相似三角形-等积式-比例式工作单讲解学习
相似三角形的性质ppt课件

相似三角形的对应边成比例,对 应角相等,面积比等于相似比的 平方。
判定方法
预备定理
判定定理1
平行于三角形的一边,并且和其他两边相 交的直线,所截得的三角形的三边与原三 角形三边对应成比例。
如果一个三角形的两个角与另一个三角形 的两个角对应相等,那么这两个三角形相 似。
判定定理2
判定定理3
如果两个三角形的两组对应边的比相等, 并且相应的夹角相等,那么这两个三角形 相似。
∠C'。
由于内角相等,我们可以通过正 弦定理或余弦定理来证明对应边
之间的比例关系。
应用举例
在几何学中,相似三角形对应边成比例的性质被广泛应用于解决各种问题,如测量高度、计 算距离等。
例如,如果我们知道一个三角形的一边和它的一个内角,以及另一个三角形的一边和它的一 个内角,我们可以利用相似三角形的性质来找出这两个三角形之间的相似比,从而计算出未 知边的长度。
证明过程
可以通过相似三角形的定义和性质,结合几何图形进行证明 。
具体证明方法包括:利用相似三角形的对应角相等,通过作 高线将三角形分割为若干个小三角形,再利用小三角形的面 积关系推导出原三角形的面积比关系。
应用举例
在几何题目中,可以利用相似三角形的面积比性质求解一 些与面积相关的问题,如求某个图形的面积、判断两个图 形面积的大小关系等。
由于相似三角形的对应边成比 例,我们可以通过三角函数或 者角度的平分线等性质来证明 它们的对应角相等。
具体证明过程可以通过几何画 图或者数学推导来完成,这里 不再赘述。
应用举例
在几何学中,相似三角形对应角相等的性质被广泛应用于解决各种问题,比如测量 高度、计算角度等。
例如,在测量建筑物高度时,我们可以通过测量建筑物与地面之间的角度和距离, 然后利用相似三角形的性质计算出建筑物的高度。
相似三角形详细讲义

知识梳理相似三角形的概念对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽”表示,读作“相似于”.相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例.注意:①对应性:即两个三角形相似时,通常把表示对应顶点的字母写在对应位置上,这样写比较容易找到相似三角形的对应角和对应边.②顺序性:相似三角形的相似比是有顺序的.③两个三角形形状一样,但大小不一定一样.④全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对应边成比例.相似三角形的基本定理定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似.定理的基本图形:用数学语言表述是:BC DE // ,ADE ∽ABC . 相似三角形的等价关系(1)反身性:对于任一ABC 有ABC ∽ABC .(2)对称性:若ABC ∽'''C B A ,则'''C B A ∽ABC .(3)传递性:若ABC ∽C B A '',且C B A ''∽C B A ,则ABC ∽C B A . 三角形相似的判定方法1、定义法:对应角相等,对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角 形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两 个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹 角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这 两个三角形相似.简述为:三边对应成比例,两三角形相似.(在遇到两个三角形的三边都知道的情况优先考虑,把边长分别从小到大排列,然后分别计算他们的比值是否相等来判断是否相似)6、判定直角三角形相似的方法: (1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
相似三角形模型总结2(比例式、等积式的常见证明方法)

相似三角形模型总结2(比例式、等积式的常见证明方法)XXX∠XXX,∴△AEB∽△CEB,∴AE/AC=EB/EC.又∵△ADB∽△ACB,∴AD/AC=DB/BC.∴AE/AD=EB/DB,∴AE/AC=EB/EC=EB/(EB+DB)。
ACADAE=AC·EB/(EB+DB)=AC·EB/AB.又∵△ABE∽△CDE,∴EB/DE=AB/CD,∴EB=AB·DE/CD.∴AE=AC·AB·DE/(AB·DE+CD·EB)=AC·AB·DE/(AB·DE+CD·AB·DE/CD)=AC·AB·DE/(AB+DB)=AC·DE/AD.又∵△ADE∽△ACB,∴DE/AC=AD/AB,∴DE=AC·AD/AB.∴AE=AC·DE/AD=AC·AC·AD/(AB·AD)=AC2/AB,∴AE/AC=AC/AB=AC/AD。
AE/AC=AD/AC,即AE/AC=AE/AD-∵AC=AD,∴AE/AC=AE/AE-DE,∴AE/AC=DE/AE,∴AE2=AC·DE,∴AE/AC=DE/AE=AE2/AC·AE=AE/AD,即AE=AC·AD/AB=AC2/AB。
XXX,∴=.1.由于文章中没有明显的格式错误,直接删除明显有问题的段落。
2.将原文中的符号改为中文,重新表述如下:已知在三角形ABE和ACB中,∠BAE=∠CAB,因此△ABE∽△ACB。
根据相似三角形的性质,可以得到AE/AB=AC/AE,所以AE²=AB×AC。
又因为AB=AD,所以AE²=AD×AC。
因此,DE²=AE²-BE²=AD×AC-BE²=BE×CE。
中考数学必背知识手册知识必备08 相似三角形(公式、定理、结论图表)

知识必备08相似三角形(公式、定理、结论图表)考点一、比例线段1.比例线段的相关概念如果选用同一长度单位量得两条线段a,b 的长度分别为m,n,那么就说这两条线段的比是nm b a =,或写成a:b=m:n.在两条线段的比a:b 中,a 叫做比的前项,b 叫做比的后项.在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段.若四条a,b,c,d 满足或a:b=c:d,那么a,b,c,d 叫做组成比例的项,线段a,d 叫做比例外项,线段b,c 叫做比例内项.如果作为比例内项的是两条相同的线段,即cb b a =或a:b=b:c,那么线段b 叫做线段a,c 的比例中项.2、比例的性质(1)基本性质:①a:b=c:d ⇔ad=bc②a:b=b:c ac b =⇔2.(2)更比性质(交换比例的内项或外项)db c a =(交换内项)⇒=d c b a ac bd =(交换外项)ab c d =(同时交换内项和外项)(3)反比性质(交换比的前项、后项):cd a b d c b a =⇒=(4)合比性质:dd c b b a d c b a ±=±⇒=(5)等比性质:ba n f db m ec a n fd b n m fe d c b a =++++++++⇒≠++++==== )0(3、黄金分割把线段AB 分成两条线段AC,BC(AC>BC),并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=215-AB ≈0.618AB.典例1:(2023•金昌)若32a b =,则(ab =)A .6B .32C .1D .23【分析】直接利用比例的性质,内项之积等于外项之积即可得出答案.【解答】解:32a b=,6ab ∴=.故选:A .【点评】此题主要考查了比例的性质,正确将原式变形是解题关键.典例2:2.(2023•甘孜州)若2x y =,则x y y -=1.【分析】根据比例的性质解答即可.【解答】解: 2x y=,∴1211x y x y y-=-=-=.故答案为:1.【点评】本题考查了比例的性质,解决本题的关键是掌握比例的性质.考点二、相似图形1.相似图形:我们把形状相同的图形叫做相似图形.也就是说:两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到的.(全等是特殊的相似图形).2.相似多边形:对应角相等,对应边的比相等的两个多边形叫做相似多边形.3.相似多边形的性质:相似多边形的对应角相等,对应边成的比相等.相似多边形的周长的比等于相似比,相似多边形的面积的比等于相似比的平方.4.相似三角形的定义:形状相同的三角形是相似三角形.5.相似三角形的性质:(1)相似三角形的对应角相等,对应边的比相等.(2)相似三角形对应边上的高的比相等,对应边上的中线的比相等,对应角的角平分线的比相等,都等于相似比.(3)相似三角形的周长的比等于相似比,面积的比等于相似比的平方.【要点诠释】结合两个图形相似,得出对应角相等,对应边的比相等,这样可以由题中已知条件求得其它角的度数和线段的长.对于复杂的图形,采用将部分需要的图形(或基本图形)“抽”出来的办法处理.6.相似三角形的判定:(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似;(2)如果两个三角形的三组对应边的比相等,那么这两个三角形相似;(3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;(4)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.(5)如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和一条直角边的比对应相等,那么这两个三角形相似.典例3:(2023•泰州)两个相似图形的周长比为3:2,则面积比为9:4.【分析】由两个相似图形,其周长之比为3:2,根据相似图形的周长的比等于相似比,即可求得其相似比,又由相似图形的面积的比等于相似比的平方,即可求得答案.【解答】解: 两个相似图形,其周长之比为3:2,∴其相似比为3:2,∴其面积比为9:4.故答案为:9:4.【点评】此题考查了相似图形的性质.此题比较简单,注意熟记定理是关键.典例4:(2023•威海)如图,四边形ABCD 是一张矩形纸片.将其按如图所示的方式折叠:使DA 边落在DC 边上,点A 落在点H 处,折痕为DE ;使CB 边落在CD 边上,点B 落在点G 处,折痕为CF .若矩形HEFG 与原矩形ABCD 相似,1AD =,则CD 的长为()A 21B 51-C 21+D 51+【分析】设HG x =,根据矩形的性质可得90A ADH ∠=∠=︒,1AD BC ==,再根据折叠的性质可得:90A AHE ∠=∠=︒,1AD DH ==,1BC CG ==,从而可得四边形ADHE 是正方形,然后利用正方形的性质可得1AD HE ==,最后利用相似多边形的性质,进行计算即可解答.【解答】解:设HG x =,四边形ABCD 是矩形,90A ADH ∴∠=∠=︒,1AD BC ==,由折叠得:90A AHE ∠=∠=︒,1AD DH ==,1BC CG ==,∴四边形ADHE 是矩形,AD DH = ,∴四边形ADHE 是正方形,1AD HE ∴==,矩形HEFG 与原矩形ABCD 相似,∴GH HE AD DC =,∴1111x x =++,解得:21x =或21x =--,经检验:21x =-或21x =-都是原方程的根,0GH > ,∴=,GH1∴=+=+,DC x21故选:C.【点评】本题考查了相似多边形的性质,解一元二次方程-公式法,矩形的性质,翻折变换(折叠问题),正方形的判定与性质熟练掌握相似多边形的性质是解题的关键.典例5:(2023•重庆)若两个相似三角形周长的比为1:4,则这两个三角形对应边的比是( )A.1:2B.1:4C.1:8D.1:16【分析】根据相似三角形的性质:相似三角形周长的比等于相似比,求解即可.【解答】解: 两个相似三角形周长的比为1:4,∴这两个三角形对应边的比为1:4,故选:B.【点评】本题考查了相似三角形的性质,熟练掌握相似三角形的性质是解题的关键.典例6:(2023•大庆)在综合与实践课上,老师组织同学们以“矩形的折叠”为主题开展数学活动.有一张矩形纸片ABCD如图所示,点N在边AD上,现将矩形折叠,折痕为BN,点A对应的点记为点M,若点M恰好落在边DC上,则图中与NDM∆一定相似的三角形是∆.MCB【分析】利用矩形的性质得到90∠=∠=︒,然后利用折叠的性质推导出D C∆∆∠=∠,由此推断出NDM MCB∽.90∠=∠=︒,进而得到DNM CMBBMN A【解答】解: 四边形ABCD是矩形,A D C∴∠=∠=∠=︒,90BMN A∠=∠=︒,∴∠+∠=︒,由折叠的性质可知,90DNM DMN90∴∠+∠=︒,DMN CMB90∴∠=∠,DNM CMB∽,NDM MCB∴∆∆故答案为:MCB∆.【点评】本题主要考查了相似三角形的判定、矩形的性质以及翻折变换(折叠问题),熟练掌握相似三角形的判定方法是解答本题的关键:两角法:有两组角对应相等的两个三角形相似.典例7:(2023•雅安)如图,在ABCD中,F是AD上一点,CF交BD于点E,CF的延长线交BA 的延长线于点G ,1EF =,3EC =,则GF 的长为()A .4B .6C .8D .10【分析】根据平行四边形的性质得出//AD BC ,//AB CD ,AD BC =,于是推出DEF BEC ∆∆∽,DFC AFG ∆∆∽,先求出DF 与BC 的比值,继而得出DF 与AF 的比值,再根据相似三角形对应边成比例即可求出GF 的长.【解答】解: 四边形ABCD 是平行四边形,//AD BC ∴,//AB CD ,AD BC =,//AD BC ,DEF BEC ∴∆∆∽,∴DF EF BC EC=,1EF = ,3EC =,∴13DF BC =,即13DF AD =,∴12DF AF =,//AB CD ,DFC AFG ∴∆∆∽,∴DF CF AF GF=,1EF = ,3EC =,4CF ∴=,∴142GF=,8GF ∴=,故选:C .【点评】本题考查了平行四边形的性质和相似三角形的判定与性质,熟练掌握这些图形的性质是解题的关键.典例8:(2023•哈尔滨)如图,AC ,BD 相交于点O ,//AB DC ,M 是AB 的中点,//MN AC ,交BD 于点N ,若:1:2DO OB =,12AC =,则MN 的长为()A .2B .4C .6D .8【分析】由//AB DC 易得CDO ABO ∆∆∽,根据相似三角形的性质可得12OC OA =,于是1122AC OA OC OA OA =+=+=,求出8OA =,易得MN 为AOB ∆的中位线,则12MN OA =.【解答】解://AB DC ,CDO ABO ∴∆∆∽,∴OD OC OB OA=,:1:2DO OB = ,∴12OC OA =,12OC OA ∴=,12AC OA OC =+= ,1122OA OA ∴+=,8OA ∴=,//MN AC ,M 是AB 的中点,MN ∴为AOB ∆的中位线,118422MN OA ∴==⨯=.故选:B .【点评】本题主要考查相似三角形的判定与性质、三角形中位线定理,熟记“8”字模型相似三角形,以及三角形中位线定理是解题关键.考点三、位似图形1.位似图形的定义:两个多边形不仅相似,而且对应顶点的连线相交于一点,不经过交点的对应边互相平行,像这样的两个图形叫做位似图形,这个点叫位似中心.2.位似图形的分类:(1)外位似:位似中心在连接两个对应点的线段之外.(2)内位似:位似中心在连接两个对应点的线段上.3.位似图形的性质位似图形的对应点和位似中心在同一条直线上;位似图形的对应点到位似中心的距离之比等于相似比;位似图形中不经过位似中心的对应线段平行.【要点诠释】位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.4.作位似图形的步骤第一步:在原图上找若干个关键点,并任取一点作为位似中心;第二步:作位似中心与各关键点连线;第三步:在连线上取关键点的对应点,使之满足放缩比例;第四步:顺次连接截取点.【要点诠释】在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k 或-k.典例9:(2023•朝阳)如图,在平面直角坐标系中,已知点(2,2)A ,(4,1)B ,以原点O 为位似中心,相似比为2,把OAB ∆放大,则点A 的对应点A '的坐标是()A .(1,1)B .(4,4)或(8,2)C .(4,4)D .(4,4)或(4,4)--【分析】根据位似变换的性质计算,得到答案.【解答】解: 以原点O 为位似中心,相似比为2,把OAB ∆放大,点A 的坐标为(2,2),∴点A 的对应点A '的坐标为(22,22)⨯⨯或(2(2)⨯-,2(2))⨯-,即(4,4)或(4,4)--,故选:D .【点评】本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或k -.。
相似三角形复习-比例式、等积式的几种常见证明方法 PPT课件

2、有两角对应相等的两个三角形相似
如图,每个小正方形边长均为1,则下 列图中的三角形(阴影部分)与左图 中△ABC相似的是( B )
A
B
C
A.
B.
C.
D.
相似三角形的判定方法
3、两边对应成比例,且夹角相等的两三角形相似
4、三边对应成比例的两三角形相似
直角三角形相似的判定:
直角边和斜边的比相等,两直角 A' 三角形相似。
E
B
C
D
例4提高. 如图:D为△ABC的底边BC的延长线上一点,
直线DF 交AC于E,且∠FEA=∠AFE .
求证:BD·CE=CD·BF
A
方法一: 过点C作CG∥AB,交DF于G
则△DCG∽ △DBF
故
CD BD
=
CG BF
再证CG=CE 即可
F E G
B
C
D
例4提高.如图:D为△ABC的底边BC的延长线上一点,
∠C=∠C' =90o
C'
A C = AB A'C' A' B '
Rt△ABC∽Rt△A'B'C' A
B'
三角形相似的判定还有什 么方法?
显然还有传递性和定义法。 C
B
C
在这一个图形中,有两个
垂直,有__三__对相似,有___
对四互余的角,有_____五组对
应成比例的六条线段.
A
D
B
AC2=AD·AB
3、当无法用三角形相似来证明线段成比例 时,可试着用引平行线的方法。
A
B
D
E
C
第1讲(学生)相似三角形精讲

第1讲 :相似三角形【基础知识】知识点1:相似图形形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形. 知识点2 比例线段的相关概念如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nmb a =,或写成n m b a ::=. 注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位.在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段. 注意:(1)当两个比例式的每一项都对应相同,两个比例式才是同一比例式.(2)比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad cb =.知识点3 :比例的性质 基本性质:(1)bc ad d c b a =⇔=::;(2)b a c b c c a ⋅=⇔=2::. 注意:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=. 更比性质(交换比例的内项或外项):()()()a bc d a c d cb d b ad bc a ⎧=⎪⎪⎪=⇒=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项反比性质(把比的前项、后项交换):cd a b d c b a =⇒=. 合比性质:dd c b b a d c b a ±=±⇒=. 注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc d c b a b a ccd a a b d c b a 等等.等比性质:如果)0(≠++++====n f d b nm f e d c b a ,那么b an f d b m e c a =++++++++ .注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法. (2)应用等比性质时,要考虑到分母是否为零.(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:ba f db ec a f ed c b a fe d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b .知识点4 :比例线段的有关定理平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 推论:(1)平行于三角形一边直线截其它两边(或两边的延长线)所得对应线段成比例.(2)平行于三角形一边并且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例.定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形第三边. 知识点5 :黄金分割把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB .知识点6 :相似三角形的概念对应角相等,对应边成比例的三角形,叫做相似三角形. 相似用符号“∽”表示,读作“相似于” .相似三角形对应边的比叫做相似比(或相似系数). 相似三角形对应角相等,对应边成比例. 注意:①对应性:即两个三角形相似时,通常把表示对应顶点的字母写在对应位置上,这样写比较容易找到相似三角形的对应角和对应边. ②顺序性:相似三角形的相似比是有顺序的. ③两个三角形形状一样,但大小不一定一样.④全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对应边成比例. 知识点7 :相似三角形的基本定理定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似.定理的基本图形:用数学语言表述是: BC DE // ,ADE ∆∴∽ABC ∆.知识点8 :相似三角形的等价关系(1)反身性:对于任一ABC ∆有ABC ∆∽ABC ∆.(2)对称性:若ABC ∆∽'''C B A ∆,则'''C B A ∆∽ABC ∆.(3)传递性:若ABC ∆∽C B A '∆'',且C B A '∆''∽C B A ''''''∆,则A B C ∆∽C B A ''''''∆.知识点9:三角形相似的判定方法1、定义法:对应角相等,对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.6、判定直角三角形相似的方法: (1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
相似三角形分类整理(超全)上课讲义

相似三角形分类整理(超全)第一节:相似形与相似三角形基本概念: 1.相似形:对应角相等,对应边成比例的两个多边形,我们称它们互为相似形。
2.相似三角形:对应角相等,对应边成比例的两个三角形,叫做相似三角形。
1.几个重要概念与性质(平行线分线段成比例定理)(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.已知a∥b∥c,A D aB E bC F cAB DE AB DE BC EF BC EF AB BC或或或或可得BC EFEF AC DF AB DF AC DF DE等.(2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.AD EB CAD AE BD EC AD AE或或由DE∥BC 可得:ACDB EC AD EA AB.此推论较原定理应用更加广泛,条件是平行.(3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.(4)定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例.(5)①平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。
②比例线段:四条线段a,b,c,d 中,如果 a 与 b 的比等于 c 与 d 的比,即ab=cd,那么这四条线段a,b,c,d 叫做成比例线段,简称比例线段。
2.比例的有关性质①比例的基本性质:如果abcd,那么ad=bc。
如果ad=bc(a,b,c,d 都不等于0),那么abcd。
收集于网络,如有侵权请联系管理员删除②合比性质:如果abcd,那么a b cdbd。
③等比性质:如果abcd= ???=mn(b+d+ ???+n≠0),那么abcd??????mnab2=ad.④b 是线段a、d 的比例中项,则 b典例剖析例1:①在比例尺是1:38000 的南京交通游览图上,玄武湖隧道长约7cm,则它的实际长度约为______Km.②若ab =23则a bb=__________.③若a2a 2bb=95则a:b=__________.3.相似三角形的判定(1)如果两个三角形的两角分别于另一个三角形的两角对应相等,那么这两个三角形相似。
《相似三角形》课件

设计者使用相似三角形来创建比例恰到
好处的建筑物。
3
地理
使用相似三角形的原理来测量无法直接 测量的高度和距离。
工程
工程师可以借助相似三角形来进行缩放 和尺寸调整。
通过相似三角形求高度和距离
通过测量底边和顶角,可以利用相似三角形的原理来计算无法直接测量的高 度和距离。
相似三角形的重心、垂心和外心
相似三角形的重心、垂心和外心是三角形内特殊的点,它们的位置和性质可以用相似三角形的原理推导出来。
相似三角形PPT课件
相似三角形课件将深入探讨相似三角形的定义、性质、判断、比例、面积、 应用、解法以及与等腰三角形和全等三角形的关系。
什么是相似三角形?
相似三角形是具有相同形状但大小不同的三角形。它们的对应角度相等,而 各对应边的比例始终保持一致。
相似三角形的定义和性质
定义
三角形之间对应的角相等, 对应的边成比例。
性质
相似三角形的对应边长之比 始终相等,全等三角形也是 一种相似三角形。
例子
两个等腰三角形的顶角相等, 底边的比例相等。
如何判断两个三角形是否相似?
1 AA判定法
两个三角形的两个对应角 度相等,则它们相似。
2 SAS判定法
两个三角形的两个对应边 成比例,并且夹角相等, 则它们相似。
3 SAA判定法
两个三角形的一个角相等, 并且两个对应边成比例, 则它们相似。
相似三角形的比例和比较
பைடு நூலகம்
比例
相似三角形的对应边长之比是固定的,可以用比例 表示。
测量
可以使用测量工具来确定三角形各边的长度,从而 比较它们的大小。
相似三角形的面积比例
相似三角形的面积比等于对应边的长度比的平方。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M
H F D C
A 相似三角形的判定——等积式、比例式证明技巧导学单
一、 预备知识:
1、“双垂直”指:“Rt △ABC 中,∠BCA=900,CD ⊥AB 于D ”,
结论: (1)△ADC ∽△CDB ∽△ACB (2)由△ADC ∽△CDB 得CD 2
=AD ·BD (3)由△ADC ∽△ACB 得AC 2=AD ·AB (4)由△CDB ∽△ACB 得BC 2
=BD ·AB
(5)由面积得AC ·BC=AB ·CD (6)勾股定理 …… 二、等积式、比例式证明的一般技巧
相关题:如图,M 是平行四边形ABCD 的对角线BD 上的一点,射线AM 交BC 于F,交DC 的延长线于点H 。
求证:AM 2=M F ·MH
思路:根据基本图形寻找“中间比” (一)遇到等积式(或比例式)时,直接利用“左看、右看、上看、下看”,看是否能找到相似三角形。
1、已知:如图,△ABC 中,DA 平分∠BAC=,CD=CE 。
求证:AB ·AE=AC ·AD 。
策略1:先把等积式转化为比例式;再观察比例式的线段确定可能相似的两个三角形;最后找这两个三角形相似所需的条件.
A
E
D C B
(二)若由求证的等积式或比例式中找不到三角形或找到的三角形不相似。
如果有相等的线段时,可用相等的线段去替换。
2.如图,已知:在△ABC中,∠BAC=900,AD⊥BC,E是AC的中点,ED交AB 的延长线于F。
求证:。
策略2:当要证明的比例式中的线段在同一条直线上时,由求证的等积式或比例式中找不到三角形或找到的三角形不相似,可以用相等的比、相等的线段、相等的等积式来替换相应的量,把看似无路可走的题目盘活,从而达到“车到山前疑无路,柳暗花明又一村”的效果.
(三)若由求证的等积式或比例式中找不到三角形或找到的三角形不相似,也没有等线段代换或等比代换.
3、如图,⊿ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF∥AB交BP延长线于F,求证:BP2=PE·PF.
F
策略3:
若由求证的等积式或比例式中找不到三角形或找到的三角形不相似,也没有等线段代换或等比代换.则需要添加适当的辅助线,构造平行线或相似三角形。