nn];x[0]=1,x[1]=2;printf("x估值前后误差迭代次数\n");for(k=1;k<nn&&dx>err;k++){x[k+1]=x[k]-f(x[k])*(x[k]-x[k-1])/(f(x[k])-f(x[k-1]));dx=fabs(x[k+1]-x[k]);printf("%0.4f %0.4f %d\n",x[k],dx,k);}}结果:x估值前后误差迭代次数2.0000 0.8333 11.1667 0.0864 21.2531 0.0841 31.3372 0.0134 41.3239 0.0009 51.3247 0.0000 6。
实验五 用Newton法计算方程的根

五. 讨论分析当初始值选取离零点较远时将导致算法无法使用,例如第三题,将初始值改为2就无法计算出结果了,显示如下例如求020sin 35=-+-x x e x 的根,其中控制精度1010-=eps ,最大迭代次数40=M ,在steffensen 加速迭代方法的程序中,我们只需改动:it_max=40; ep=1e-10, 其余不变 。
利用以上程序,我们只需输入:phi=inline('exp(5*x)-sin(x)+(x)^3-20');[x_star,index,it]=steffensen(phi,0.5)可得:x_star = 0.637246094753909index = 0it = 41观察上述结果,index = 0,it = 41表明迭代失败,所以使用以上方法估计的时候,应该尽量估计出解的范围,偏离不应过大,距离增加迭代次数增加,也有可能迭代失败六. 改进实验建议根据上述分析,我认为,应该先对函数作一个简图,方便知道解的大概位置,然后我们才将这个大概值代入Newton 法或者Steffensen 中进行求解。
当然,我们可以用其他数学软件实现Newton 迭代法,我们可以用z-z 超级画板,其操作流程为:牛顿迭代法的公式是:x n+1=x n-f(x n)/f'(x n)。
下面我们就用牛顿迭代法设计程序求方程f(x)=ln(x)+2*x-6的近似解。
(一)观察方程f(x)=0的零点位置(1)显示坐标系的坐标刻度。
(2)作出函数y=ln(x)+2*x-6的图像,如下图所示:可以观察到方程的根在区间[2,3]上,我们可以设定近似解的初始值为2。
(二)设计求方程近似解的程序(1)在程序工作区中输入:f(x){ln(x)+2*x-6;}执行后,返回结果为:>> f(x) #这表示在计算机已经完成了函数f(x)的定义。
(2)定义f(x)的导函数g(x),在程序工作区中输入:Diff(f(x),x);执行后,返回结果为:>> 2+1/x #得到了f(x)的导函数。
数值分析 数值分析 Newton迭代法求解非线性方程实验

}//计算出u[i][j]并输出.
第二部分 for(i=k+1;i<n;i++)
{s=0.0;
for(r=0;r<k-1;r++)
{s=s+l[k][r]*u[r][k];}
l[i][k]=(a[i][k]-s)/u[k][k];
printf("%Lf\n",l[i][k]);
{s=0.0;
for(r=0;r<k-1;r++)
{s=s+l[k][r]*u[r][k];}
l[i][k]=(a[i][k]-s)/u[k][k];
printf("l[%d][%d]%Lf\n",i,k,l[i][k]);}
}
}
六、实验结果
七、上机实验体会
在这个试验中同样叶出现了很多问题,对L,U的求解输出中,输出的位置的不同,结果也就会出差错.经过多次调整,结果总算输出了.
通过此次试验,我理解了多重循环的运用,并了解了古人的聪明智慧,]讲将复杂问题简单化,现在的大学生们,应该学习他们的创新及钻研精神。
for(k=0;k<n;k++)
{for(j=k;j<n;j++)
{s=0.0;
for (r=0;r<k-1;r++)
{s=s+l[k][r]*u[r][j];}
u[k][j]=a[k][j]-s;
printf("u[%d][%d]=%Lf\n",k,j,u[k][j]); }
for(i=k+1;i<n;i++)