函数的单调区间的求法

合集下载

高中数学讲义:求函数的单调区间

高中数学讲义:求函数的单调区间

函数的单调区间单调性是函数的一个重要性质,对函数作图起到决定性的作用,而导数是分析函数单调区间的一个便利工具。

求一个已知函数的单调区间是每一个学生的必备本领,在求解的过程中也要学会一些方法和技巧。

一、基础知识:1、函数的单调性:设()f x 的定义域为D ,区间I D Í,若对于1212,,x x I x x "Î<,有()()12f x f x <,则称()f x 在I 上单调递增,I 称为单调递增区间。

若对于1212,,x x I x x "Î<,有()()12f x f x >,则称()f x 在I 上单调递减,I 称为单调递减区间。

2、导数与单调区间的联系(1)函数()f x 在(),a b 可导,那么()f x 在(),a b 上单调递增()',()0x a b f x Þ"γ, 此结论可以这样理解:对于递增的函数,其图像有三种类型: ,无论是哪种图形,其上面任意一点的切线斜率均大于零。

等号成立的情况:一是单调区间分界点导数有可能为零,例如:()2f x x =的单调递增区间为[)0+¥,,而()'00f =,另一种是位于单调区间内但导数值等于零的点,典型的一个例子为()3f x x =在0x =处的导数为0,但是()0,0位于单调区间内。

(2)函数()f x 在(),a b 可导,则()f x 在(),a b 上单调递减()',()0x a b f x Þ"Σ,(3)前面我们发现了函数的单调性可以决定其导数的符号,那么由()',()x a b f x "Î,的符号能否推出()f x 在(),a b 的单调性呢?如果()f x 不是常值函数,那么便可由导数的符号对应推出函数的单调性。

确定函数的单调性方法

确定函数的单调性方法

确定函数的单调性方法
确定函数的单调性有以下几种方法:
1. 使用导数:对于可导函数,可以通过求导数来确定函数的单调性。

如果导数大于零,则函数是递增的;如果导数小于零,则函数是递减的。

2. 使用二阶导数:对于二次可导函数,可以通过求二阶导数来确定函数的单调性。

如果二阶导数大于零,则函数是凹的,即在该区间上递增;如果二阶导数小于零,则函数是凸的,即在该区间上递减。

3. 使用基本不等式:对于一些特定的函数,可以使用基本不等式来确定函数的单调性。

例如,对于正数的平方根函数,可以使用平均值不等式来证明它的单调性。

4. 使用图像:对于一些简单的函数,可以通过绘制函数的图像来确定函数的单调性。

通过观察图像的上升或下降趋势,可以确定函数的单调性。

需要注意的是,以上方法只能确定函数在某个特定的区间上的单调性。

对于整个定义域上的单调性,可能需要结合多个区间的单调性来确定。

单调性极值及判定最大值最小值

单调性极值及判定最大值最小值

思考题解答 结论不成立. 因为最值点不一定是内点.
例 y f ( x) x x [0,1] 在 x 0 有最小值,但 f (0) 1 0
y
y
y
oa
bx o a
bx o a
bx
步骤:
1.求驻点和不可导点;
2.求区间端点及驻点和不可导点的函数值,比 较大小,那个大那个就是最大值,那个小那个 就是最小值;
注意:如果区间内只有一个极值,则这个极值就 是最值.(最大值或最小值)
二、应用举例
例1 求函数 y 2x3 3x2 12x 14 的在[3,4] 上的最大值与最小值.
驻点和不可导点统称为临界点.
函数的极值必在临界点取得.
第一充分条件;
判别法
(注意使用条件)
第二充分条件;
函数的最大值 与最小值
一、最值的求法
若函数 f ( x) 在 [a, b] 上连续,除个别点外处处可导, 并且至多有有限个导数为零的点,则 f ( x) 在 [a, b] 上的最大值与最小值存在 .
1 x f ( x)在[0,)上连续,且(0,)可导,f ( x) 0,
在[0,)上单调增加; f (0) 0,
当x 0时,x ln(1 x) 0, 即 x ln(1 x).
试证当x 0时, x arctanx.
证 : 设f (x) x, g(x) arctanx,
G(x) f (x) g(x),则
解 f ( x) 6( x 2)(x 1)
解方程 f ( x) 0,得 x1 2, x2 1.
计算 f (3) 23;
f (2) 34;
f (1) 7;
f (4) 142;
y 2x3 3x2 12x 14

34 函数的单调性、凹凸性与极值

34 函数的单调性、凹凸性与极值

(2)求拐点的方法
方法: 设函数f ( x )在 x0的邻域内二阶可导, 且 f ′′( x0 ) = 0, 则有:
1) x0 两近旁f ′′( x )变号, 点( x0 , f ( x0 ))为拐点;
2) x0 两近旁f ′′( x )不变号, 点( x0 , f ( x0 ))不是拐点.
例9 求曲线 y = 3 x 4 − 4 x 3 + 1 的拐点及凹、凸的区间. 解 易见函数的定义域为 ( −∞ ,+∞ ),
定理4 (第一充分条件) 设函数 f ( x ) 在点 x0 的某个邻域内连续并且 可导(导数 f ′( x0 ) 也可以不存在), (1)如果在点 x0的左邻域内 f ′( x ) > 0; 在点 x0的右 邻域内 f ′( x ) < 0, 则 f ( x ) 在 x0 处取得极大值 f ( x0 ); (2)如果在点 x0的左邻域内 f ′( x ) < 0; 在点 x0的右 邻域内 f ′( x ) > 0, 则 f ( x ) 在 x0 处取得极小值 f ( x0 ); (3)如果在点 x0的邻域内, 在 x0处没有极值.
例3
2 3 y = x 讨论函数 的单调区间.
解 Q D : ( −∞ ,+∞ ).
y′ = 32 ( x ≠ 0), 3 x 当 x = 0 时, 导数不存在.
当 x < 0时,y′ < 0,
∴ 在 ( −∞ , 0]上单调减少;
当 x > 0时,y′ > 0,
∴ 在 [0, +∞ )上单调增加;
向上凸:图形 上任意弧段位 于所张弦的上 方
定义 设 f ( x ) 在区间 I 内连续,
x1 + x 2 f ( x1 ) + f ( x 2 ) ∀x1 , x2 ∈ I , 恒有 f ( )< , 2 2 则称 f ( x ) 在 I 上的图形是(向上)凹的. x1 + x 2 f ( x1 ) + f ( x 2 ) ∀x1 , x2 ∈ I , 恒有 f ( )> , 2 2

含参数的函数单调区间的求法浅析

含参数的函数单调区间的求法浅析
中图分 类 号 : C . 6 3 3 文献标 识 码 : A 文章 编号 : 1 0 0 5 — 6 3 5 1 ( 2 0 1 3 ) 一 0 9— 0 0 7 7 — 0 1
例1 : 求函数 ) = ÷ 一 2 a x 。 + 2 x + 1 的 单调区间.

解: ‘ . ‘ / ( )= 一 4 似+ 2 , △= 1 6 a 一 8
摘 要: 求函数 , , = , ( ) 的单调区间, 事实上就是在其定义域的范围内解不等式, ( ) > O或, ( ) < 0 。而含参数的函数的单调 区 间就 涉及到舍参 不等式, ( ) > O 或, ( ) < O的分类讨论 问题 。常遇到的分类标准有哪些呢?笔者下面通过几道例题予以说明。 关键词 : 参数 ; 函数 ; 单调 区间
『 二

2 、 当口 = O时 , ‘ . ‘ , ( )= 3 x ≥O , 则函数, ( ) 的单 增 区 间 为 (一 ∞ , +∞) ; 不 等 式 一 4 似+ 2 > O的 解集为 (- 一 ∞, 2 a 一 ̄ , , 4 口 一 2 ) U( 2 a 3 、 当口 > 0时 , 。 < : , 函数 , ( ) 的单增区间为 ( 一a O, 0 ) 和
语 数外学 习
No . 0 9. 2 0 1 3
Y u S h u r a i X u e X i
2 0 1 3年第 9期
含 参 数 的 函数 单调 区 间的 求 法 浅 析
张 红
( 巴彦淖 尔市杭锦 后旗奋斗 中学, 内蒙古 巴彦 淖尔 0 1 5 4 0 0 )






, ( ) = 0的两 个根 为 = o , : =

函数单调性方法和各种题型

函数单调性方法和各种题型

函数单调性奇偶性方法和各种题型总结一、单调性总结:(一)判断函数单调性的基本方法Ⅰ、定义法:定义域判断函数单调性的步骤:取值、作差(或商)变形、定号、判断。

例1:已知函数f(x)=x3+x,判断f(x)在(-∞,+∞)上的单调性并证明Ⅱ、直接法(一次函数、二次函数、反比例函数的单调可直接说出):在公共区间内,增函数+增函数=增函数,减函数+减函数=减函数例2:判断函数y=-x+1+1/x在(0,+∞)内的单调性Ⅲ、图像法:说明:⑴单调区间是定义域的子集⑵定义x1、x2的任意性⑶代数:自变量与函数值同大或同小→单调增函数自变量与函数相对→单调减函数例3:y=|x2+2x-3|练习:(二)函数单调性的应用Ⅰ、利用函数单调性求连续函数的值域(最值) 根据增函数减函数的定义我们可得到如下结论:(1)若 f(x)在某定义域[a,b]上是增函数,则当x=a 时, f(x) 有最小值f(a),当 x=b 时, f(x)有最大值 f(b)。

(2)若 f(x)在某定义域[a,b]上是减函数,则当x=a 时, f(x) 有最大值f(a),当 x=b 时, f(x)有最小值 f(b)。

例1:求下列函数的值域 (1)y=x 2-6x+3, x ∈[-1,2] (2)y=-x 2+2x+2, x ∈[-1,4] 练习题:1.已知函数f(x)在区间[a,c]上单调减小,在区间[c,b]上单调增加,则f(x)在[a,b]上的最小值是 ( )2.数f(x)=4x 2-mx+5在区间[-2,+∞)上是增函数,则f(1)的取值范围是( )3、()有函数13+--=x x y存在、最大值、最小值都不,最小值、最大值,最小值、最大值,最小值、最大值D C B A 4-44-0044、](()()的值域为时,函数当1435,02+-=∈x x x f x()()][()()]()][5,5,323205,0f c D f f C f f B f f A 、、、、、⎢⎣⎡⎪⎭⎫⎝⎛⎢⎣⎡⎥⎦⎤⎪⎭⎫ ⎝⎛ 5、求函数y=-x-6+ 的值域x -1Ⅱ、利用函数单调性求单调区间1、()________..62是的单调区间函数-+=x x x f2、()的递增区间是函数245x x y --=](][][)[∞+∞∞、、、、、、、、11-2-2--2--D C B A3、函数的增区间是( )。

如何利用导数讨论函数单调性?

如何利用导数讨论函数单调性?

高三复习:利用导数讨论函数单调性、求极值、最值1. 函数的单调性在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间内是增加的;如果f ′(x )<0,那么函数y =f (x )在这个区间内是减少的. 2. 函数的极值(1)判断f (x 0)是极值的方法一般地,当函数f (x )在点x 0处连续时,①如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值; ②如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值. (2)求可导函数极值的步骤 ①求f ′(x );②求方程f ′(x )=0的根;③检查f ′(x )在方程f ′(x )=0的根的左右两侧导数值的符号.如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值. 3. 函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上是增加的,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上是减少的,则f (a )为函数的最大值,f (b )为函数的最小值.(3)设函数f (x )在[a ,b ]上连续,在(a ,b )内可导,求f (x )在[a ,b ]上的最大值和最小值的步骤如下: ①求f (x )在(a ,b )内的极值;②将f (x )的各极值与f (a ),f (b )进行比较,其中最大的一个是最大值,最小的一个是最小值.1. 若函数f (x )=x 2+ax +1在x =1处取极值,则a =________.2. 函数f (x )=x 3+ax -2在(1,+∞)上是增函数,则实数a 的取值范围是________.3. 如图是y =f (x )导数的图像,对于下列四个判断:①f (x )在[-2,-1]上是增函数; ②x =-1是f (x )的极小值点;③f (x )在[-1,2]上是增函数,在[2,4]上是减函数; ④x =3是f (x )的极小值点.4. 设函数g (x )=x (x 2-1),则g (x )在区间[0,1]上的最小值为( )A .-1B .0C .-239D.335. (·辽宁)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)典例透析题型一 利用导数研究函数的单调性 例1 已知函数f (x )=x 3-ax 2-3x .(1)若f (x )在[1,+∞)上是增加的,求实数a 的取值范围; (2)若x =3是f (x )的极值点,求f (x )的单调区间. 解探究提高(1)利用导数求函数f (x )的单调区间的一般步骤:①确定函数f (x )的定义域;②求导数f ′(x )《③在函数f (x )的定义域内解不等式f ′(x )>0和f ′(x )<0; ④根据③的结果确定函数f (x )的单调区间. (2) 要注意对含参数的函数的单调性进行讨论. 例2.(2018年新课标1)已知函数()1ln f x x a x x=-+.(1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:()()12122f x f x a x x -<--.1.如果函数()y f x =的图象如右图,那么导函数()y f x '=的图象可能是( )2.(2014广东文数)已知函数321()1()3f x x x ax a R =+++∈, 求函数()f x 的单调区间;3 .当0x >时,讨论函数2()xg x e x =-的单调性例3.(2017年新课标1)已知函数)f x =(a e 2x+(a ﹣2) e x ﹣x .(1)讨论()f x 的单调性;练习1.若函数f (x ) =e x (x 2- 2x + 1- a ) - x 恒有2个零点, 则a 的取值范围是 ()A. (-1e ,+∞) B. (-∞,1) C. (0,1e ) D. (-∞,-1e )2.. (安徽)设f (x )=e x 1+ax 2,其中a 为正实数. (1)当a =43时,求f (x )的极值点; (2)若f (x )为R 上的单调函数,求a 的取值范围. 解2.(2020年新课标1理科)已知函数2()e x f x ax x =+-. (1)当a =1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.3.(2021年新高考1)22. 已知函数()()1ln f x x x =-.(1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. 若函数y =f (x )的导函数y =f ′(x )的图像如图所示,则y =f (x )的图像可能为( )2. 设a ∈R ,若函数y =e x +ax ,x ∈R 有大于零的极值点,则( )A .a <-1B .a >-1C .a >-1eD .a <-1e3. 函数f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是( )A .-2B .0C .2D .44. 若函数f (x )=13x 3-12ax 2+(a -1)x +1在区间(1,4)内为减函数,在区间(6,+∞)内为增函数,则实数a 的取值范围是 ( ) A .a ≤2 B .5≤a ≤7 C .4≤a ≤6 D .a ≤5或a ≥7二、填空题(每小题5分,共15分)5. 已知f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为________.6. 已知函数f (x )=(m -2)x 2+(m 2-4)x +m 是偶函数,函数g (x )=-x 3+2x 2+mx +5在(-∞,+∞)内单调递减,则实数m =________.7. 函数f (x )=x 3+3ax 2+3[(a +2)x +1]有极大值又有极小值,则a 的取值范围是________.B 组 专项能力提升一、选择题(每小题5分,共15分)1.(2012·重庆)设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图像可能是( )2. 函数y =x e -x ,x ∈[0,4]的最小值为( )A .0 B.1eC.4e4D.2e23. f (x )是定义在R 上的偶函数,当x <0时,f (x )+x ·f ′(x )<0,且f (-4)=0,则不等式xf (x )>0的解集为( )A .(0,4)B .(-4,4)C .(-∞,-4)∪(0,4)D .(-∞,-4)二、填空题(每小题5分,共15分)4. 已知函数f (x )=x 3+ax 2+bx +c (x ∈[-2,2])对应的曲线C 过坐标原点,且在x =±1处切线的斜率均为-1,则f (x )的最大值和最小值之和等于________.5. 设函数f (x )=p ⎝⎛⎭⎫x -1x -2ln x (p 是实数),若函数f (x )在其定义域内是增加的,则实数p 的取值范围为______.6. 已知函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围是________.。

证明函数的单调性的步骤

证明函数的单调性的步骤

证明函数的单调性的步骤
利用定义证明函数单调性的步骤
①任意取值:即设x1、x2是该区间内的任意两个值,且x1<x2
②作差变形:作差f(x1)-f(x2),并因式分解、配方、有理化等方法将差式向有利于判断差的符号的方向变形
③判断定号:确定f(x1)-f(x2)的符号
④得出结论:根据定义作出结论(若差0,则为增函数;若差0,则为减函数)
即“任意取值——作差变形——判断定号——得出结论”
函数单调性的判断方法有导数法、定义法、性质法和复合函数同增异减法。

首先对函数进行求导,令导函数等于零,得X值,判断X与导函数的关系,当导函数大于零时是增函数,小于零是减函数。

1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档