第1讲 必修1第一章集合的基本含、集合间的基本关系以及基本运算-学生版

合集下载

高一第1单元集合的知识点

高一第1单元集合的知识点

高一第1单元集合的知识点在高中数学中,集合论是一个重要的数学分支,是数学的基础之一。

在高一的第1单元中,我们将学习并掌握集合的基本概念、运算和性质。

本文将围绕这些方面进行讨论,以帮助学生更好地理解和应用集合的知识。

一、集合的概念在数学中,集合是若干个元素的总和。

我们可以用花括号 {}来表示一个集合,集合中的元素用逗号隔开。

例如,{1, 2, 3, 4} 表示由4个元素组成的集合。

集合中的元素可以是数字、字母、词语或其他数学对象。

集合中的元素具有互异性,即集合中的元素不重复。

例如,{1, 2, 3, 3} 和 {1, 2, 3} 表示的是同一个集合,因为集合中的元素相同。

另外,集合中的元素没有顺序之分,{1, 2, 3} 和 {3, 2, 1} 表示的也是同一个集合。

二、集合的运算在集合论中,我们可以进行多种运算操作,包括并集、交集、差集和补集。

1. 并集是指将两个或多个集合的所有元素合并在一起得到的新集合。

并集的符号为∪。

例如,对于集合 A = {1, 2, 3} 和 B = {3, 4, 5},它们的并集为 A∪B = {1, 2, 3, 4, 5}。

2. 交集是指两个集合共同拥有的元素构成的集合。

交集的符号为∩。

例如,对于集合 A 和 B,它们的交集为A∩B。

3. 差集是指属于一个集合而不属于另一个集合的元素组成的集合。

差集的符号为 -。

例如,对于集合 A 和集合 B,它们的差集为A-B。

4. 补集是指在一个全集中,不属于某个集合的元素构成的集合。

补集的符号通常用 ' 来表示。

例如,对于全集 U 和集合 A,它们的补集为 A'。

三、集合的性质在集合论中,还有一些重要的性质需要我们掌握和应用。

1. 元素的个数:集合中元素的个数称为集合的基数。

我们用符号 |A| 来表示集合 A 的基数。

例如,对于集合 A = {1, 2, 3, 4},它的基数为 |A| = 4。

2. 子集关系:如果一个集合中的所有元素都属于另一个集合,那么前者被称为后者的子集。

高一数学必修一第一章集合知识点

高一数学必修一第一章集合知识点

高一数学必修一第一章集合知识点高中数学因为知识点多,好多同学听课能听懂,但是做题却不会。

因此,经常性的复习是巩固数学知识点的很好的途径。

以下是店铺为您整理的关于高一数学必修一第一章集合知识点的相关资料,供您阅读。

高一数学必修一第一章集合知识点知识点总结本节包括集合的概念、集合元素的特性、集合的表示方法、常见的特殊集合、集合的分类和集合间的基本关系等知识点,除了集合的表示方法中的描述法较难理解,其它的都多是好理解的知识,只需加强记忆。

一、集合有关概念1、集合的含义2、集合中元素的三个特性:确定性、互异性、无序性。

整数集Z (包括负整数、零和正整数) (4)有理数集Q (5)实数集R 6、集合的分类:(1)有限集;(2)无限集;(3)空集。

二、集合间的基本关系 1、子集2、真子集 3、空集常见考法集合是学习函数的基础知识,在段考和高考中是必考内容。

在段考中多考查集合间的子集和真子集关系,在高考中也是不可少的考查内容,多以选择题和填空题的形式出现,经常出现在选择填空题的前几小题,难度不大。

主要与函数和方程、不等式联合考查的集合的表示方法和集合间的基本关系。

误区提醒2、集合的关系问题,有同学容易忽视空集这个特殊的集合,导致错解。

空集是任何集合的子集,是任何非空集合的真子集。

3、集合的运算要注意灵活运用韦恩图和数轴,这实际上是数形结合的思想的具体运用。

4、集合的运算注意端点的取等问题。

最好是直接代入原题检验。

5、集合中的元素具有确定性、互异性和无序性三个特征,尤其是确定性和互异性。

在解题中,要注意把握与运用,例如在解答含有参数问题时,千万别忘了检验,否则很可能会因为不满足“互异性”而导致结论错误。

【典型例题】。

高一数学必修一 第一章 集合的概念与基本运算北师大版知识精讲

高一数学必修一  第一章  集合的概念与基本运算北师大版知识精讲

高一数学必修一第一章集合的概念与基本运算北师大版【本讲教育信息】一、教学内容:集合的概念与基本运算二、学习目标:1、通过实例了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号;2、理解集合的表示法,用集合语言对事物进行准确的分类,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言表示数学内容的简洁性和准确性;3、理解集合之间包含与相等的含义,能识别给定集合的子集。

培养分析、比较、归纳的逻辑思维能力;4、能在具体情境中,了解全集与空集的含义;5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集;培养从具体到抽象的思维方法;6、理解在给定集合中,一个子集的补集的含义,会求给定子集的补集;7、能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

三、知识要点(一)集合的含义与表示1、集合(2)一般地,指定的某些对象的全体称为集合;(2)集合常用大写字母A、B、M、N……标记;(3)一些常用的数集及其记法:自然数集:N;正整数集:N+;整数集:Z;有理数集:Q;实数集:R;2、元素(1)集合中的每个对象叫作这个集合的元素;(2)元素常用小写字母a,b,c,d,……标记;3、元素与集合的关系:若a在集合中,就说a属于集合A,记作a∈A;若a不在集合A中,就说a不属于集合A,记作a A。

4、集合的表示方法(1)列举法:把集合中的元素一一列举出来写在大括号内。

如:小于10的所有质数组成的集合用列举法可以表示为A={2,3,5,7}。

(2)描述法:描述该集合中所有元素都应该满足的条件的方法。

如:大于1而小于10的所有实数组成的集合用描述法可以表示为B ={x |1<x<10}。

(3)图示法:用一个封闭的曲线的内部直观地表示一个集合的方法,这个封闭的曲线称为Venn 图。

如:小于10的所有质数组成的集合用Venn 图可以表示为5、集合的分类(1)有限集:含有有限个元素的集合;(2)无限集:含有无限个元素的集合;(3)空集:不含任何元素的集合,用符号φ表示。

必修一_第一章_集合(集合讲义_做的很细_适合初学者)

必修一_第一章_集合(集合讲义_做的很细_适合初学者)

集合之欧侯瑞魂创作1.1 集合的含义与暗示21.11 集合的含义21.2 子集、全集、补集91.3 交集、并集13第一章集合空集一、知识梳理1.集合的含义:一些元素组成的构成一个集合(set).注意:(1)集合是数学中原始的、不界说的概念, 只作描述.(2)集合是一个“整体.(3)构成集合的对象必需是“确定的”且“分歧”的2.集合中的元素:集合中的每一个对象称为该集合的元素(element).简称元.集合一般用年夜写拉丁字母暗示, 如集合A,元素一般用小写拉丁字母暗示.如a,b,c……等.思考:构成集合的元素是不是只能是数或点?【答】3.集合中元素的特性:(1)确定性.设A 是一个给定的集合, x是某一元素, 则x是A的元素, 或者不是A的元素, 两种情况必有一种且只有一种成立.(2)互异性.对一个给定的集合, 它的任何两个元素都是分歧的.(3)无序性.集合与其中元素的排列次第无关.4.经常使用数集及其记法:一般地, 自然数集记作____________正整数集记作__________或___________整数集记作________有理数记作_______实数集记作________5.元素与集合的关系:如果a是集合A的元素, 就记作__________ 读作“___________________”;如果a不是集合A的元素, 就记作______或______读作“_______________”;6.集合的分类:按它的元素个数几多来分:(i) _________________叫做有限集;(ii)________________________叫做无限集;(iii)_______________叫做空集, 记为_____________二、例题讲解1、运用集合中元素的特性来解决问题例1.下列研究的对象能否构成集合(1)世界上最高的山峰(2)高一数学课本中的难题(3)中国国旗的颜色(4)book中的字母(5)立方即是自己的实数(6)不等式2x-8<13的正整数解【解】点评:判断一组对象能否组成集合关键是能否找到一个明确的标准, 依照这个确定的标准, 它要么是这个集合的元素, 要么不是这个集合的元素, 即元素确定性.例2:集合M中的元素为1, x, x2-x, 求x的范围?分析:根据集合中的元素互异性可知:集合里的元素各不相同, 联列不等式组.点评: 元素的特性(特别是互异性)是解决问题的切入点.例3:三个元素的集合也可暗示为0, a2, a+b, 求a2005+ b2006的值.分析:三个元素的集合也可暗示另外一种形式, 说明这两个集合相同, 而该题目从特殊元素0入手, 可以省去繁琐的讨论.点评:从特殊元素入手, 灵活运用集合的三个特征.2、运用元素与集合的关系来解决一些问题例4:集合A中的元素由∈Z,b∈Z)组成, 判断下列元素与集合A的关系?(1)0 (2(3分析:先把x写成, 再观察a, b是否为整数.点评:要判断某个元素是否是某个集合的元素, 就是看这个元素是否满足该集合的特性或具体表达形式.例5:不包括-1, 0, 1的实数集A满足条件a∈A, A, 如果2∈A,求A中的元素?分析:该题的集合所满足的特征是由笼统的语句给出的, 把2这个具体的元素代入求出A的另一个元素, 但该题要循环代入, 求出其余的元素, 同学们可能想不到.三、巩固练习1.下列研究的对象能否构成集合①某校个子较高的同学;②倒数即是自己的实数③所有的无理数④讲台上的一盒白粉笔⑤中国的直辖市⑥中国的年夜城市2.下列写法正确的是___________________②当n∈N时, 由所有(-1)n的数值组成的集合为无限集④-1∈Z ⑤由book中的字母组成的集合与元素k, o, b组成的集合是同一个集合把正确的序号填在横线上31_______N -3_________N 0__________N1_______Z-3_________Q 0__________Z0_______N*________R_______Qcos300_______Z4. 由实数的个数是_________________个一、知识梳理1. 集合的经常使用暗示方法: (1)列举法将集合的元素一一列举出来, 并____________________暗示集合的方法叫列举法. 注意:①元素与元素之间必需用“, ”隔开; ②集合的元素必需是明确的; ③各元素的呈现无顺序;集合的暗示 描述法列举法④集合里的元素不能重复;⑤集合里的元素可以暗示任何事物.(2)描述法将集合的所有元素都具有性质()暗示出来, 写成_________的形式,称之为描述法.注意:①写清楚该集合中元素满足性质;②不能呈现未被说明的字母;③多层描述时, 应当准确使用“或”, “且”;④所有描述的内容都要写在集合的括号内;⑤用于描述的语句力求简明, 准确.思考:还有其它暗示集合的方法吗?【答】文字描述法:是一种特殊的描述法,如:{正整数}, {三角形}图示法(Venn图):用平面上封闭曲线的内部代集合.2. 集合相等如果两个集合A, B所含的元素完全相同,___________________________________ 则称这两个集合相等, 记为:_____________二、例题讲解1、用集合的两种经常使用方法具体地暗示合例1.用列举法暗示下列集合:(1)中国国旗的颜色的集合;(2)单词mathematics中的字母的集合;(3)自然数中不年夜于10的质数的集合;(4集合;(5集合.(6){(x,y)|3x+2y=16, x∈N, y∈N }分析:先求出集合的元素, 再用列举法暗示.点评:(1)用列举法暗示集合的步伐为:①求出集合中的元素②把这些元素写在花括号内(2)用列举法暗示集合的优点是元素一目了然;缺点是不容易看出元素所具有的属性.例2.用描述法暗示下列集合:(1(2x的集合;(3)方程x2+x+1=0所有实数解的集合;(4)抛物线y=-x2+3x-6(5分析:用描述法暗示来集合, 先要弄清楚元素所具有的形式, 从而写出其代表元素再确定元素所具有的属性即可.点评: 用描述法暗示集合时, 注意确定和简化集合的元素所具有的共同特性例3.已知试用列举法暗示集合A.分析:用列举法暗示的集合, 要认清集合的实质, 集合中的元素究竟满足哪些条件.点评:本题实际上是要求满足6被3-a整除的整数a的值,则集合A={-3, 0, 1, 2, 4, 5, 6, 9}.2、有关集合相等方面的问题例4.已知集合P={-1,a,b}, Q={-1,a2,b2}, 且Q=P, 求1+a2+b2的值.分析:含字母的两个集合相等, 其实不意味着顺次对应相等, 要分类讨论, 同时也要考虑集合中的元素的互异性和无序性.例5.已知集合有唯一元素, 用列举法暗示a的值构成的集合A.点拔:本题集合有唯一元素,分母, 转化为一元二次方程的判别式为0, 事实上当, 也能满足唯一元素, 但方程已不是一元二次方程, 而是一元一次方程, 也有唯一解, 所以本题要分三种情况讨论.三、巩固练习1.用列举法暗示下列集合: (1) {x|x 2+x+1=0}(2){x|x 为不年夜于15的正约数} (3) {x|x 为不年夜于10的正偶数} (4){(x,y)|0≤x ≤2, 0≤y<2, x, y ∈Z} 2. 用描述法暗示下列集合: (1) 奇数的集合; (2)正偶数的集合;(3)不等式2x-3>5的解集;(4)直角坐标平面内属于第四象限的点的 集合; .3. 下列集合暗示法正确的是 (1) {1, 2, 2}; (2) {Ф};(3) {全体有理数};(4){2, 4};(5)不等式x 2-5>0的解集为{x 2-5>0}. 4、集合A={x|y=x2+1}, B={t|p=t 2+1}这三个集合的关系?5、已知试用列举法暗示集合A .1.2 子集、全集、补集一、知识梳理1.子集的概念及记法:如果集合A 的任意一个元素都是集合B 的元素( ), 则称集合 A 为集合B 的子集(subset ),记为___________或___________读作“________________”或“__________________”用符号语言可暗示为:__________________.注意:(1)A 是B 的子集的含义:任意x ∈A, 能推出x ∈B ;(2)不能理解为子集A 是B 中的“部份元素”所组成的集合. 2.子集的性质: ① 思考 【答】 _________ 3.真子集的概念及记法:相等 集 合 的 关 系包括 全集子集 真子集补集而且A≠B, 这时集合 A称为集合B的真子集(proper set),记为_________或_________读作“____________________”或“__________________”4.真子集的性质:非空集合的真子集符号暗示为___________________②真子集具备传递性符号暗示为___________________5.全集的概念:如果集合U包括我们所要研究的各个集合,这时U可以看做一个全集(universal set)全集通常记作_____6.补集的概念:设____________, 由U中不属于A的所有元素组成的集合称为U的子集A的补集(complementary set), 记为___________”7二、例题讲解1、写出一个集合的子集、真子集及其个数公式例1.写出集合{a, b}的所有子集及其真子集;写出集合{a, b, c}的所有子集及其真子集;分析:按子集的元素的几多分别写出所有子集, 这样才华到达不重复, 无遗漏,点评:写子集, 真子集要按一定顺序来写.①一个集合里有n个元素, 那么它有2n个子集;②一个集合里有n个元素, 那么它有2n-1个真子集;③一个集合里有n个元素, 那么它有2n-2个非空真子集.2、判断元素与集合之间、集合与集合之间的关系例2:以下各组是什么关系, 用适当的符号暗示出来.(1)a与{a} 0 与(2(3)S={-2, -1, 1, 2}, A={-1, 1},B={-2, 2};(4)S=R, A={x|x≤0, x∈R}, B={x|x>0 , x∈R };(5)S={x|x为地球人 }, A={x|x 为中国人}, B={x|x为外国人 }点评:①判断两个集合的包括关系, 主要是根据集合的子集, 真子集的概念, 看两个集合里的元素的关系, 是包括, 真包括, 相等.②元素与集合之间用_______________集合与集合之间用_______________3、运用子集的性质例3:设集合A={x|x2+4x=0, x∈R}, B={x|x2+2(a+1)x+a2-1=0, x∈R}, 若求实数a的取值范围.分析:首先要弄清集合A中含有哪些元素, 在由可知, 集合B按元素的几多分类讨论即可.点评:, 要提防这一点.4、补集的求法例4:A,U=R, 试求A②设全集U=R, A={x|x>1}, B={x|x+a<0},, 求实数a 的取值范围.【解】①x>2}② B={x|x+a<0}={x|x<-a} ,1}如图所示:-a≤ 1即a ≥-1点评:求集合的补集时通常借助于数轴, 比力形象, 直观.三、巩固练习1.判断下列暗示是否正确:∈{a, b}(4) {-1, 1} {-1, 0, 1} ≠ {-⊂2.指出下列各组中集合A与B之间的关系.(1) A={-1, 1}, B=Z;(2)A={1, 3, 5, 15}, B={x|x是15的正约数};(3) A = N*, B=N(4) A ={x|x=1+a2,a∈N*}B={x|x=a2-4a+5,a∈N*}3.(1)已知则这样的集合M有几多个?(2)已知M={1, 2, 3, 4, 5, 6, 7,8, 9}, 集合P满足:则P, 则这样的集合P有几多个?4.以下各组是什么关系, 用适当的符号表来.{0} (2) {-1, 1}与{1, -1}(3) {(a,b)} 与{(b,a)}三、若U=Z, A={x|x=2k, k∈Z}, B={x|x=2k+1, k∈Z}, 则:6.设全集是数集U={2, 3, a2+2a-3}, 已知求实数a, b的值.7∈∈Z},∈Z}, 试判断A、B、C满足的关系8.已知集合A={x|x2-1=0 }, B={x|x2-2ax+b=0}求a, b的取值范围.1.3 交集、并集一、知识梳理1.交集的界说:一般地, ______________________________________________,称为A 与B 交集(intersection set), 记作____________读作“___________”. 交集的界说用符号语言暗示为:__________________________________交集的界说用图形语言暗示为:_________________________________注意:(1)交集(A ∩B )实质上是A 与B 的公共元素所组成的集合.(2)当集合A 与B 没有公共元素时, 不能说A 与B 没有交集,而是A ∩2.交集的经常使用性质:(1) A ∩A = A ;交集 界说 集合的运算 运用 性质 并集 界说 集合的运算 运用 性质(2) A(3) A∩B = B∩A;(4)(A∩B)∩C =A∩(B∩C);(5) A∩∩3.集合的交集与子集:思考:A∩B=A, 可能成立吗?【答】_______________________________________________结论:A∩4.区间的暗示法:设a, b是两个实数, 且a<b, 我们规定:[a, b] = _____________________(a, b)= _____________________[a , b)= _____________________(a , b] = ______________________(a, +∞)=______________________(-∞, b)=______________________(-∞, +∞)=____________________其中 [a, b], (a, b)分别叫闭区间、开区间;[a , b), (a , b] 叫半开半闭区间;a, b叫做相应区间的端点.注意:(1)区间是数轴上某一线段或数轴上的点所对应的实数的取值集合又一种符号语言.(2)区间符号内的两个字母或数之间用“, ”号隔开.(3)∞读作无穷年夜, 它是一个符号, 不是一个数. 5.并集的界说:一般地, _________________________________________________, 称为集合A与集合B的并集(union set) 记作__________读作“___________”.交集的界说用符号语言暗示为:__________________________________交集的界说用图形语言暗示为:_________________________________注意:并集(A∪B)实质上是A与B的所有元素所组成的集合, 可是公共元素在同一个集合中要注意元素的互异性.6.并集的经常使用性质:(1) A∪A = A;(2) A;(3) A∪B = B∪A;(4)(A∪B)∪C =A∪(B∪C);(5)∪∪B7.集合的并集与子集:思考:A∪B=A, 可能成立吗?A【答】________________________结论:A∪二、例题讲解1、求集合的交、并、补集例1.(1)设A={-1, 0, 1}, B={0, 1, 2, 3}, 求A∩B;(2)设A={x|x>0}, B={x|x≤1}, 求A∩B;(3)设A={x|x=3k, k∈Z}, B={y|y=3k+1 k∈Z },C={z|z=3k+2, k∈Z}, D={x|x=6k+1, k∈Z}, 求A∩B;A∩C;C∩B;D∩B;点评:不等式的集合求交集时, 运用数轴比力直观, 形象.例2:已知数集A={a2, a+1, -3}, 数集B={a-3,a-2, a2+1}, 若A∩B={-3}, 求a的值.点评:在集合的运算中, 求有关字母的值时, 要注意分类讨论及验证集合的特性.例3:(1)设集合A={y|y=x2-2x+3, x∈R}, B={y|y=-x2+2x+10, x∈R}, 求A∩B;(2)设集合A={(x,y)|y=x+1, x∈R}, B={(x,y)|y=-x2x∈R}, 求A∩B;分析:先求出两个集合的元素, 或者集合中元素的范围, 再进行交集运算.特别注意(1)、(2)两题的区别, 这是同学们容易忽视的处所.点评:求集合的交集时, 注意集合的实质, 是点集还时数集.是数集求元素的公共部份, 是点集的求方程组的解所组成的集合.变式训练:1、根据下面给出的A 、B, 求A∪B①A={-1, 0, 1}, B={0, 1, 2, 3};②A={y|y=x2-2x}, B={x||x|≤3};③A={梯形}, B={平行四边形}.2.已知全集U=R, A={x|-4≤x<2}, B=(-1, 3), P={x|x≤0, 或x求:①(A∪B)∩P③ (A∩B).点评:求不等式暗示的数集的并集时, 运用数轴比力直观, 能简化思维过程3、已知集合A={y|y=x-1, x∈R}, B={(x,y)|y=x2-1, x∈R}, C={x|y=x+1, y≥3},分析:首先弄清楚A, B, C三个集合的元素究竟是什么?然后再求出集合的有关运算.点评:本题容易呈现的毛病是不考虑各集合的代表元, 而解方程组.突破方法是:进行集合运算时, 应分析集合内的元素是数, 还是点, 或其它.2、运用并集的性质解题例4:已知集合A={x|x2-1=0 }, B={x|x2-2ax+b=0}, A∪B=A, 求a, b的值或a,b所满足的条件.分析:由于A∪B=A, 可知:而A={1, -1}, 从而顺利地求出实数a, b满足的值或范围.点评:利用性质:A∪是解题的关键, 提防失落进空集这一陷阱之中.变式训练:1.若集合P={1, 2, 4, m}, Q={2, m2}, 满足P∪Q={1, 2, 4, m}, 求实数m的值组成的集合.2. 已知集合A={x|x2-4x+3=0}, B={x|x2-ax-1=0}, C={x|x2-mx+1=0}, 且A∪B=AA∩C=C, 求a, m的值或取范围.例5:若A={x|x2-ax+a2-19=0}, B={x|x2-5x+6=0}, C={x|x2+2x-8=0},(1)若A∪B=A∩B, 求a的值;(2∩B, A∩求a的值.总结:解决本题的关键是利用重要结论:A∪B=A∩3、运用交集的性质解题例6:已知集合A={2, 5}, B={x|x2+px+q=0, x∈R}(1)若B={5}, 求p, q的值.(2)若A∩B= B , 求实数p, q满足的条件.分析:(1)由B={5}, 知:方程x2+px+q=0有两个相等, 再用一元二次方程的根与系数的关系容易求p, q的值.(2)由A∩B= B可知:而A={2, 5}从而顺利地求出实数⊂p, q满足的条件.点评:利用性质:A∩是解题的关键, 提防失落进空集这一陷阱之中.变式训练:1.已知集合A={x|x2+x-6=0}, B={x|mx+1=0}, 若A∩B =B, 求实数m所构成的集合M.2.已知集合M={x|x≤-1}, N={x|x>a-2}, 若M∩N则a满足的条件是什么?4、借助Venn图解决集合的运算问题例7不年夜于20的质数}, M,N是U的两个子集,求M, N的值.分析:用Venn图暗示集合M, N, U, 将符合条件的元素依次填入即可.5、交集并集性质的应用例8、已知集合A={(x,y)|x2-y2-y=4}, B={(x,y)|x2-xy-2y2=0}, C={(x,y)|x-2y=0}, D{(x,y)|x+y=0}.(1)判断B、C、D间的关系;(2)求A∩B.6、交集、并集在实际生活中的应用例9、某学校高一(5)班有学生50人, 介入航模小且的有25人, 介入电脑小组的有32人, 求既介入航模小组, 又介入电脑小组的人数的最年夜值和最小值.思维分析:题目以应用为布景, 解题关键是将文字转化为集合语言, 用集合运算来解决扑朔迷离的现实问题.7、数形结合思想与交集并集的应用例10、已知集合A={x|-2<x<-1, 或x>0}, B={x|a≤x≤b}, 满足A∩B={x|0<x≤2}, A∪B={x|x>-2}, 求a、b的值.点评:此题应熟悉集合的交与并的含义, 掌握在数轴上暗示集合的交与并的方法.8、分类讨论思想与交集、并集的综合应用例11、已知集合A={x|x2-4x+3=0}, B={x|x2-ax+a-1=0}, C={x|x2-mx+1=0}, 且A∪B=A, A∩C=C, 求a,m的值或取值范围.分析:先求出集合A, 由A∪由A∩然后根据方程根的情况讨论.评注:本例考查A与B, A与C的关系和分类讨论的能力.三、巩固练习1.设A=(-1, 3], B=[2, 4), 求A∪B;2.已知A={y|y=x2-1}, B={y|x2=-y+2}求A∪B;3.写出阴影部份所暗示的集合:4.集合U={1, 2, 3, 4, 5, 6}, B={1, 4}A={2, 3, 5}5. 设集合A={小于7的正偶数}, B={-2, 0, 2, 4}, 求A∩B;6. 设集合A={x|x≥0}, B={x|x≤0,x∈R}, 求A∩B;7. 设集合A={(x,y)|y=-4x+6, x∈R}, B={(x,y)|x=y2-1}求A∩B;8. 设集合A={x||x=2k+1, k∈Z}, B={y|y=2k-1, k∈Z},C={x|x=2k , k∈Z},求A∩B, B∩C.9、集合A={x|x<-3, 或x>3}, B={x|x<1, 或x>4}, 则A∩B=__________.10、集合A={a2, a+1, -3}, B={a-3, 2a-1, a2+1}, 若A∩B={-3},则a的值为___________.11、已知A={x|x2-px+15=0}, B={x|x2-ax-b=0}, 且A∪B={2,3,5}, A∩B={3}, 求p,a,b的值.12、集合{3, x, x2-2x}中, x应满足的条件是___________.13、设A={x|x2+4x=0}, B={x|x2+2(a+1)x+a2-1=0,a∈R}.(1)若A∩B=B, 求实数a的值.(2)若A∪B=B,求实数a的值.。

新高一第一章集合知识点

新高一第一章集合知识点

新高一第一章集合知识点集合是数学中的一个基本概念,它是由一些确定的对象组成的整体。

在高中数学的学习中,集合是一个重要的知识点。

本文将为您介绍新高一第一章的集合知识点,帮助您更好地理解和掌握这一内容。

1. 集合的基本概念一个集合是由若干个元素组成的整体。

集合中的元素是无序的,表示为a∈A(a属于A)。

若元素a属于集合A,则称a是A的元素;反之,若元素a不属于集合A,则称a是A的非元素。

2. 集合的表示方法(1)列举法:直接列出集合中的元素,用花括号{}括起来表示,元素之间用逗号隔开。

例如,集合A = {1, 2, 3, 4}。

(2)描述法:通过描述元素的特点或所满足的条件来表示集合。

例如,集合B = {x | x是正整数,且x<5}表示集合B是由所有小于5的正整数组成。

3. 集合的运算(1)并集:集合A和集合B的并集,表示为A∪B,即A和B两个集合中所有的元素的集合。

例如,A = {1, 2, 3},B = {3, 4, 5},则A∪B = {1, 2, 3, 4, 5}。

(2)交集:集合A和集合B的交集,表示为A∩B,即A和B两个集合中共有的元素组成的集合。

例如,A = {1, 2, 3},B = {3, 4, 5},则A∩B = {3}。

(3)差集:集合A和集合B的差集,表示为A-B,即属于A但不属于B的元素组成的集合。

例如,A = {1, 2, 3},B = {3, 4, 5},则A-B = {1, 2}。

(4)补集:相对于某个全集U而言,集合A中不属于A的元素组成的集合称为集合A相对于全集U的补集,表示为A'或A的补集。

4. 包含关系和子集(1)包含关系:若一个集合A中的所有元素都属于另一个集合B,则称A包含于B,表示为A⊆B。

例如,集合A = {1, 2},集合B = {1, 2, 3},则A⊆B。

(2)真包含关系:若一个集合A包含于另一个集合B,且A≠B,则称A是B的真子集,表示为A⊂B。

高一数学必修一知识点梳理与总结

高一数学必修一知识点梳理与总结

高一数学必修一知识点梳理与总结鹏博教育高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念集合是由一些元素组成的整体。

元素具有确定性、互异性和无序性。

例如,{a,b,c}和{a,c,b}表示同一集合。

集合可以用列举法和描述法表示。

例如,集合A可以表示为A={我校的篮球队员},或者用描述法表示为A={x R|x-3>2}。

常用的数集有非负整数集N、正整数集N*或N+、整数集Z、有理数集Q和实数集R。

二、集合间的基本关系集合间有包含关系和相等关系。

如果集合A包含于集合B,则称A为B的子集,记作A B。

如果A与B是同一集合,则记作A=B。

空集是不含任何元素的集合,记为Φ。

空集是任何集合的子集,也是任何非空集合的真子集。

三、集合的运算集合的运算有交集、并集和补集。

交集是由所有属于A且属于B的元素所组成的集合,记作A B。

并集是由所有属于集合A或属于集合B的元素所组成的集合,记作A B。

补集是由S中所有不属于A的元素组成的集合,记作A的补集。

1.定义集合B为由集合A和集合B'中的元素组成的集合,即B={x|x∈A或x∈B'}。

如图1所示。

2.定义集合CSA为由集合S中属于A的元素和不属于A但属于S的元素组成的集合,即CSA={x|x∈S且(x∈A或x∉A)}。

如图2所示。

3.关于集合A的性质:A与自身的交集等于A本身,即A∩A=A。

A与空集的交集等于空集,即A∩Φ=Φ。

A与集合B的交集包含于A和B中元素共有的部分,即A∩B⊆A且A∩B⊆B。

A与集合B的并集包含于A和B中所有元素的集合,即A∪B包含于A和B的并集。

A与集合B的并集等于A和B中所有元素的集合加上A和B中共有的元素的集合,即A∪B=(A∖B)∪(B∖A)∪(A∩B)。

A与集合B的并集等于集合B与A的补集的补集的并集,即A∪B=(CuA')∩(CuB')。

4.选择题答案:A。

5.集合{a,b,c}的真子集共有7个。

第1讲--必修1第一章集合的基本含、集合间的基本关系以及基本运算-教师版

第1讲--必修1第一章集合的基本含、集合间的基本关系以及基本运算-教师版

教学课题人教版必修1第一章集合的基本含、集合间的基本关系以及基本运算教学目标知识目标:(1)掌握集合的表示方法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题(2)运用类比的方法,对照实数的相等与不等的关系,探究集合之间的包含与相等关系(3)能利用Venn图表达集合间的关系;探索直观图示(Venn图)对理解抽象概念的作用(4)通过探讨集合与集合间的关系,对照数或式的算术运算和代数运算,探究集合之间的运算.能力目标:(1)发展运用数学语言的能力,感受集合语言的意义和作用,学习从数学的角度认识世界(2)初步经历使用最基本的集合语言表示有关数学对象的过程,体会集合语言,发展运用数学语言进行交流的能力(3)使用最基本的集合语言表示有关的数学对象的过程,体会集合语言,发展运用数学语言进行交流的能力.教学重点与难点重点:集合间的基本关系以及基本运算难点:子集、真子集的判断、空集与非空集合的分类谈论教学过程课堂导学1.集合与元素(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于两种,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N*(或N+)Z Q R 2.集合间的基本关系关系自然语言符号语言Venn图子集集合A中所有元素都在集合B中(即若x∈A,则x∈B)A⊆B(或B⊇A)真子集集合A是集合B的子集,且集合B中至少有一个元素不在集合A中A B(或B A)集合相等集合A,B中元素相同或集合A,B互为子集A=B3.集合的运算集合的并集集合的交集集合的补集图形符号A∪B={x|x∈A或x∈B}A∩B={x|x∈A且x∈B}∁U A={x|x∈U,且x∉A}变式2、解:由集合的互异性可知:223322m m m m m m ≠⎧⎪≠-⎨⎪≠-⎩,得1m ≠-且0m ≠且3m ≠。

高一数学必修1 数学 第一章 完整知识点梳理大全(最全)

高一数学必修1 数学  第一章  完整知识点梳理大全(最全)

【1.1.1】集合的含义与表示1、集合的概念集合中的元素具有确定性、互异性和无序性. 2、常用数集及其记法N ——自然数集,N *或N +——正整数集,Z ——整数集,Q ——有理数集,R ——实数集.集合与函数概念3、集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. 4、集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. 5、集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集,记为∅.【1.1.2】集合间的基本关系6、子集、真子集、集合相等7、已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算8、交集、并集、补集)【补充知识】含绝对值的不等式与一元二次不等式的解法1、含绝对值的不等式的解法0)〖1.2〗函数及其表示【1.2.1】函数的概念1、函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. 2、区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a ≥b ,而后者必须a b <.3、求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.(暂不讲)⑤tan y x =中,()2x k k Z ππ≠+∈.(暂不讲)⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出. ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. 4、求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的. 事实上,如果在函数的值域中存在一个最小(大)数,这个数就是 函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值. ④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【1.2.2】函数的表示法5、函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.6、映射的概念①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的映射,记作:f A B→.②给定一个集合A到集合B的映射,且,∈∈.如果元素a和元a Ab B素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值1、函数的单调性①定义及判定方法yxo②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.简称:同增异减。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新知三: 子集、真子集、空集
①如果集合A B ⊆,并且存在元素x B ∈且x A ∉,我们称集合A 是集合B 的真子集,记作:A B 。

②不含任何元素的集合叫做空集,记作∅,并规定:空集是任何集合的子集。

★例3:写出集合{1,0,1}-的所有子集,并指出哪些是它的真子集.
★★变式3:已知集合{}{}1,21,2,3,4,5P ⊆⊆,那么满足条件的集合P 的个数是( )
A .5
B .6
C .7
D .8
【点评】若有限集A 有n 个元素,则A 的子集有2n 个,真子集有21n -,非空子集有21n -个,非空真子集有22
n -个。

★★例4:已知集合{13}A x x =-≤≤,2{,}B y y x x A ==∈,{2,}C y y x a x A ==+∈,若满C B ⊆足,求
实数a 的取值范围。

★变式4:集合{}1,2,3,4A =,2{0}B x N x a =∈-=,若满足B A ⊆,求实数a 的值组成的集合。

★★例5:已知集合A ={|25}x x -<≤,{|121}B x m x m =+-≤≤且B A ⊆,求实数m 的取值范围。

★★变式5:若集合{}
2|20M x x x =--=,{}|10N x ax =-=,且N M ⊆,求实数a 的值。

【点评】当出现“A B ⊆”这一关系时,首先是讨论A 有没有可能为空集,因为A =∅ 时满足A B ⊆。

【考点3】集合的新定义问题 ★★例6 若集合A 具有以下性质:
(Ⅰ)0∈A,1∈A ;(Ⅱ)若x ∈A ,y ∈A ,则x -y ∈A ,且x ≠0时,1
x
∈A .
则称集合A是“好集”.下列命题正确的个数是()
(1)集合B={-1,0,1}是“好集”;
(2)有理数集Q是“好集”;
(3)设集合A是“好集”,若x∈A,y∈A,则x+y∈A.
A.0 B.1 C.2 D.3
★★★(2015·湖北)已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A B 中元素的个数为()
A.77 B.49 C.45 D.30
思维升华解决以集合为背景的新定义问题,要抓住两点:(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在;
(2)用好集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的运算与性质.
典例分析
1.典例
★★例1(1)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是()
A.1 B.3 C.5 D.9
★(2)已知集合A={m+2,2m2+m},若3∈A,则m的值为________.。

相关文档
最新文档