多元统计分析:第二章 多元正态分布及
厦门大学《应用多元统计分析》习题第02章 多元正态分布的参数估计

思考与练习2.1 试述多元联合分布和边缘分布之间的关系。
2.2 设随机向量12(,)X X ′=X 服从二元正态分布,写出其联合分布密度函数和1X 、2X 各自的边缘密度函数。
2.3 已知随机向量12(,)X X ′=X 的联合分布密度函数为:()()()()()()()()()121122222,d c x a b a x c x a x c f x x b a d c −−+−−−−−2⎡⎤⎣⎦=−−其中,。
求:12,a x b c x d ≤≤≤≤⑴ 随机变量1X 和2X 各自的边缘密度函数、均值与方差。
⑵ 随机变量1X 和2X 的协方差和相关系数。
⑶ 判断1X 和2X 是否相互独立。
2.4 设随机向量12(,,,)p X X X ′=X L 服从正态分布,已知其协差阵为对角阵,证明ΣX 的分量是相互独立的随机变量。
2.5 从某企业全部职工中随机抽取一个容量为6的样本,该样本中各职工的目前工资、受教育年限、初始工资和工作经验资料如下表所示: 职工编号目前工资 (美元)受教育年限(年)初始工资 (美元)工作经验(月)11 2 3 4 5 6 57,000 40,200 21,450 21,900 45,000 28,350 15 16 12 8 15 8 27,000 18,750 12,000 13,200 21,000 12,000 144 36 381 190 138 26设职工总体的以上变量服从多元正态分布,根据样本资料求出均值向量和协差阵的最大似然估计。
2.6 均值向量和协差阵的最大似然估计量具有哪些优良性质? 2.7 试证多元正态总体的样本均值向量(,)p N μΣ1~(,p N nX μΣ)。
2.8 试证多元正态总体的样本协差阵S 为(,)p N μΣΣ的无偏估计。
2.9 设()1x 、()2x 、…、()n x 是从多元正态总体中独立抽取的一个随机样本,试求样本协差阵的分布。
多元统计分析:第二章 多元正态分布及

第二章 多元正态分布及参数的估计
§2.1 随 机 向
x11 x X 21 x n1
def
x12 x22 xn 2
x1 p X (1) def x2 p X (2) X xnp (n)
(d表示两边的随机向量服从相同的分布.) d
其中U=(U1,…,Uq),且U1,…,Uq 相互独 立同分布及参数的估计
§2.2 多元正态分布的性质2
Z=BX+d = B(AU+μ)+d = (BA)U+(Bμ+d) 由定义2.2.1可知 Z ~Ns(Bμ+d, (BA)(BA)), Z ~Ns(Bμ+d, BΣB). (这里Σ=AA).
X2 0 2 X ~ N 2 ( 0 , 0 3 0 ) 3
26
则有(1) X1 ~ N(2,1),
第二章 多元正态分布及参数的估计
§2.2 多元正态分布的定义与基本性质—简单例子
X 2 0 1 0 X 1 令 Y X 3 0 0 1 X 2 BX , 1 0 0 X 3 X1
性质1的证明
根据随机向量特征函数的定义和性质,经计算即可 得出X的特征函数为 ΦX(t)= E(eitX)= E(eit (AU+μ) ) it AU 令t′A=s′=(s ,…s ) q 1
exp(it ) E(e ) i ( s1U1 s qU q ) exp( it ) E (e ) isqU q is1U1 exp( it ) E (e e )
du
e
e
应用多元统计分析课后习题答案详解北大高惠璇(第二章部分习题解答) (2).ppt

4 3
u1u2
1
2
exp[
1 2
(2u12
u22
2u1u2 )]du1du2
1
2
u12
u1e 2
1
2
u2e
1 2
(
u2
u1
)
2
du2
du1
1
2
u12
u1e 2
1
2
(u2
u1
)e
1 2
(u2
u1
)
2
du2
u1
e
1 2
(
u2
u1
)
2
du2
du1
1
2
u e
2
u12 2
2
x12
22
x1
65
x12
14
x1
49)
1 2
(
x2
x1
7)2
e e dx2
2
1 e
1 2
(
x12
8
x1
16)
2
1
2
e dx
1 2
(
x2
x1
7
)
2
2
1 e
1 2
(
x1
4
)
2
2
X1 ~ N(4,1).
类似地有
f2 (x2 ) f (x1, x2 )dx1
1
e
1 4
(
x2
3)2
X
X X
(1) (2)
~
N
2
p
(1) (2)
,
1 2
2 1
,
其中μ(i) (i=1,2)为p维向量,Σi (i=1,2)为p阶矩阵,
多元统计分析_第2章_多元正态分布_s

第2章多元正态分布§2.1 多元分布§2.2 多元正态分布的定义及基本性质§2.3 正态分布的条件分布和独立性§2.4 矩阵正态分布§2.5 参数的极大似然估计§2.6 极大似然估计的性质13),21′=p ξξξ (ξ随机向量:pn ij ξξ×=)(随机矩阵:注:随机矩阵拉直后就是随机向量,二者都是由多个随机变量组成,只是摆放形势不同.4一、多元分布函数1212121122122.1.1 (,,,)()(,,,) ()(,,,)(,,,)(,,,)~.p p p p p pp ξξξξξξF x F x x x P ξx ξx ξx x x x x R F ξξ′===≤≤≤′=∈ 定义设是一随机向量,它的多元分布函数的联合分布函数定义为式中,记作512122112(1)(,,,)(1,2,,)(2)0(,,,)1(3)(,,,)(,,,)(,,,)0(4)(,,,)1p i p p p F x x x x i p F x x x F x x F x x F x x F =≤≤−∞=−∞==−∞=+∞+∞+∞= 是每个变量的单调非降右连续函数.多元分布函数的性质:71)( )2( ,0)( )1()(=∈∀≥⋅∫dx x f R x x f R f pR pp 当且仅当随机向量的分布密度,中某个能作为一个多元函数9二、边缘分布.)( 3.1.2)1(的边缘分布的分布称为个分量组成的随机向量的维随机向量,由它为若定义ξξξp q q p <10),,,,,,(),,,,,),,)111111)1()2()1(∞∞∞=∞≤∞≤≤≤=≤≤=≤⎟⎟⎠⎞⎜⎜⎝⎛=+ q p q q q q q u u F u ξu ξP u ξu ξP u ξP ξξξξξξ((((1)的分布函数为,则不妨假设11(1)(1212112111)(,,)(,,)q q u u u p p u u u p q p q P ξu f t t dt dt dt f t t dt dt dt dt ∞∞∞−∞−∞−∞−∞−∞−∞∞∞∞+−∞−∞−∞−∞−∞−∞≤=⎡⎤=⎢⎥⎣⎦∫∫∫∫∫∫∫∫∫∫∫∫ 若ξ有分布密度函数f (x ),则12p q p q q q dt dt t t x x f x x f ξ1111)1(),,,,,(),,(++∞∞−∞∞−∞∞−∫∫∫=的边缘分布密度为(1)13注:(1)有分布密度函数,则它的任何边缘分布也有分布密度函数;(2)若的任何边缘分布有分布密度函数,并不能推出有分布密度.ξξξ两个随机向量独立的充分必要条件:①联合分布函数等于边缘分布函数的乘积;②若随机向量为连续型的,联合分布密度等于边缘分布密度的乘积;③若随机向量为离散型,联合分布列等于边缘分布列的乘积;④联合特征函数等于边缘特征函数的乘积.1621).()(~),(~),(~,)4(t t t t ηηηξηξηξΦΦ+ΦΦξξ则量的随机向是相互独立且维数相同与若).()(),( ,)()(,,)5()2()1()2()1(t t t t t t q p ηξξΦΦ=Φ⇔ΦΦ⎟⎟⎠⎞⎜⎜⎝⎛Φ独立和则的特征函数和分别为和特征函数的表示维随机向量和分别为和若ηξηξηξηξη22(7) .p a ξξ′若为维随机向量,则它的分布由一切形如的分布所唯一决定).()exp()( ,),(~ )6(t A a t i t a A t ′Φ′=Φ+=Φξηξηξ则若ξ23).()exp()])([exp()exp()][exp()exp())]([exp()][exp()(t A a t i t A i E a t i A t i E a t i a A t i E t i E t ′Φ′=′′′=′′=+′=′=Φξηξξξη证明:(6)24.,3,,),()][exp()1( 1)][exp()( )7(:的分布它决定了知由性质的特征函数恰好是的函数把它看成得取的特征函数为证明ξξξξa a a i E t a it E t a a a Φ=′=Φ=′=Φ′′′ξξξξ25五、矩2.1.6 ()(), 1, 2, , ,1, 2, , ,()(), .ij ij ij n p E i n j p E ξξξεξξξ=×=== 定义设为随机矩阵,假定存在且有限记称为随机矩阵的均值)()( ij E ξξε=26,(1) ,,,( )(),()()A B C A B C A B CA A εξεξξεξεξ+=+=若为常数矩阵则特别当为随机向量时有注:以下总假定公式中用到的随机矩阵的矩是存在的.均值的性质:27)]([)]([)] )4()()( , )3()()( ,, )2(ξεξεξξηεξεηξεηεξεηξεA tr A tr A E n p A p n b a b a b a B A B A B A ==××+=++=+[tr()()(则常数矩阵,为随机矩阵,为若为常数,则若则为常数矩阵若注:以上四个性质均体现均值的线性性.28().),,cov()(),cov(])()][([),cov( ),,cov(,)(),), 7.2.1 2121的协方差称为时,记作当即其元素是矩阵定义为一个简称协差阵阵的协方差维随机向量,它们之间维和分别为和设定义ξξξξηξηξηεηξεξεηξηξηηηηξ===′−−=×′=′=D p n p n ξξξj i j i p n ((29() ),cov(),cov( j i ηξηξ=()),cov(),cov(j i ξξξξ=31.])(][)([)())()()( ,)2(.})(){() (),cov(,})(){() (),cov()1(′−−+=′−−=+′−′=′−′=a a D a a D a D a ξεξεξξξεξξξεξεξξεξξηεξεηξεηξ(则为常向量若特别协差阵的性质:32A AD A DB A B A B A ′=′=)()( ),cov(),cov( ,)3(ξξηξηξ特别则为常数矩阵和设协差阵的性质(续)35则记值和协差阵存在的均若随机向量定理 ),( ),( ,),,, 1.1.221ξξεμD ξξξξn =Σ=′= ()()( μμξξA A tr A E ′+Σ=′36μμμμξξξξξξA A tr A tr A Etr A Etr A E ′+Σ=′+Σ=′=′=′)()}({)()()(μμξξεξεξεξξεξ′+Σ=′′−′=) (,})(){() ()(:所以因为证明D。
应用多元统计分析课后习题答案高惠璇第二章部分习题解答学习资料

1 2 [y ( 1 7 )2 (y 2 4 )2]
g(y1,y2)
设函数 g(y1, y2) 是随机向量Y的密度函数.
15
第二章 多元正态分布及参数的估计
(3) 随机向量
YYY12~N274,
I2
(4) 由于 XX X121011Y Y12CY
1 0 1 1 7 4 3 4 , 1 0 1 1 I2 1 0 1 1 1 1 2 1
e e d x e 2
2
1 2 (x 1 7 )2
9
第二章 多元正态分布及参数的估计
1 1 2(2x1 22x2 16 5 x1 2 1x4 14)91 2(x2x17)2
e e dx 2
2
2 1e 2 1 e dx 1 2(x1 28x1 1)6
1 2(x2x17)2 2
1(
1 e2
(22)(22)0
可得Σ的特征值 1 2 (1 )2 , 2 (1 ).
22
第二章 多元正态分布及参数的估计
λi (i=1,2)对应的特征向量为 1
1
l1
2 1 2
l1
2 1 2
由(1)可得椭圆方程为 2(1y 1 2)b22(1y 2 2)b21
其 b 2 中 2 la n ( 2 ) [ | |1 /2 ] 2 l2 n2 [ 1 2 a ]
解二:比较系数法 设 f(x 1,x2)2 1ex 1 2 p (2 x 1 2x2 2 2 x 1x2 2x 1 2 1x2 4 6) 5
2 1 2 11 2ex 2 p 1 2 2 2 1 (1 2)[2 2(x 1 1)2 2 1 2(x 1 1)x (2 2) 1 2(x2 2)2]
第二章 多元正态分布及参数的估计

27
北大数学学院
第二章 多元正态分布及参数的估计
§2.2 多元正态分布的定义与基本性质—简单例子
y BxB
0 0 1
1 0 0
100 110
1 2 0
003 100
0 0 1
1 0 0
1 0 1
2 0 1
003 100
2
北大数学学院
第二章 多元正态分布及参数的估计
目录
§2.1 随机向量 §2.2 多元正态分布的定义与
基本性质
§2.3 条件分布和独立性 §2.4 随机矩阵的正态分布 §2.5 多元正态分布的参数估计
3
北大数学学院
第二章 多元正态分布及参数的估计
§2.1 随 机 向
本课程所讨论的是多变量总体.把 p个随机变量放在一起得
第二章 多元正态分布及参数的估计
§2.2 多元正态分布性质2的推论
例2.1.1
f (x1, x2
()X1,X212)的e联 12合( x12密 x22度) [1函数x为1 x2e
1 2
(
x12
x22
)
]
我们从后面将给出的正态随机向量的联合密
度函数的形式可知, (X1,X2)不是二元正态随机向 量.但通过计算边缘分布可得出:
本节有关随机向量的一些概念(联合分布, 边缘分布,条件分布,独立性;X的均值向量,X 的协差阵和相关阵,X与Y的协差阵)要求大家 自已复习.
三﹑ 均值向量和协方差阵的性质 (1) 设X,Y为随机向量,A,B为常数阵,则
E(AX)=A·E(X) E(AXB)=A·E(X)·B
6
应用多元统计分析课后习题答案高惠璇(第二章部分习题解答

2
x12
22
x1
65
x12
14
x1
49)
1 2
(
x2
x1
7)2
e e dx2
2
1 e
1 2
(
x12
8
x1
16)
2
1
2
e dx
1 2
(
x2
x1
7
)
2
2
1 e
1 2
(
x1
4
)
2
2
X1 ~ N(4,1).
类似地有
f2 (x2 ) f (x1, x2 )dx1
1
e
1 4
(
x2
3)2
注意:由D(X)≥0,可知 (Σ1-Σ2) ≥0.
8
第二章 多元正态分布及参数的估计
2-11 已知X=(X1,X2)′的密度函数为
f
( x1 ,
x2 )
1
2
exp
1 2
(2 x12
x22
2 x1 x2
22 x1
14 x2
65)
试求X的均值和协方差阵.
解一:求边缘分布及Cov(X1,X2)=σ12
应用多元统计分析
第二章部分习题解答
第二章 多元正态分布及参数的估计
2-1 设3维随机向量X~N3(μ,2I3),已知
002,
A
0.5 0.5
1 0
00.5.5, d 12.
试求Y=AX+d的分布.
解:利用性质2,即得二维随机向量Y~N2(y,y),
其中:
2
第二章 多元正态分布及参数的估计
2-2 设X=(X1,X2)′~N2(μ,Σ),其中
应用多元统计分析 第二章正态分布的参数估计答案

练习二 多元正态分布的参数估计2.1.试叙述多元联合分布和边际分布之间的关系。
解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=的子向量的概率分布,其概率密度函数的维数小于p 。
2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。
解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。
2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=-- 其中1a x b ≤≤,2c x d ≤≤。
求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数; (3)判断1X 和2X 是否相互独立。
(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()d x cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd c c d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 121222202()()2[()2()]()()()()dd c c d c x a x b a t x a t dt b a d c b a d c ------=+----⎰ 2212122222()()[()2()]1()()()()d cdc d c x a x b a t x a t b a d c b a d c b a------=+=----- 所以由于1X 服从均匀分布,则均值为2b a+,方差为()212b a -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2 exp( it ) exp( s j ) 2 j 1
) E(e
isqU q
)
第二章 多元正态分布及参数的估计
§2.2
记Σ=AA′,则有以下定义。 定义2.2.2 若p维随机向量X的特征函数 t ' t 为:
X (t ) exp[ it '
,d为s×1常向量,令Z=BX+d,则
Z~Ns(Bμ+d , BΣB ).
该性质指出正态随机向量的任 意线性组合仍为正态分布.
19
第二章 多元正态分布及参数的估计
§2.2 多元正态分布的性质2
证明 因Σ ≥0, Σ可分解为Σ=AA ,其中A 为p×q 矩阵.已知X~Np(μ,Σ),由定义 2.2.1可知 X = AU+μ
是对称非负定阵. 即 =´ , ´ ≥0 (为任给的p维常量).
7
第二章 多元正态分布及参数的估计
§2.1 随机向量—
(4) Σ=L2 ,其中L为非负定阵.
由于Σ≥0(非负定),利用线性代数中实对称阵的对角化定理,存 在正交阵Γ,使
1 0 LL
1 0 ' 0 p
并设:
i 0(i 1,, q), q1 0,, p 0.
10
第二章 多元正态分布及参数的估计
§2.2
在一元统计中,若U~N(0,1),则U的任意 线性变换X=σU+μ~N(μ,σ2)。利用这一性质, 可以从标准正态分布来定义一般正态分布:
若U~N(0,1),则称X =σU+μ的分布为 一般正态分布,记为X ~N(μ, σ2 )。
如例2.1.1,证明了X1,X2均为一元正态 分布,但由(X1,X2) 联合密度函数的形式易见 它不是二元正态.
24
第二章 多元正态分布及参数的估计
§2.2 多元正态分布性质2的推论
1 2 2 ( x1 x2 ) 2 1 2 2 ( x1 x2 ) 2
例2.1.1 (X1,X2)的联合密度函数为
du
e
e
du
du
14
1 2 2 1 exp[i t t ] 2 2 1 2 2 exp[i t t ] 2
e
1 ( u it ) 2 2
第二章 多元正态分布及参数的估计
§2.2 多元正态分布的性质1
当 X~N(0,1)时,φ(t)=exp[-t 2 /2].
6
第二章 多元正态分布及参数的估计
§2.1 随 机 向
D(AX)=A· D(X)· A' COV(AX,BY)=A· COV(X,Y)· B'
(2) 若X,Y相互独立,则COV(X,Y)=O;反之 不成立.
若COV(X,Y)=O,我们称X与Y不相关.故有: 两随机向量若相互独立,则必不相关; 两随机向量若不相关,则未必相互独立. (3) 随机向量X=(X1,X2,…,Xp)′的协差阵D(X)=
12
第二章 多元正态分布及参数的估计
多元正态分布的性质1 在一元统计中,若X~N(μ,σ2),则X的特征函数为 §2.2
φ(t)=E(eitX)=exp[itμ-t 2σ2 /2]
(t ) E (e )
itX
1 2
e
( x )2 itx 2 2
e
dx
u ( x ) /
性质1的证明
根据随机向量特征函数的定义和性质,经计算即可 得出X的特征函数为 ΦX(t)= E(eitX)= E(eit (AU+μ) ) it AU 令t′A=s′=(s ,…s ) q 1
exp(it ) E(e ) i ( s1U1 s qU q ) exp( it ) E (e ) isqU q is1U1 exp( it ) E (e e )
2
第二章 多元正态分布及参数的估计
目
§2.1 随机向量
录
§2.2 多元正态分布的定义与基本性质
§2.3 条件分布和独立性 §2.4 多元正态分布的参数估计
3
第二章 多元正态分布及参数的估计
§2.1 随 机 向
本课程所讨论的是多变量总体.把 p个随机变量放在一起得 X=(X1,X2,…,Xp)′ 为一个p维随机向量,如果同时对p维 总体进行一次观测,得一个样品为 p 维数据.常把n个样品排成一个n×p 矩阵,称为样本资料阵.
(d表示两边的随机向量服从相同的分布.) d
其中U=(U1,…,Uq),且U1,…,Uq 相互独 立同 N(0,1)分布。
20
第二章 多元正态分布及参数的估计
§2.2 多元正态分布的性质2
Z=BX+d = B(AU+μ)+d = (BA)U+(Bμ+d) 由定义2.2.1可知 Z ~Ns(Bμ+d, (BA)(BA)), Z ~Ns(Bμ+d, BΣB). (这里Σ=AA).
1 其中A O O . p
9
第二章 多元正态分布及参数的估计
§2.1 随机向量—
若Σ≥0(非负定),必有p×q矩阵A1使得
Σ=A1A1′
1 O 其中A1 1 (q p). O q 这里记Γ=(Γ1 | Γ2) , Γ1为p×q列正交阵(p ≥ q).
0 ' p
1 其中L O
O ,L L, 故L 0. p 8
第二章 多元正态分布及参数的估计
§2.1 随机向量—
当矩阵Σ>0(正定)时,矩阵L也称为Σ的平方根 矩阵,记为Σ1/2 .
当矩阵Σ>0(正定)时,必有p×p非退化矩阵 A使得 Σ=AA′
此定义中,不必要求σ>0,当σ退化为0时仍 有意义。把这种新的定义方式推广到多元情况
11
第二章 多元正态分布及参数的估计
§2.2 多元正态分布的第一种
定义2.2.1 设U=(U1,…,Uq)′为随机向量,
U1,…,Uq相互独立且同N(0,1)分布;设μ为p维 常数向量,A为p×q常数矩阵,则称X=AU + μ 的分布为p维正态分布,或称X为p 维正态随机 向量,记为X ~ Np(μ, AA′) 简单地说,称q个相互独立的标准正态随机 变量的一些线性组合构成的随机向量的分布为
=(X1,X2,…,Xp)
5
其中 X(i)( i=1,…,n)是来自p维总体的一个样品 .
第二章 多元正态分布及参数的估计
§2.1 随 机 向
在多元统计分析中涉及到的都是随机向量, 或是多个随机向量放在一起组成的随机矩阵. 本节有关随机向量的一些概念(联合分布, 边缘分布,条件分布,独立性;X的均值向量,X 的协差阵和相关阵,X与Y的协差阵)ቤተ መጻሕፍቲ ባይዱ求大家 自已复习. 三﹑ 均值向量和协方差阵的性质 (1) 设X,Y为随机向量,A,B为常数阵,则 E(AX)=A· E(X) E(AXB)=A· E(X)· B
16
第二章 多元正态分布及参数的估计
§2.2 多元正态分布的性质1
(因U1 ,…, Uq相互独立,乘积的期望等于期望的乘积)
exp( it ) E(e
q
is1U1
1 2 2 exp( it ) exp[ ( s1 sq )] 2
1 1 exp( it ss ) exp( it t AAt ) 2 2
4
第二章 多元正态分布及参数的估计
§2.1 随 机 向
x11 x X 21 x n1
def
x12 x22 xn 2
x1 p X (1) def x2 p X (2) X xnp (n)
1 f ( x1 , x2 ) e 2
[1 x1 x2e
]
我们从后面将给出的正态随机向量的联合密 度函数的形式可知, (X1,X2)不是二元正态随机向 量.但通过计算边缘分布可得出: X1~N(0,1) , X2~N(0,1) 这就说明若随机向量的任何边缘分布均为正态 分布时,也不一定能导出该随机向量服从多元 正态分布.
25
第二章 多元正态分布及参数的估计
§2.2 多元正态分布的定义与基本性质—简单例子
例如:设三维随机向量X=(X1,X2,X3),且
X1 2 1 1 0 X X 2 ~ N ( 0 , 1 2 0 ), 0 0 0 3 X3
(1)
取 B2 O I p r , p r维向量d 2 0, 则
X
( 2)
B2 X d2 ~ N pr ( , 22 ).
( 2)
23
第二章 多元正态分布及参数的估计
§2.2 多元正态分布性质2的推论
此推论指出,多元正态分布的边缘 分布仍为正态分布。但反之,若随机 向量的任何边缘分布均为正态分布, 也不一定能导出该随机向量服从多元 正态分布.
由性质2知,Y为3维正态随机向量,且
(2)
0 1 0 2 0 y B x 0 0 1 0 0 1 0 0 0 2
则称X服从 p 维正态分布,记为 X ~Np(μ,Σ) . 一元正态: (p=1) 2 2 2 t t t (t ) exp[ it ] exp[ it ] 2 2
18
2
] ( 0)
第二章 多元正态分布及参数的估计
§2.2 多元正态分布的性质2
性质2 设X~Np(μ,Σ), B为s×p常数阵
应用多元统计分析