高中数学必修一第一章集合章末检测
09-章末培优专练高中数学必修一人教A版

= {|是高三(2)班参加田赛的学生},card = 11, = {|是高三
(2)班参加径赛的学生},card = 10, = {|是高三(2)班既参加
田赛也参加径赛的学生},card = 4,那么高三(2)班参加田径运动会
的学生人数为( D )
A.25
B.14
C.15
D.17
【解析】 由题意得 = ∩ ,且 ∪ = {|是高三(2)班参加田径
运动会的学生},所以
card ∪ = card + card − card ∩ = 11 + 10 − 4 = 17.
2.(多选)[2024黑龙江龙东五地市联考]中国古代重要的数学著作《孙子
+2 = 5 × 46 + 3 = 7 × 33 + 2,故233 ∈ ∩ ∩ ,故D正确.
3.已知是非空数集,若非空集合1,2满足以下三个条件,则称 1, 2
为集合的一种真分拆,并规定 1, 2 与 2, 1 为集合的同一种真分拆.
①1 ∩ 2 = ⌀ ;②1 ∪ 2 = ;③ = 1,2 的元素个数不是 中的元素.
C.∁ ∩
D. ∪ ∁
【解析】 ∪ = {| < 2},所以∁ ( ∪ ) = {| ≥ 2},故选A.
8.[2023新课标Ⅱ卷·2,5分]设集合 = {0,−}, = {1, − 2,2 − 2},若
⊆ ,则 =( B
A.2
)
B.1
2
C.
> 0且 ≠ 1,为使 最小,则 = {0,± ,±+1 ,±+2 } ∈ ,此
高一数学第一章集合及基本运算章末习题课

第一章章末习题课(时间:80分钟)一、单项选择题1.已知集合A={1,2},B={1},则下列关系正确的是(C)A.B∉A B.B∈AC.B⊆A D.A⊆B解析:两个集合之间不能用“∈或∉”,首先排除选项A,B,因为集合A={1,2},B={1},所以集合B中的元素都是集合A中的元素,由子集的定义知B⊆A.故选C.2.命题“存在一个无理数,它的平方是有理数”的否定是(B)A.任意一个有理数,它的平方是有理数B.任意一个无理数,它的平方不是有理数C.存在一个有理数,它的平方是有理数D.存在一个无理数,它的平方不是有理数3.已知集合M={x|-3<x≤5},N={x|x>3},则M∪N=(A)A.{x|x>-3} B.{x|-3<x≤5}C.{x|3<x≤5} D.{x|x≤5}解析:在数轴上表示集合M,N,如图所示,则M∪N={x|x>-3}.4.“-2<x<4”是“x<4”的(A)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由“-2<x<4”可得“x<4”,反之不成立,故“-2<x<4”是“x<4”的充分不必要条件.故选A.5.已知集合U={1,2,3,4,5},集合A={1,3,4},集合B={2,4},则(∁U A)∪B=(A) A.{2,4,5} B.{1,3,4}C.{1,2,4} D.{2,3,4,5}解析:由题意知∁U A={2,5},所以(∁U A)∪B={2,4,5}.故选A.6.“⎩⎪⎨⎪⎧x >0,y >0”是“1xy >0”的( A ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:因为⎩⎨⎧ x >0,y >0⇒1xy >0,1xy >0⇒⎩⎨⎧ x >0,y >0或⎩⎪⎨⎪⎧ x <0,y <0,所以“⎩⎨⎧x >0,y >0”是“1xy >0”的充分不必要条件.故选A.7.满足M ⊆{a 1,a 2,a 3,a 4},且M ∩{a 1,a 2,a 3}={a 1,a 2}的集合M 的个数是( B )A .1B .2C .3D .4 解析:集合M 必须含有元素a 1,a 2,并且不能含有元素a 3,故M ={a 1,a 2}或M ={a 1,a 2,a 4}.8.设全集U =A ∪B ,定义:A -B ={x |x ∈A ,且x ∉B },集合A ,B 分别用圆表示,则下列图中阴影部分表示A -B 的是( C )解析:因为A -B ={x |x ∈A ,且x ∉B },所以A -B 是集合A 中的元素去掉A ∩B 中的元素构成的集合.故选C.二、多项选择题9.下列命题正确的有( ABD )A .0是最小的自然数B .每个正方形都有4条对称轴C .∀x ∈{1,-2,0},2x +1>0D .∃x ∈N ,使x 2≤x解析:对于A :根据自然数集的定义知,最小的自然数是0,命题A 正确;对于B :由正方形的图形特点知,每个正方形都有两条对角线和过对边中点的直线四条对称轴,命题B 正确;对于C:这是全称量词命题,当x=-2时,2×(-2)+1<0,命题C错误;对于D:这是存在量词命题,当x=1或x=0时,可得x2≤x成立,命题D正确.故选ABD.10.已知集合M={-2,3x2+3x-4,x2+x-4},若2∈M,则满足条件的实数x可能为(AC)A.2 B.-2C.-3 D.1解析:由题意得2=3x2+3x-4或2=x2+x-4,若2=3x2+3x-4,即x2+x-2=0,所以x=-2或x=1,检验:当x=-2时,x2+x-4=-2,与元素互异性矛盾,舍去;当x=1时,x2+x-4=-2,与元素互异性矛盾,舍去.若2=x2+x-4,即x2+x-6=0,所以x=2或x=-3,经验证x=2或x=-3为满足条件的实数x.故选AC.11.下列命题正确的有(CD)A.A∪∅=∅B.∁U(A∪B)=(∁U A)∪(∁U B)C.A∩B=B∩AD.∁U(∁U A)=A解析:在A中,A∪∅=A,故A错误;在B中,∁U(A∪B)=(∁U A)∩(∁U B),故B错误;在C中,A∩B=B∩A,故C正确;在D中,∁U(∁U A)=A,故D正确.故选CD.12.若-1<x<2是-2<x<a的充分不必要条件,则实数a的值可以是(BCD)A.1 B.2C.3 D.4解析:由题意得a≥2.所以实数a的值可以是2,3,4.故选BCD.三、填空题13.若命题p:∀a,b∈R,方程ax2+b=0恰有一解,则命题p的否定为∃a,b∈R,方程ax2+b=0无解或至少有两解.14.已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩(∁B)=__{3}__.U解析:由U={1,2,3,4},且∁U(A∪B)={4},得A∪B={1,2,3},又B={1,2},所以A中一定有元素3,没有元素4,所以A∩(∁U B)={3}.15.设p:-m≤x≤m(m>0),q:-1≤x≤4,若p是q的充分条件,则m的最大值为__1__;若p 是q 的必要条件,则m 的最小值为__4__.解析:设A ={x |-m ≤x ≤m }(m >0),B ={x |-1≤x ≤4},若p 是q 的充分条件,则A ⊆B ,所以⎩⎪⎨⎪⎧ -m ≥-1,m ≤4,所以0<m ≤1,所以m 的最大值为1;若p 是q 的必要条件,则B ⊆A ,所以⎩⎪⎨⎪⎧ -m ≤-1,m ≥4,所以m ≥4,所以m 的最小值为4. 16.若“x <-1”是“x ≤a ”的必要不充分条件,则a 的取值范围是__{a |a <-1}__. 解析:若“x <-1”是“x ≤a ”的必要不充分条件,则{x |x ≤a }⊆{x |x <-1},∴a <-1.四、解答题17.已知集合A ={x |2≤x ≤5},B ={x |-2m +1<x <m },全集为R .(1)若m =3,求A ∪B 和(∁R A )∩B ;(2)若A ∩B =A ,求实数m 的取值范围.解:(1)∵m =3,∴B ={x |-5<x <3}.又A ={x |2≤x ≤5},∴∁R A ={x |x <2或x >5}.∴A ∪B ={x |-5<x ≤5},(∁R A )∩B ={x |-5<x <2}.(2)∵A ∩B =A ,∴A ⊆B .∴⎩⎪⎨⎪⎧-2m +1<2,m >5,解得m >5. ∴实数m 的取值范围为{m |m >5}.18.在①{x |a -1≤x ≤a },②{x |a ≤x ≤a +2},③{x |a ≤x ≤a +3}这三个条件中任选一个,补充在下面问题中,若问题中的a 存在,求a 的值;若a 不存在,请说明理由.已知集合A =________,B ={x |1≤x ≤3}.若“x ∈A ”是“x ∈B ”的充分不必要条件,求实数a 的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.解:由题意知,A 不为空集,B ={x |1≤x ≤3}.当选条件①时,因为“x ∈A ”是“x ∈B ”的充分不必要条件,所以A B ,即⎩⎪⎨⎪⎧ a -1≥1,a <3或⎩⎪⎨⎪⎧a -1>1,a ≤3,解得2≤a ≤3. 所以实数a 的取值范围是{a |2≤a ≤3}.当选条件②时,因为“x ∈A ”是“x ∈B ”的充分不必要条件,所以A B ,即⎩⎪⎨⎪⎧ a ≥1,a +2<3或⎩⎪⎨⎪⎧a >1,a +2≤3,无解.故不存在满足题意的a . 当选条件③时,因为“x ∈A ”是“x ∈B ”的充分不必要条件,所以A B ,即⎩⎨⎧a ≥1,a +3<3或⎩⎨⎧ a >1a +3≤3,无解. 故不存在满足题意的a .。
《金版新学案》高一数学 第一章集合章末质量评估练习题 新人教A版

(本栏目内容,在学生用书中以活页形式分册装订)一、选择题(本大题共10小题,每小题5分,共50分.在每小题后给出的四个选项中,只有一项是符合题目要求的)1.设集合A ={-1,0,1,2},B ={x|-3≤x<1},则A ∩B =( )A .{-1,0,1}B .{-1,0}C .{x|-1<x<0}D .{x|-1≤x ≤0}【解析】 集合A ={-1,0,1,2},B ={x|-3≤x<1},易得到A ∩B ={-1,0},故选B.【答案】 B2.函数y =1-x +x 的定义域为( )A .{x|x ≤1}B .{x|x ≥0}C .{x|x ≥1或x ≤0}D .{x|0≤x ≤1}【解析】 ⎩⎪⎨⎪⎧1-x ≥0,x ≥0⇔0≤x ≤1.故选D. 【答案】 D3.下列函数中,在区间(1,+∞)上是增函数的是( )A .y =-x +1B .y =11-xC .y =-(x -1)2D .y =1x +1【解析】由题意知y=-x+1,y=-(x-1)2,y=1x+1在(1,+∞)上是减函数,y=11-x在(1,+∞)上是增函数,故选B.【答案】 B4.若A为全体正实数的集合,B={-2,-1,1,2},则下列结论中正确的是()A.A∩B={-2,-1} B.(∁R A)∪B=(-∞,0)C.A∪B=(0,+∞) D.(∁R A)∩B={-2,-1}【解析】由题意得A∩B={1,2},(∁R A)∪B=(-∞,0]∪{1,2},A∪B=(0,+∞)∪{-1,-2},(∁R A)∩B={-2,-1}.故选D.【答案】 D5.下面四个结论中,正确命题的个数是()①偶函数的图象一定与y轴相交②奇函数的图象一定通过原点③偶函数的图象关于y轴对称④既是奇函数,又是偶函数的函数一定是f(x)=0(x∈R)A.1 B.2C.3 D.4【解析】①不对;②不对,因为奇函数的定义域可能不包含原点;③正确;④不对,既是奇函数又是偶函数的函数可以为f(x)=0,x∈(-a,a).故选A.【答案】 A6.已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=()A.-2 B.2C.-98 D.98【解析】由f(x+4)=f(x),得f(7)=f(3)=f(-1).又∵f(x)为奇函数,∴f(-1)=-f(1),f(1)=2×12=2,∴f(7)=-2.故选A.【答案】 A7.设T ={(x ,y)|ax +y -3=0},S ={(x ,y)|x -y -b =0},若S ∩T ={(2,1)},则a ,b 的值为( )A .a =1,b =-1B .a =-1,b =1C .a =1,b =1D .a =-1,b =-1【解析】 ∵(2,1)∈S ∩T ,∴(2,1)∈S ,有(2,1)∈T.即⎩⎪⎨⎪⎧ 2a +1-3=0,2-1-b =0⇒⎩⎪⎨⎪⎧a =1b =1.故选C. 【答案】 C8.定义在R 上的偶函数f(x),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f(x 2)-f(x 1)x 2-x 1<0,则( )A .f(3)<f(-2)<f(1)B .f(1)<f(-2)<f(3)C .f(-2)<f(1)<f(3)D .f(3)<f(1)<f(-2)【解析】 由已知f(x 2)-f(x 1)x 2-x 1<0,得f(x)在x ∈[0,+∞)上单调递减,由偶函数性质得f(3)<f(-2)<f(1),故选A.此类题能用数形结合更好.【答案】 A9.下列四种说法正确的有( )①函数是从其定义域到值域的映射;②f(x)=x -3+2-x 是函数; ③函数y =2x(x ∈N )的图象是一条直线;④f(x)=x 2x 与g(x)=x 是同一函数.A .1个B .2个C .3个D .4个【解析】 ①正确,函数是一种特殊的映射;②中要使f(x)有意义只须使⎩⎪⎨⎪⎧ x -3≥02-x ≥0无解,故不是函数,②不正确;③中函数y =2x(x ∈N )的图象是孤立的点,③不正确;④中f(x)的定义域为{x|x ≠0},g(x)的定义域为R ,不是同一函数,不正确.故选A.【答案】 A10.已知偶函数f(x)在区间[0,+∞)上单调增加,则满足f(2x -1)<f ⎝ ⎛⎭⎪⎫13的x 取值范围是( )A.⎣⎢⎡⎭⎪⎫13,23B.⎝ ⎛⎭⎪⎫13,23C.⎝ ⎛⎭⎪⎫12,23D.⎣⎢⎡⎭⎪⎫12,23【解析】 作出示意图可知:f(2x-1)<f ⇔- <2x-1< ,即 <x< .故选B.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)11.设f(x)=2x+3,g(x+2)=f(x),则g(x)=________.【解析】g(x+2)=f(x)=2x+3=2(x+2)-1.∴g(x)=2x-1.【答案】2x-112.设A={x|1<x<2},B={x|x<a},若A B,则实数a的取值范围是________.【解析】如图所示,∴a≥2.【答案】a≥213.若函数f(x)=kx2+(k-1)x+2是偶函数,则f(x)的递减区间是________.【解析】∵f(x)是偶函数,∴f(-x)=kx2-(k-1)x+2=kx2+(k-1)x+2=f(x),∴k=1,∴f(x)=x2+2,其递减区间为(-∞,0].【答案】(-∞,0]14.已知集合A={x,xy,x-y},B={0,|x|,y},且A=B,则x=________,y=________.【解析】∵0∈B,A=B,∴0∈A.∵集合中元素具有互异性,∴x≠xy,∴x≠0.又∵0∈B,y∈B,∴y≠0.从而x-y=0,即x=y.这时A={x,x2,0},B={0,|x|,x},∴x2=|x|,则x=0(舍去),或x=1(舍去),或x=-1.经检验,x=y=-1是本题的解.【答案】-1,-1三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(12分)已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.(1)求A∪B,(∁U A)∩B;(2)若A∩C≠Ø,求a的取值范围.【解析】(1)A∪B={x|2≤x≤8}∪{x|1<x<6}={x|1<x≤8}.∁U A={x|x<2或x>8}.∴(∁U A)∩B={x|1<x<2}.(2)∵A∩C≠Ø,∴a<8.16.(12分)判断并证明f(x)=11+x2在(-∞,0)上的增减性.【解析】在(-∞,0)上单调递增.现证明如下:设x 1<x 2<0,f(x 1)-f(x 2)=11+x 12-11+x 22=x 22-x 12(1+x 12)(1+x 22)=(x 2-x 1)(x 2+x 1)(1+x 12)(1+x 22)∵x 2-x 1>0,x 1+x 2<0,1+x 12>0,1+x 22>0,∴f(x 1)-f(x 2)<0,∴f(x 1)<f(x 2),∴f(x)在(-∞,0)上单调递增.17.(12分)设f(x)是R 上的奇函数,且当x ∈(0,+∞)时,f(x)=x(1+x),求f(x)在R 上的解析式.【解析】 ∵f(x)是R 上的奇函数,∴f(-0)=-f(0),∴f(0)=0,设x <0 ,则-x >0,∴f(-x)=-x(1-x).又∵f(x)是奇函数,∴f(-x)=-f(x)=-x(1-x).∴f(x)=x(1-x),∴f(x)=⎩⎪⎨⎪⎧ x(1-x) (x <0)0 (x =0).x(1+x) (x >0)18.(14分)已知函数f(x)=ax 2+(2a -1)x -3在区间⎣⎢⎡⎦⎥⎤-32,2上的最大值为1,求实数a 的值.【解析】 当a =0时,f(x)=-x -3,f(x)在⎣⎢⎡⎦⎥⎤-32,2上不能取得1,故a ≠0. ∴f(x)=ax 2+(2a -1)x -3(a ≠0)的对称轴方程为x 0=1-2a 2a . (1)令f ⎝ ⎛⎭⎪⎫-32=1,解得a =-103, 此时x 0=-2320∈⎣⎢⎡⎦⎥⎤-32,2, 因为a<0,f(x 0)最大,所以f ⎝ ⎛⎭⎪⎫-32=1不合适; (2)令f(2)=1,解得a =34,此时x 0=-13∈⎣⎢⎡⎦⎥⎤-32,2, 因为a =34>0,x 0=-13∈⎣⎢⎡⎦⎥⎤-32,2,且距右端点2较远,所以f(2)最大,合适; (3)令f(x 0)=1,得a =12(-3±22),验证后知只有a =12(-3-22)才合适.综上所述,a =34,或a =-12(3+22).。
【步步高】高中数学 第一章 章末检测配套试题 新人教A版必修1

章末检测一、选择题1. 若集合A ={x ||x |≤1,x ∈R },B ={y |y =x 2,x ∈R },则A ∩B 等于( )A .{x |-1≤x ≤1}B .{x |x ≥0}C .{x |0≤x ≤1}D .∅2. 已知函数f (x )=ax 2+(a 3-a )x +1在(-∞,-1]上递增,则a 的取值范围是 ( )A .a ≤ 3B .-3≤a ≤ 3C .0<a ≤ 3D .-3≤a <03. 若f (x )=ax 2-2(a >0),且f (2)=2,则a 等于( )A .1+22B .1-22C .0D .24. 若函数f (x )满足f (3x +2)=9x +8,则f (x )的解析式是( )A .f (x )=9x +8B .f (x )=3x +2C .f (x )=-3x -4D .f (x )=3x +2或f (x )=-3x -45. 已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若N ∩(∁I M )=∅,则M ∪N 等于( )A .MB .NC .ID .∅6. 已知函数f :A →B (A 、B 为非空数集),定义域为M ,值域为N ,则A 、B 、M 、N 的关系是( )A .M =A ,N =B B .M ⊆A ,N =BC .M =A ,N ⊆BD .M ⊆A ,N ⊆B 7. 下列函数中,既是奇函数又是增函数的为( )A .y =x +1B .y =-x 3C .y =1xD .y =x |x |8. 已知函数f (x )=1x在区间[1,2]上的最大值为A ,最小值为B ,则A -B 等于( )A.12B .-12C .1D .-19. 设f (x )=⎩⎪⎨⎪⎧x +3x >10f f x +5 x ≤10,则f (5)的值是( ) A .24B .21C .18D .16 10.f (x )=(m -1)x 2+2mx +3为偶函数,则f (x )在区间(2,5)上是( ) A .增函数B .减函数C .有增有减D .增减性不确定11.若f (x )和g (x )都是奇函数,且F (x )=f (x )+g (x )+2在(0,+∞)上有最大值8,则在(-∞,0)上F (x )有( )A .最小值-8B .最大值-8C .最小值-6D .最小值-412. 在函数y =|x |(x ∈[-1,1])的图象上有一点P (t ,|t |),此函数与x 轴、直线x =-1及x =t 围成图形(如图阴影部分)的面积为S ,则S 与t 的函数关系的图象可表示为( )二、填空题13.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=______.14.已知函数f (x )=4x 2-mx +5在区间[-2,+∞)上是增函数,则f (1)的取值范围是________.15.若定义运算a ⊙b =⎩⎪⎨⎪⎧b ,a ≥ba ,a <b ,则函数f (x )=x ⊙(2-x )的值域为________.16.用描述法表示如图中阴影部分的点(含边界)的坐标的集合(不含虚线)为________.三、解答题17.设集合A ={x |2x 2+3px +2=0},B ={x |2x 2+x +q =0},其中p 、q 为常数,x ∈R ,当A ∩B ={12}时,求p 、q 的值和A ∪B .18.已知f (x ),g (x )在(a ,b )上是增函数,且a <g (x )<b ,求证:f (g (x ))在(a ,b )上也是增函数.19.函数f (x )=4x 2-4ax +a 2-2a +2在区间[0,2]上有最小值3,求a 的值. 20.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围.21.某公司计划投资A 、B 两种金融产品,根据市场调查与预测,A 产品的利润与投资量成正比例,其关系如图1,B 产品的利润与投资量的算术平方根成正比例,其关系如图2(注:利润与投资量的单位:万元).(1)分别将A 、B 两产品的利润表示为投资量的函数关系式;(2)该公司已有10万元资金,并全部投入A 、B 两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?22.已知函数y =x +t x有如下性质:如果常数t >0,那么该函数在(0,t ]上是减函数,在[t ,+∞)上是增函数.(1)已知f (x )=4x 2-12x -32x +1,x ∈[0,1],利用上述性质,求函数f (x )的单调区间和值域;(2)对于(1)中的函数f (x )和函数g (x )=-x -2a ,若对任意x 1∈[0,1],总存在x 2∈[0,1],使得g (x 2)=f (x 1)成立,求实数a 的值.答案1. C 2.D 3.A 4.B 5.A 6.C 7.D 8.A 9.A 10.B 11.D 12.B 13.-2 14.[25,+∞) 15.(-∞,1] 16.{(x ,y )|-1≤x ≤2,-12≤y ≤1,且xy ≥0}17.解 ∵A ∩B ={12},∴12∈A .∴2×(12)2+3p ×(12)+2=0.∴p =-53.∴A ={12,2}.又∵A ∩B ={12},∴12∈B .∴2×(12)2+12+q =0.∴q =-1.∴B ={12,-1}.∴A ∪B ={-1,12,2}.18.证明 设a <x 1<x 2<b ,∵g (x )在(a ,b )上是增函数, ∴g (x 1)<g (x 2), 且a <g (x 1)<g (x 2)<b ,又∵f (x )在(a ,b )上是增函数, ∴f (g (x 1))<f (g (x 2)),∴f (g (x ))在(a ,b )上也是增函数. 19.解 f (x )=4(x -a2)2-2a +2,①当a2≤0,即a ≤0时,函数f (x )在[0,2]上是增函数.∴f (x )min =f (0)=a 2-2a +2. 由a 2-2a +2=3,得a =1± 2. ∵a ≤0,∴a =1- 2. ②当0<a2<2,即0<a <4时,f (x )min =f (a2)=-2a +2.由-2a +2=3,得a =-12∉(0,4),舍去.③当a2≥2,即a ≥4时,函数f (x )在[0,2]上是减函数,f (x )min =f (2)=a 2-10a +18.由a 2-10a +18=3,得a =5±10. ∵a ≥4,∴a =5+10.综上所述,a =1-2或a =5+10. 20.(1)证明 任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2x 1-x 2x 1+2x 2+2.∵(x 1+2)(x 2+2)>0,x 1-x 2<0, ∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)内单调递增. (2)解 任设1<x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a=a x 2-x 1x 1-a x 2-a.∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,∴a ≤1. 综上所述知0<a ≤1.21.解 (1)设投资x 万元,A 产品的利润为f (x )万元,B 产品的利润为g (x )万元,依题意可设f (x )=k 1x ,g (x )=k 2x . 由图1,得f (1)=0.2,即k 1=0.2=15.由图2,得g (4)=1.6,即k 2×4=1.6,∴k 2=45.故f (x )=15x (x ≥0),g (x )=45x (x ≥0). (2)设B 产品投入x 万元,则A 产品投入10-x 万元,设企业利润为y 万元, 由(1)得y =f (10-x )+g (x )=-15x +45x +2(0≤x ≤10).∵y =-15x +45x +2=-15(x -2)2+145,0≤x ≤10.∴当x =2,即x =4时,y max =145=2.8.因此当A 产品投入6万元,B 产品投入4万元时,该企业获得最大利润为2.8万元. 22.解 (1)y =f (x )=4x 2-12x -32x +1=2x +1+42x +1-8,设u =2x +1,x ∈[0,1],1≤u ≤3, 则y =u +4u-8,u ∈[1,3].由已知性质得,当1≤u ≤2,即0≤x ≤12时,f (x )单调递减,所以减区间为[0,12];当2≤u ≤3,即12≤x ≤1时,f (x )单调递增,所以增区间为[12,1];由f (0)=-3,f (12)=-4,f (1)=-113,得f (x )的值域为[-4,-3].(2)g (x )=-x -2a 为减函数,故g (x )∈[-1-2a ,-2a ],x ∈[0,1]. 由题意,f (x )的值域是g (x )的值域的子集,∴⎩⎪⎨⎪⎧-1-2a ≤-4-2a ≥-3,∴a =32.。
高中数学第一章集合章末检测北师大版必修1

第一章集合章末检测班级__________ 姓名__________ 考号__________ 分数__________本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部份.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.下列表示①{0}=∅,②{3}∈{3,4,5},③∅{0},④0∈{0}中,正确的个数为( )A .1B .2C .3D .4答案:B解析:③④正确.2.设全集U =R ,M ={x |x ≥1},N ={x |0≤x <5},则(∁U M )∪(∁U N )为( )A .{x |x ≥0)B .{x |x <1或x ≥5}C .{x |x ≤1或x ≥5} D.{x |x <0或x ≥5}答案:B解析:借助数轴直观选择.3.已知集合A ={0,1,2,3,4,5},B ={1,3,6,9},C ={3,7,8},则(A ∩B )∪C 等于( )A .{0,1,2,6}B .{3,7,8}C .{1,3,7,8}D .{1,3,6,7,8}答案:C解析:直接进行交并运算.4.若集合M ={a ,b ,c }中的元素是△ABC 的三边长,则△ABC 必然不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形答案:D解析:由集合中元素的互异性可知.5.设集合A ={0,1},集合B ={1,2,3},概念A *B ={z |z =xy +1,x ∈A ,y ∈B },则A *B 集合中真子集的个数是( )A .14B .15C .16D .17答案:B解析:A *B ={1,2,3,4},故集合中有4个元素,则真子集有24-1=15个.6.设集合A ={(x ,y )|x -y =1},B ={(x ,y )|2x +y =8},则A ∩B =( )A .{(3,2)}B .{3,2}C .{(2,3)}D .{2,3}答案:A解析:解⎩⎪⎨⎪⎧ x -y =12x +y =8得⎩⎪⎨⎪⎧ x =3y =2.7.已知集合A ={x ∈R |x <5-2},B ={1,2,3,4},则(∁R A )∩B 等于( )A .{1,2,3,4}B .{2,3,4}C .{3,4}D .{4}答案:D解析:借助数轴直观判断.8.设集合P ={1,2,3,4,5,6},Q ={x ∈R |2≤x ≤6},那么下列结论正确的是( )A .P ∩Q =PB .P ∩Q QQ P。
人教A版高一数学必修第一册第一章《集合与常用逻辑用语》章末练习题卷含答案解析(33)

第一章《集合与常用逻辑用语》章末练习题卷(共22题)一、选择题(共12题)1. 若命题 p:∃x 0∈Z ,e x 0<1,则 ¬p 为 ( ) A . ∀x ∈Z ,e x <1 B . ∀x ∈Z ,e x ≥1 C . ∀x ∉Z ,e x <1D . ∀x ∉Z ,e x ≥12. 已知 a,b ∈R ,则“1<b <a ”是“a −1>∣b −1∣”的 ( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件3. 命题“若 a ,b 都是偶数,则 a +b 是偶数”的否命题是 ( ) A .若 a ,b 都是偶数,则 a +b 不是偶数 B .若 a ,b 都是偶数,则 a +b 不是偶数 C .若 a ,b 不全是偶数,则 a +b 不是偶数 D .若 a +b 不是偶数,则 a ,b 不全是偶数4. 已知 x ∈R ,则“x 2>x ”是“x >1”的 ( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既非充分也非必要条件5. 下列表示正确的个数是 ( )(1)0∉∅;(2)∅⊆{1,2};(3){(x,y )∣∣∣{2x +y =10,3x −y =5}={3,4};(4)若 A ⊆B 则 A ∩B =A A . 3 B . 4 C . 2 D . 16. 命题“∀x ∈R ,(13)x>0”的否定是 ( ) A . ∃x 0∈R ,(13)x 0<0B . ∀x ∈R ,(13)x≤0 C . ∀x ∈R ,(13)x<0D . ∃x 0∈R ,(13)x 0≤07. 已知集合 A ={x∣x ≤1},B ={x∣−1<x <2},则 (∁RA )∩B 等于 ( ) A . {x∣1<x <2}B . {x∣x >1}C . {x∣1≤x <2}D . {x∣x ≥1}8. 已知集合 M 中的元素 x 满足 x =a +√2b ,其中 a,b ∈Z ,则下列实数中不属于集合 M 中元素的个数是 ( )① 0;② −1;③ 3√2−1;④ 3−2√2;⑤ √8;⑥ 1−√2A . 0B . 1C . 2D . 39. 设 x ,y 均为实数,则“x =0”是“xy =0”的 ( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分又非必要条件10. 已知集合 U =R ,A ={x ∣x 2<5,x ∈Z },B ={x ∣∣x <2且x ≠0},则图中阴影部分表示的集合为( )A . {2}B . {1,2}C . {0,2}D . {0,1,2}11. 已知集合 A ={x∣ x =3n +2,n ∈N },B ={6,8,10,12,14},则集合 A ∩B 中元素的个数为 ( ) A . 5 B . 4 C . 3 D . 212. 命题“∀x ∈R ,2x 2−1≤0”的否定是 ( ) A . ∀x ∈R ,2x 2−1≥0 B . ∃x ∈R ,2x 2−1≤0 C . ∃x ∈R ,2x 2−1>0D . ∀x ∈R ,2x 2−1>0二、填空题(共4题)13. 若对于两个由实数构成的集合 X ,Y ,集合的运算 X ⊕Y 定义为:X ⊕Y ={x +y∣ x ∈X,y ∈Y };集合的运算 X ⊗Y 定义为:X ⊗Y ={x ⋅y∣ x ∈X,y ∈Y },已知实数集合 X ={a +b √2∣ a,b ∈Q},X ={a +b √3∣ a,b ∈Q}.试写出一个实数 m ,使得 m ∈X ⊗Y 但 m ∉X ⊕Y ,则 m = .14. 在平面直角坐标系 xOy 中,若直线 y =2a 与函数 y =∣x −a ∣−1 的图象只有一个交点,则 a的值为 .15. 若 f (x ) 是偶函数,其定义域为 (−∞,+∞),且在[0,+∞) 上单调递减,设 f (−32)=m ,f (a 2+2a +52)=n ,则 m ,n 的大小关系是 .16. 已知集合 M ={x∣ x >2},集合 N ={x∣ x ≤1},则 M ∪N = .三、解答题(共6题)17.判断下列命题中p是q的什么条件.(1) p:x>1,q:x2>1;(2) p:△ABC有两个角相等,q:△ABC是正三角形;(3) 若a,b∈R,p:a2+b2=0,q:a=b=0.18.设集合A={x∈N∣ x<4},B={3,4,5,6}.(1) 用列举法写出集合A.(2) 求A∩B和A∪B.19.已知集合A={x∣ x2−ax+a2−19=0},B={x∣ x2−5x+6=0},是否存在a使A,B同时满足下列三个条件:(1)A≠B;(2)A∪B=B;(3)∅⫋(A∩B).若存在,求出a的值;若不存在,请说明理由.20.用列举法表示下列给定的集合.(1) 大于1且小于6的整数组成的集合A.(2) 方程x2−9=0的实数根组成的集合B.(3) 小于8的质数组成的集合C.(4) 一次函数y=x+3与y=−2x+6的图象的交点组成的集合D.21.真子集对于两个集合A,B,如果,并且B中至少有一个元素不属于A,那么集合A称为集合B 的真子集,记为或,读作“ ”或“ ”.问题:真子集与子集有什么区别?22.已知集合A={x∣ −4<x<6},B={x∣ x2−4ax+3a2=0}.(1) 若A∩B=∅,求实数a的取值范围;(2) 若A∪B=A,求实数a的取值范围.答案一、选择题(共12题) 1. 【答案】B【解析】若命题为 p:∃x 0∈Z ,e x 0<1, 则 ¬p:∀x 0∈Z ,e x ≥1. 故选:B .【知识点】全(特)称命题的否定2. 【答案】B【解析】因为 a −1>∣b −1∣⇔1−a <b −1<a −1⇔{2<a +b,b <a,所以当 1<b <a 时,a −1>∣b −1∣ 成立;当 a −1>∣b −1∣ 成立时,如取 b =12,a =2,此时 1<b <a 不成立, 所以 1<b <a 是 a −1>∣b −1∣ 的充分不必要条件. 【知识点】充分条件与必要条件3. 【答案】C【解析】否命题就是对原命题的条件和结论同时进行否定,则命题“若 a ,b 都是偶数,则 a +b 是偶数”的否命题为:若 a ,b 不都是偶数,则 a +b 不是偶数. 【知识点】全(特)称命题的否定4. 【答案】A【知识点】充分条件与必要条件5. 【答案】A【知识点】交、并、补集运算6. 【答案】D【解析】全称命题“∀x ∈R ,(13)x>0”的否定是把量词“∀”改为“∃”,并对结论进行否定,把“>”改为“≤”,即“∃x 0∈R ,(13)x 0≤0”.【知识点】全(特)称命题的否定7. 【答案】A【知识点】交、并、补集运算8. 【答案】A【解析】当 a =b =0 时,x =0;当 a =−1,b =0 时,x =−1; 当 a =−1,b =3 时,x =−1+3√2;3−2√2=√2)(3−2√2)(3+2√2)=6+4√2,即 a =6,b =4;当 a =0,b =2 时,x =2√2=√8;1−√2=√2(1−√2)(1+√2)=−1−√2,即 a =−1,b =−1.综上所述:0,−1,3√2−1,3−2√2,√8,1−√2 都是集合 M 中的元素. 【知识点】元素和集合的关系9. 【答案】A【知识点】充分条件与必要条件10. 【答案】C【解析】因为集合 U =R ,A ={x ∣x 2<5,x ∈Z }={−2,−1,0,1,2},B ={x ∣∣x <2且x ≠0},∁U B ={x ∣∣x ≥2且x =0}, 所以图中阴影部分表示的集合为 A ∩(∁U B )={0,2}. 【知识点】集合基本运算的Venn 图示11. 【答案】D【知识点】交、并、补集运算12. 【答案】C【知识点】全(特)称命题的否定二、填空题(共4题)13. 【答案】可填“(1+√2)(1+√3)”等【知识点】交、并、补集运算14. 【答案】 −12【知识点】函数的零点分布15. 【答案】 m ≥n【知识点】抽象函数、函数的奇偶性、函数的单调性16. 【答案】 (−∞,1]∪(2,+∞)【知识点】交、并、补集运算三、解答题(共6题)17. 【答案】(1) 因为“x>1”能推出“x2>1”,即p⇒q,但“x2>1”推不出“x>1”,如x=−2,即q⇏p,所以p是q的充分不必要条件.(2) 因为“△ABC有两个角相等”推不出“△ABC是正三角形”,即p⇏q,但“△ABC是正三角形”能推出“△ABC有两个角相等”,即q⇒p,所以p是q的必要不充分条件.(3) 若a2+b2=0,则a=b=0,即p⇒q;若a=b=0,则a2+b2=0,即q⇒p,故p⇔q,所以p是q的充要条件.【知识点】充分条件与必要条件18. 【答案】(1) 因为集合A={x∈N∣ x<4},所以A={0,1,2,3}.(2) 因为B={3,4,5,6},所以A∩B={3},A∪B={0,1,2,3,4,5,6}.【知识点】交、并、补集运算、集合的表示方法19. 【答案】假设存在a使得A,B满足条件,由题意得B={2,3}.因为A∪B=B,所以A⊆B,即A=B或A⫋B.由条件(1)A≠B,可知A⫋B.又因为∅⫋(A∩B),所以A≠∅,即A={2}或{3}.当A={2}时,代入得a2−2a−15=0,即a=−3或a=5.经检验a=−3时,A={2,−5},与A={2}矛盾,舍去;a=5时,A={2,3},与A={2}矛盾,舍去.当A={3}时,代入得a2−3a−10=0,即a=5或a=−2.经检验a=−2时,A={3,−5},与A={3}矛盾,舍去;a=5时,A={2,3},与A={3}矛盾,舍去.综上所述,不存在实数a使得A,B满足条件.【知识点】包含关系、子集与真子集、交、并、补集运算20. 【答案】(1) A={2,3,4,5}.(2) B={−3,3}.(3) C={2,3,5,7}.(4) D={(1,4)}.【知识点】集合的概念21. 【答案】A⊆B;A⫋B;B⫌A;A真包含于B;B真包含A在真子集的定义中,A⫋B首先要满足A⊆B,其次至少有一个元素x满足x∈B,但x∉A,也就是说集合B至少要比集合A多一个元素.【知识点】包含关系、子集与真子集22. 【答案】(1) a≤−4或a≥6.<a<2.(2) −43【知识点】交、并、补集运算。
2023版新教材高中数学滚动练习一第一章集合与常用逻辑用语新人教B版必修第一册
滚动练习一 第一章 章末质量检测一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列各组集合表示同一集合的是( )A.M={(3,2)},N={(2,3)} B.M={(x,y)|x+y=1},N={y|x+y=1}C.M={4,5},N={5,4} D.M={1,2},N={(1,2)}2.[2020·新高考Ⅰ卷]设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=( )A.{x|2<x≤3} B.{x|2≤x≤3}C.{x|1≤x<4} D.{x|1<x<4}3.已知全集U={1,2,3,4,5,6},集合A={2,3,4},集合B={2,4,5},则图中的阴影部分表示( )A.{2,4} B.{1,3}C.{5} D.{2,3,4,5}4.设集合M={x|x>2},N={x|x<3},那么“x∈M且x∈N”是“x∈M∩N”的( )A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件5.设集合A={x|-2<x<4},B={2,3,4,5},则(∁R A)∩B=( )A.{2} B.{4,5}C.{3,4} D.{2,3}6.已知∀x∈[0,2],p>x;∃x∈[0,2],q>x.那么p,q的取值范围分别为( )A.p∈(0,+∞),q∈(0,+∞) B.p∈(0,+∞),q∈(2,+∞)C.p∈(2,+∞),q∈(0,+∞) D.p∈(2,+∞),q∈(2,+∞)7.如图所示,I是全集,A,B,C是它的子集,则阴影部分所表示的集合是( )A.(∁I A∩B)∩C B.(∁I B∪A)∩CC.(A∩B)∩∁I C D.(A∩∁I B)∩C8.已知集合A={x|(a-1)x2+3x-2=0},若集合A有且仅有两个子集,则实数a 的取值为( )A.a>- B.a≥-C.a=- D.a=-或1二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,部分选对的得2分,有选错的得0分.)9.已知A、B为实数集R的非空集合,则A B的必要不充分条件可以是( )A.A∩B=A B.A∩(∁R B)=∅R A D.B∪(∁R A)=RC.∁R B∁10.下列命题的否定中,是全称量词命题且为真命题的有( )A.∃x∈R,x2-x+<0 B.所有的正方形都是矩形C.∃x∈R,x2+2x+2≤0 D.至少有一个实数x,使x3+1=011.已知p:x<-1,则下列选项中是p的充分不必要条件的是( )A.x<-1 B.x<-2C.-8<x<2 D.-10<x<-312.对任意A,B⊆R,记A⊕B={x|x∈A∪B,x∉A∩B},则称A⊕B为集合A,B 的对称差.例如,若A={1,2,3},B={2,3,4},则A⊕B={1,4},下列命题中,为真命题的是( )A.若A,B⊆R且A⊕B=B,则A=∅ B.若A,B⊆R且A⊕B=∅,则A=BC.若A,B⊆R且A⊕B⊆A,则A⊆B D.存在A,B⊆R,使得A⊕B=(∁R A)⊕(∁R B)三、填空题(本题共4小题,每小题5分,共20分.)13.用列举法表示集合M==________.14.若集合A={-1,3},B={x|ax-2=0},且A∪B=A,则由实数a的取值构成的集合C=________.15.已知集合A为数集,则“A∩{0,1}={0}”是“A={0}”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)16.设p:-m≤x≤m(m>0),q:-1≤x≤4,若p是q的充分条件,则m的最大值为________,若p是q的必要条件,则m的最小值为________.四、解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.)17.(10分)设m为实数,集合A={x|-1≤x≤4},B={x|m≤x≤m+2}.(1)若m=3,求A∪B,∁R(A∩B);(2)若A∩B=∅,求实数m的取值范围.18.(12分)已知p:实数x满足a<x<4a(其中a>0),q:实数x满足2<x≤5.(1)若a=1,且p与q都为真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围.19.(12分)写出下列命题的否定,并判断所得命题的真假:(1)p:∀m∈R,<0;(2)q:圆上任意一点到圆心的距离是r;(3)r:∃x,y∈Z,2x+4y=;(4)s:存在一个无理数,它的立方是有理数.20.(12分)在①∃x∈R,x2+2ax+2-a=0,②存在集合A={x|2<x<4},B={x|a<x<3a},使得A∩B=∅,这2个条件中任选一个,补充在下面问题中,并求问题中实数a的取值范围.问题:求实数a,使得命题p:∀x∈{x|1≤x≤2},x2-a≥0,命题q:__________,都是真命题.(若选择两个条件都解答,只按第一个解答计分.)21.(12分)已知p:∀x∈R,m<x2-1,q:∃x∈R,x2+2x-m-1=0,若p,q 都是真命题,求实数m的取值范围.22.(12分)已知命题“关于x的方程x2+mx+2m+5=0有两个不相等的实数根”是假命题.(1)求实数m的取值集合A;(2)设集合B={x|1-2a≤x≤a-1},若x∈A是x∈B的充分不必要条件,求实数a 的取值范围.滚动练习一 第一章 章末质量检测1.解析:对于A,集合M={(3,2)}表示含有点(3,2)的集合,N={(2,3)}表示含有点(2,3)的集合,显然不是同一集合,故A错误;对于B,集合M表示的是直线x+y=1上的点组成的集合,集合N=R为数集,故B错误;对于C,集合M、N均表示含有4,5两个元素组成的集合,故是同一集合,故C正确;对于D,集合M表示的是数集,集合N为点集,故D错误.答案:C2.解析:因为A={x|1≤x≤3},B={x|2<x<4},则A∪B={x|1≤x<4}.答案:C3.解析:根据题意可得阴影部分表示B∩(∁U A),而∁U A={1,5,6},所以B∩(∁U A)={5}.答案:C4.解析:当x∈M且x∈N成立时,根据集合的交集定义可知:x∈M∩N,当x∈M∩N成立时,根据集合的交集定义可知:x∈M且x∈N,故“x∈M且x∈N”是“x∈M∩N”的充分必要条件.答案:C5.解析:因为A={x|-2<x<4},所以∁R A={x|x≤-2或x≥4}.所以(∁R A)∩B ={4,5}.答案:B6.解析:由∀x∈[0,2],p>x,得p>2.由∃x∈[0,2],q>x,得q>0.所以p,q 的取值范围分别为(2,+∞)和(0,+∞).答案:C7.解析:补集∁I B画成Venn图如图(1),交集A∩∁I B画成Venn图如图(2),而(A∩∁I B)∩C画成Venn图就是题目的Venn图.答案:D8.解析:若A恰有两个子集,所以关于x的方程恰有一个实数解,讨论:①当a=1时,x=,满足题意,②当a≠1时,Δ=8a+1=0,所以a=-,综上所述,a=-或1.答案:DR A是A B的充分必要条件,9.解析:因为A B⇔∁R B∁R A,所以∁R B∁因为A B⇒A⊆B⇔A∩B=A⇔A∩(∁R B)=∅⇔B∪(∁R A)=R.答案:ABD10.解析:由条件可知:原命题为存在量词命题且为假命题,所以排除B,D;又因为x2-x+=(x-)2≥0,x2+2x+2=(x+1)2+1>0,所以A,C均为假命题,否定为真命题.答案:AC11.解析:设选项的不等式对应的集合为M,N={x|x<-1},如果集合M是N的真子集,则该选项是p的充分不必要条件.选项A对应的集合M=N,所以该选项是p的充要条件;选项C是p的非充分非必要条件.只有选项B,D的不等式对应的集合M是N的真子集.答案:BD12.解析:对于A选项,因为A⊕B=B,所以B={x|x∈A∪B,x∉A∩B},所以A⊆B,且B中的元素不能出现在A∩B中,因此A=∅,即选项A正确;对于B选项,因为A⊕B=∅,所以∅={x|x∈A∪B,x∉A∩B},即A∪B与A∩B是相同的,所以A=B,即选项B正确;对于C选项,因为A⊕B⊆A,所以{x|x∈A∪B,x∉A∩B}⊆A,所以B⊆A,即选项C 错误;对于D选项,A=B时,A⊕B=∅,(∁R A)⊕(∁R B)=∅=A⊕B,D正确.答案:ABD13.答案:{0,1,2,3,5,11}14.解析:由A∪B=A,即B⊆A,故B=∅,{-1},{3}.若B=∅时,方程ax-2=0无解,a=0 ;若B={-1},则 -a-2=0,所以a=-2 ;若B={3},则3a-2=0,所以a=.综上:a=0,或a=-2,或a=.答案:15.解析:由“A={0}”可推出“A∩{0,1}={0}”,由“A∩{0,1}={0}”推不出“A={0}”,例如:A={0,2}时也有A∩{0,1}={0},所以“A∩{0,1}={0}”是“A={0}”的必要不充分条件.答案:必要不充分16.解析:设A=[-m,m],B=[-1,4],若p是q的充分条件,则A⊆B,所以所以0<m≤1,所以m的最大值为1,若p是q的必要条件,则B⊆A,所以所以m≥4,则m的最小值为4.答案:1 417.解析:(1)若m=3,则B={x|3≤x≤5},所以A∪B={x|-1≤x≤5},又因为A∩B={x|3≤x≤4},所以∁R(A∩B)={x|x<3或x>4}.(2)因为A∩B=∅,所以m+2<-1或m>4,所以m<-3或m>4.18.解析:(1)若a=1,p为真,p:1<x<4,q为真:2<x≤5,因为p,q都为真,所以x的取值范围为2<x<4.(2)设A={x|a<x<4a},B={x|2<x≤5}因为p是q的必要不充分条件,所以B A,所以解得<a≤2.综上所述,a的范围为.19.解析:(1)¬p:∃m∈R,≥0.-m2-1<0,所以<0,p是真命题,所以¬p是假命题.(2)¬q:圆上存在一点到圆心的距离不是r;因为q是真命题,所以¬q是假命题.(3)¬r:∀x,y∈Z,2x+4y≠;若x,y∈Z,则2x+4y也是整数,不可能等于,所以r是假命题,所以¬r是真命题.(4)¬s:任意一个无理数,它的立方都不是有理数.是无理数,()3=2是有理数,所以s是真命题,¬s是假命题.20.解析:选条件①由命题p为真,可得不等式x2-a≥0在x∈{x|1≤x≤2}上恒成立.因为x∈{x|1≤x≤2},则1≤x2≤4,所以a≤1.若命题q为真,则方程x2+2ax+2-a=0有解.所以判别式Δ=4a2-4(2-a)≥0,所以a≥1或a≤-2.又因为p,q都为真命题,所以所以a≤-2或a=1.所以实数a的取值范围是{a|a≤-2,或a=1}.选条件②由命题p为真,可得不等式x2-a≥0在x∈{x|1≤x≤2}上恒成立.因为x∈{x|1≤x≤2},则1≤x2≤4.所以a≤1.因为集合B={x|a<x<3a},又A∩B=∅,则当B≠∅时,a<3a,且a≥4或3a≤2,解得0<a≤或a≥4.当B=∅时,a≥3a,解得a≤0.又因为p,q都为真命题,所以解得a≤.所以实数a的取值范围是(-∞,].21.解析:由x∈R得x2-1≥-1,若p:∀x∈R,m<x2-1为真命题,则m<-1.若q:∃x∈R,x2+2x-m-1=0为真,则方程x2+2x-m-1=0有实根,所以4+4(m+1)≥0,所以m≥-2.因为p,q都是真命题,所以所以-2≤m<-1.所以实数m的取值范围为[-2,-1).22.解析:(1)若命题“关于x的方程x2+mx+2m+5=0有两个不相等的实数根”是真命题,则Δ=m2-4(2m+5)>0,解得m>10或m<-2.则当该命题是假命题时,可得A ={m|-2≤m≤10}.(2)因为A={m|-2≤m≤10},x∈A是x∈B的充分不必要条件,所以A B,所以B≠∅,即解得a≥11,所以实数a的取值范围为[11,+∞).。
高中数学必修一 第一章章末检测(含答案解析)
第一章章末检测(时间:120 分钟 满分:150 分)一、选择题(本大题共 12 小题,每小题 5 分,共 60 分) 1.设集合 M ={1,2,4,8},N ={x |x 是 2 的倍数},则 M ∩N 等于( ) A .{2,4} B .{1,2,4} C .{2,4,8} D .{1,2,8} 2.若集合 A ={x ||x |≤1,x ∈R },B ={y |y =x 2,x ∈R },则 A ∩B 等于( ) A .{x |-1≤x ≤1} B .{x |x ≥0} C .{x |0≤x ≤1}D .∅3.若ax 2a >0),且 f ( 2),则 a 等于( )A .12B .12C.0 D .2 4.若函数 f (x )满足 f (3x +2)=9x +8,则 f (x )的解析式是( ) A .f (x )=9x +8B .f (x )=3x +2C .f (x )=-3x -4D .f (x )=3x +2 或 f (x )=-3x -45.设全集 U ={1,2,3,4,5},集合 M ={1,4},N ={1,3,5},则 N ∩(∁U M )等于( ) A .{1,3} B .{1,5} C .{3,5} D .{4,5}6. 已知函数 f (x )=1在区间[1,2]上的最大值为 A ,最小值为 B ,则 A -B 等于( )xA.1 2B. -1 2C.1 D .-1 7.f (x )=ax 2+(a 3-a )x (-∞,-1]上递增,则 a 的取值范围是( ) A .a B a ≤ 3 C .0<D a <0+3 (x >10)8.设 f (x )f (x +5)) (x ≤10),则 f (5)的值是( )A .24B .21C .18D .169.f (x )=(m -1)x 2+2mx +3 为偶函数,则 f (x )在区间(2,5)上是( ) A .增函数 B .减函数 C. 有增有减 D .增减性不确定10. 设 集 合 A =[01 1 , ),B =[ ,1],函数 f (x )=+1, x ∈A2 ,若 x 0∈A ,且 f [f (x 0)] 2 2 ∈A ,则 x 0 的取值范围是( ) A .(0,1] B .(11 , ](1-x ), x ∈B4 4 2 C .(1,1) D .[0,3]4 2 8 11. 若函数 f (x )=x 2+bx +c 对任意实数 x 都有 f (2+x )=f (2-x ),那么( ) A .f (2)<f (1)<f (4) B .f (1)<f (2)<f (4) C .f (2)<f (4)<f (1) D .f (4)<f (2)<f (1) 12. 若 f (x )和 g (x )都是奇函数,且 F (x )=f (x )+g (x )+2,在(0,+∞)上有最大值 8,则在(-∞,0)上 F (x )有( )A .最小值-8B .最大值-8C .最小值-6D .最小值-4二、填空题(本大题共 4 小题,每小题 5 分,共 20 分) 13. 已知函数 y =f (x )是 R 上的增函数,且 f (m +3)≤f (5),则实数 m 的取值范围是 .14. 函数 f (x )=-x 2+2x +3 在区间[-2,3]上的最大值与最小值的和为 .15. 若函数 f (x )=x 2+(a +1)x +a为奇函数,则实数 a = .x16.如图,已知函数 f (x )的图象是两条直线的一部分,其定义域为(-1,0]∪(0,1),则不等式 f (x )-f (-x )>-1 的解集是 .三、解答题(本大题共 6 小题,共 70 分)17.(10 分)设集合 A ={x |2x 2+3px +2=0},B ={x |2x 2+x +q =0},其中 p 、q 为常数,x∈R ,当 A ∩B ={12}时,求 p 、q 的值和 A ∪B .18.(12 分)已知函数 f (x )=x +2,x -6(1)点(3,14)在 f (x )的图象上吗? (2)当 x =4 时,求 f (x )的值; (3)当 f (x )=2 时,求 x 的值.19.(12 分)函数 f (x )是 R 上的偶函数,且当 x >0 时,函数的解析式为 f (x )=2-1.x(1) 用定义证明 f (x )在(0,+∞)上是减函数; (2) 求当 x <0 时,函数的解析式.20.(12 分)函数 f (x )=4x 2-4ax +a 2-2a +2 在区间[0,2]上有最小值 3,求 a 的值.21.(12 分)已知函数 f (x )对一切实数 x ,y ∈R 都有 f (x +y )=f (x )+f (y ),且当 x >0 时,f (x )<0,又 f (3)=-2.(1) 试判定该函数的奇偶性;(2) 试判断该函数在 R 上的单调性;(3) 求 f (x )在[-12,12]上的最大值和最小值.22.(12 分)已知函数 y =x + t有如下性质:如果常数xt >0,那么该函数在(0, t ]上是减函数,在[ t ,+∞)上是增函数.(1) 已知 f (x ) 4x 2-12x -3x ∈[0,1],利用上述性质,求函数 f (x )的单调区间和值域;= ,2x +1(2)对于(1)中的函数f(x)和函数g(x)=-x-2a,若对任意x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,求实数a 的值.第一章章末检测答案解析1.C [因为N={x|x 是2 的倍数}={…,0,2,4,6,8,…},故M∩N={2,4,8},所以C 正确.]2.C [A={x|-1≤x≤1},B={y|yA∩B={x|0≤x≤1}.]3.A [f( 2)=2a-2=2,∴a=124.B [f(3x+2)=9x+8=3(3x+2)+2,∴f(t)=3t+2,即f(x)=3x+2.]5.C [∁U M={2,3,5},N={1,3,5},则N∩(∁U M)={1,3,5}∩{2,3,5}={3,5}.]6.A [f(x)=1在[1,2]上递减,x∴f(1)=A,f(2)=B,∴A-B=f(1)-f(2)=1-1=1.]2 27.D [由题意知a<0,-a3-a≥-1,2a-a22+1≥-1,即a2≤3.a<0.]8.A [f(5)=f(f(10))=f(f(f(15)))=f(f(18))=f(21)=24.]9.B [f(x)是偶函数,即f(-x)=f(x),得m=0,所以f(x)=-x2+3,画出函数f(x)=-x2+3 的图象知,f(x)在区间(2,5)上为减函数.] 10.C [∵x0∈A,∴f(x0)=x0+1∈B,2∴f[f(x0)]=f(x0+1)=2(1-x0-1),2 2即f[f(x0)]=1-2x0∈A,所以0≤1-2x0<1,2即1<x0≤1,又x0∈A,4 2∴1<x0<1,故选C.]4 211.A [由f(2+x)=f(2-x)可知:函数f(x)的对称轴为x=2,由二次函数f(x)开口方向,可得f(2)最小;又f(4)=f(2+2)=f(2-2)=f(0),在x<2 时y=f(x)为减函数.∵0<1<2,∴f(0)>f(1)>f(2),即f(2)<f(1)<f(4).]=- ≠,, 12.D [由题意知 f (x )+g (x )在(0,+∞)上有最大值 6,因 f (x )和 g (x )都是奇函数,所以f (-x )+g (-x )=-f (x )-g (x )=-[f (x )+g (x )],即 f (x )+g (x )也是奇函数,所以 f (x )+g (x )在(-∞,0)上有最小值-6, ∴F (x )=f (x )+g (x )+2 在(-∞,0)上有最小值-4.]13.m ≤2解析 由函数单调性可知,由 f (m +3)≤f (5)有 m +3≤5, 故 m ≤2. 14.-1解析 f (x )=-x 2+2x +3=-(x -1)2+4,∵1∈[-2,3],∴f (x )max =4,又∵1-(-2)>3-1,由 f (x )图象的对称性可知,f (-2)的值为 f (x )在[-2,3]上的最小值,即 f (x )min =f (-2)=-5,∴-5+4=-1. 15.-1解析 由题意知,f (-x )=-f (x ), x 2-(a +1)x +a x 2+(a +1)x +a 即 =- ,-xx ∴(a +1)x =0 对 x ≠0 恒成立, ∴a +1=0,a =-1.16.(-1,-1)∪[0,1)2解析 由题中图象知,当 x ≠0 时,f (-x )=-f (x ),所以 f (x )-[-f (x )]>-1,∴f (x )>-1,2 由题图可知,此时-1<x <-1或 0<x <1.当 x =0 时,2f (0)=-1,f (0)-f (-0)=-1+1=0,0>-1 满足条件.因此其解集是{x |-1<x <-12 0≤x <1}.17.解 ∵A ∩B ={1 2 },∴1∈A .2∴2( 1)2+3p (1 2 2)+2=0.∴p =-5.∴A ={1,2}.3 2 又∵A ∩B = 1 1B .∴ 1 2 { },∴ ∈2 21 2( ) +2 +q =0.∴q =-1.2 ∴B ={1,-1}.∴A ∪B ={-1 12 22}.18.解 (1)∵f (3) 3+2 5 14. 3-63 ∴点(3,14)不在 f (x )的图象上.(2)当 x =4 时,f (4) 4+2 = =-3. 4-6 (3)若 f (x )=2,则x +2=2,x -6∴2x -12=x +2,∴x =14. 19.(1)证明 设 0<x 1<x 2,则f (x 1)-f (x 2)=( 2 -1)-( 2-1)x 1 x 2= 或2(x 2-x 1) = ,x 1x 2∵0<x 1<x 2,∴x 1x 2>0,x 2-x 1>0, ∴f (x 1)-f (x 2)>0, 即 f (x 1)>f (x 2),∴f (x )在(0,+∞)上是减函数. (2)解 设 x <0,则-x >0,∴f (-x )=- 2-1,x又 f (x )为偶函数,∴f (-x )=f (x )=-2-1,x 即 f (x )=-2-1(x <0). x20.解 ∵f (x )=4(x -a)2-2a +2,2①当a≤0,即 a ≤0 时,函数 f (x )在[0,2]上是增函数.2∴f (x )min =f (0)=a 2-2a +由 a 2-2a +2=3,得 a =∵a ≤0,∴a =1- 2.②当 0<a<2,即 0<a <4 时,2 f (x )min =f (a)=-2a +2.2由-2a +2=3,得 a =- 1∉(0,4),舍去.2③当a≥2,即 a ≥4 时,函数 f (x )在[0,2]上是减函数,2f (x )min =f (2)=a 2-10a +18.由 a 2-10a +18 a =∵a ≥4,∴a =5综上所述,a =1 a =521.解 (1)令 x =y =0,得 f (0+0)=f (0)=f (0)+f (0) =2f (0),∴f (0)=0.令 y =-x ,得 f (0)=f (x )+f (-x )=0, ∴f (-x )=-f (x ), ∴f (x )为奇函数.(2)任取 x 1<x 2,则 x 2-x 1>0,∴f (x 2-x 1)<0, ∴f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (x 2-x 1)<0, 即 f (x 2)<f (x 1)∴f (x )在 R 上是减函数.(3)∵f (x )在[-12,12]上是减函数, ∴f (12)最小,f (-12)最大.又 f (12)=f (6+6)=f (6)+f (6)=2f (6) =2[f (3)+f (3)]=4f (3)=-8, ∴f (-12)=-f (12)=8.∴f (x )在[-12,12]上的最大值是 8,最小值是-8.22.解 (1)y =f (x ) 4x 2-12x -3 4= =2x +1+ -8,2x +1设 u =2x +1,x ∈[0,1],1≤u ≤3,2x +1≤ 则 y =u +4-8,u ∈[1,3].u由已知性质得,当 1≤u ≤2,即 0≤x 1时, 2所以减区间为[0,1];2f (x )单调递减;当 2≤u ≤3,即 1≤x ≤1 时,f (x )单调递增;2 所以增区间为[1,1];2 由 f (0)=-3, f (1)=-4,f (1)=-11 2 3得 f (x )的值域为[-4,-3]. (2) g (x )=-x -2a 为减函数,故 g (x )∈[-1-2a ,-2a ],x ∈[0,1].由题意,f (x )的值域是 g (x )的值域的子集,1-2a ≤-4 2a ≥-3∴a =32 . ,。
人教A版高一数学必修第一册第一章《集合与常用逻辑用语》章末练习题卷含答案解析(37)
第一章《集合与常用逻辑用语》章末练习题卷(共22题)一、选择题(共12题)1. 若集合 M ={x∣ x <2},N ={x∣ 0≤x ≤1},则 M ∩N = ( ) A . [0,1] B . [0,2] C . [1,2) D . (−∞,2]2. 已知集合 A ={−1,0,1},B ={x∣ −1≤x <1},则 A ∩B = ( ) A . {−1,0,1} B . {0} C . {0,1} D . {−1,0}3. 已知 A ={x∣ x <1},B ={x∣ 2x +1<2},则 A ∩B = ( ) A . {x ∣∣x <12}B . {x ∣∣12<x <1}C . {x∣ x <1}D . R4. 命题“∃x ∈R ,使得 x 2+2x +3=0”的否定是 ( ) A . ∃x ∈R ,使得 x 2+2x +3≠0 B . ∀x ∈R ,都有 x 2+2x +3=0 C . ∀x ∈R ,都有 x 2+2x +3≠0D . ∀x ∉R ,都有 x 2+2x +3≠05. 命题 p:∃x 0∈R ,x 02+x 0+1≤0,则命题 p 的否定是 ( )A . ∃x 0∈R ,x 02+x 0+1>0B . ∀x ∈R ,x 2+x +1≥0C . ∀x ∈R ,x 2+x +1>0D . ∀x ∈R ,x 2+x +1≤06. 已知集合 A ={x∣ lgx >0},B ={x∣ x 2≤4},则 A ∩B = ( ) A . (1,2) B . (1,2] C . (0,2] D . (1,+∞)7. 已知 U ={1,2,3,4},A ={1,3,4},B ={2,3,4},那么 ∁U (A ∩B )= ( ) A . {1,2} B . {3,4} C . ∅ D . {1,2,3,4}8. 已知集合 M ={x∣ x 2−2<0},N ={−2,−1,0,1,2},则 M ∩N = ( ) A . ∅ B . {1} C . {0,1} D . {−1,0,1}9. 命题“所有能被 2 整除的整数都是偶数”的否定是 ( ) A .所有不能被 2 整除的整数都是偶数 B .所有能被 2 整除的整数都不是偶数 C .存在一个不能被 2 整除的整数是偶数 D .存在一个能被 2 整除的整数不是偶数10. 命题“∃x ∈(1,+∞),x 2+1≤3x ”的否定是 ( ) A . ∀x ∈(−∞,1],x 2+1>3x B . ∀x ∈(1,+∞),x 2+1≤3xC . ∃x ∈(−∞,1],x 2+1≤3xD . ∀x ∈(1,+∞),x 2+1>3x11.由大于−3且小于11的偶数组成的集合是( )A.{x∣ −3<x<11,x∈Q}B.{x∣ −3<x<11}C.{x∣ −3<x<11,x=2k,x∈Q}D.{x∣ −3<x<11,x=2k,k∈Z}12.已知集合Ω中的三个元素l,m,n分别是△ABC的三边长,则△ABC一定不是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形二、填空题(共4题)13.π是(选填“有理数”“无理数”).14.设M={x∣1<x<3},N={x∣2≤x<4},定义M与N的差集M−N={x∣∣x∈M且x∉N},则M−N=.15.已知集合A={−1,1,2},B={0,1},则A∪B=.16.设集合A={x∣ −1≤x≤2},B={x∣ 0≤x≤4},则A∩B=.三、解答题(共6题)17.下列命题中,α是β的充分条件吗?(1) α:a>b,β:ac>bc;(2) α:同位角相等,β:两直线平行.18.如何理解并集的含义?19.已知集合A={x∣ a−1<x<2a+1},B={x∣ 0<x<1}.,求A∩B;(1) 若a=12(2) 若A∩B=∅,求实数a的取值范围.20.如何理解交集的含义?21.集合论是德国数学家康托尔于19世纪末创立的.当时,康托尔在解决涉及无限量研究的数学问题时,越过“数集”限制,提出了一般性的“集合”概念.关于集合论,希尔伯特赞誉其为“数学思想的惊人的产物,在纯粹理性的范畴中人类活动的最美的表现之一”,罗素描述其为“可能是这个时代所能夸耀的最伟大的工作”.请你查阅相关资料,用简短的报告阐述你对这些评价的认识.22.若集合A={x∣ −5≤x<1},B={x∣ x≤2},求A∪B.答案一、选择题(共12题)1. 【答案】A【解析】因为M={x∣ x<2},N={x∣ 0≤x≤1},所以M∩N={x∣ 0≤x≤1}.【知识点】交、并、补集运算2. 【答案】D【解析】由题意可得A∩B={−1,0}、【知识点】交、并、补集运算3. 【答案】A},【解析】因为A={x∣ x<1},B={x∣∣x<12}.所以A∩B={x∣∣x<12【知识点】交、并、补集运算4. 【答案】C【解析】根据存在量词命题的否定是全称量词命题可知,命题“∃x∈R,使得x2+2x+3=0”的否定是“∀x∈R,都有x2+2x+3≠0”.故选C.【知识点】全(特)称命题的否定5. 【答案】C【解析】否定要把∃改为∀,≤改为>,故选C.【知识点】全(特)称命题的否定6. 【答案】B【解析】A=(1,+∞),B=[−2,2],故A∩B=(1,2],故选B.【知识点】交、并、补集运算7. 【答案】A【解析】易知A∩B={3,4},故∁U(A∩B)={1,2},故选A.【知识点】交、并、补集运算8. 【答案】B【解析】由x2−2x<0,得x∈(0,2),所以M∩N={1}.【知识点】交、并、补集运算9. 【答案】D【知识点】全(特)称命题的否定10. 【答案】D【知识点】全(特)称命题的否定11. 【答案】D【知识点】集合的表示方法12. 【答案】D【解析】因为集合中的元素是互异的,所以l,m,n互不相等,即△ABC不可能是等腰三角形,故选D.【知识点】集合中元素的三个特性二、填空题(共4题)13. 【答案】无理数【知识点】集合的概念14. 【答案】{x∣1<x<2}【解析】将集合M,N在数轴上标出,如图所示.因为M−N={x∣∣x∈M且x∉N},所以M−N={x∣1<x<2}.【知识点】交、并、补集运算15. 【答案】{−1,1,0,2}【解析】结合题中所给的集合和并集的定义可得:A∪B={−1,1,0,2}.【知识点】交、并、补集运算16. 【答案】{x∣ 0≤x≤2}【解析】A在数轴上表示出集合A与B,如图.则由交集的定义,A∩B={x∣ 0≤x≤2}.【知识点】交、并、补集运算三、解答题(共6题)17. 【答案】(1) α不是β的充分条件.(2) α是β的充分条件.【知识点】充分条件与必要条件18. 【答案】① A∪B仍是一个集合,由所有属于A或属于B的元素组成.②“或”的数字内涵的形象图示如下:③若集合A和B中有公共元素,根据集合元素的互异性,则在A∪B中仅出现一次.【知识点】交、并、补集运算19. 【答案】(1) 当a=12时,A={x∣ −12<x<2},B={x∣ 0<x<1},所以A∩B={x∣ 0<x<1}.(2) 若A∩B=∅,则当A=∅时,有a−1≥2a+1,解得a≤−2,符合题意;当A≠∅时,有{a−1<2a+1,2a+1≤0或a−1≥1,解得−2<a≤−12或a≥2.综上,实数a的取值范围为a≤−12或a≥2.【知识点】交、并、补集运算20. 【答案】①概念中“且”即“同时”的意思,两个集合交集中的元素必须同时是两个集合的元素,即由既属于A,又属于B的元素组成的集合为A∩B;②当集合A和集合B无公共元素时,不能说集合A,B没有交集,而是A∩B=∅.【知识点】交、并、补集运算21. 【答案】略【知识点】集合的概念22. 【答案】借助于数轴分别画出集合A,B,如图,故A∪B={x∣ x≤2}.【知识点】交、并、补集运算。
人教A版高一数学必修第一册第一章《集合与常用逻辑用语》章末练习题卷含答案解析(49)
第一章《集合与常用逻辑用语》章末练习题卷(共22题)一、选择题(共12题)1.已知集合A={x∣ x2−2x−3≥0},B={x∣ −2≤x<2},则A∩B等于( )A.[−2,−1]B.[−1,1]C.[−1,2)D.[1,2)2.设集合U={x∈N∣ 0<x≤8},S={1,2,4,5},T={3,5,7},则S∩(∁U T)=( )A.{1,2,4}B.{1,2,3,4,5,7}C.{1,2}D.{1,2,4,5,6,8}3.“x=3”是“x2=9”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.设p:a>0,q:a2+a>0,那么p是q的( )A.充分不必要条件B.必要不充分条件C.必要条件D.既不充分也不必要条件5.已知a=log134,b=log23,c=2−0.3,则a,b,c的大小关系是( )A.a>b>c B.b>a>c C.c>a>b D.b>c>a6.已知集合A={x∣ x2−3x+2=0,x∈R},B={x∣ 0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为( )A.1B.2C.3D.47.坐标轴上的点的集合可表示为( )A.{(x,y)∣ x=0,y≠0或x≠0,y=0}B.{(x,y)∣ x2+y2=0}C.{(x,y)∣ xy=0}D.{(x,y)∣ x2+y2≠0}8.设集合M={x∣ x∈Z},N={x∣ x=n2,n∈Z},P={x∣ x=n+12,n∈Z},则下列关系正确的是( )A.N⊆M B.N=M∪P C.N⊆P D.N=M∩P9.已知条件p:∣x+1∣>2,条件q:∣x∣>a,且¬p是¬q的必要不充分条件,则实数a的取值范围是( )A.0≤a≤1B.1≤a≤3C.a≤1D.a≥310.若“b=c=0”是“抛物线y=ax2+bx+c经过原点”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件11.设集合M={1,2},N={a2},则“a=1”是“N⊆M”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件>0成立的充分不必要条件是( )12.不等式1−1xA.x>1B.x>−1C.x<−1或0<x<1D.x<0或x>1二、填空题(共4题)13.集合G关于运算⊕满足:(1)对任意的a,b∈G,都有a⊕b∈G;(2)存在e∈G,对任意a∈G,都有a⊕e=e⊕a=a,则称G关于运算⊕为“融洽集”,现给出下列集合和运算:① G={非负整数},⊕为整数的加法;② G={偶数},⊕为整数的乘法;③ G={二次三项式},⊕为多项式的加法.其中G关于运算⊕为“融洽集”的有.(写出所有“融洽集”的序号)14.设集合S n={1,2,3,⋯,n},n∈N∗,X⊆S n,把X的所有元素的乘积称为X的容量(若X中只有一个元素,则该元素的数值即为它的容量,规定空集的容量为0).若X的容量为奇(偶)数,则称X为S n的奇(偶)子集.若n=4,则S n的所有奇子集的容量之和为.15.设全集U={2,3,a2+2a−3},A={∣ 2a−1∣ ,2},∁U A={5},则实数a=.16.“x∈A或x∈B”是“x∈A∩B”的条件.三、解答题(共6题)17.设全集U={x∣ x≤4},A={x∣ −1≤x≤2},B={x∣ 1≤x≤3}.求:(1) (∁U A)∪B;(2) (∁U A)∩(∁U B).x2+1(如图所示).18.已知抛物线y=14(1) 填空:抛物线的顶点坐标是,对称轴是.(2) 已知y轴上一点A(0,2),点P在抛物线上,过点P作PB⊥x轴,垂足为点B.若△PAB是等边三角形,求点P的坐标.(3) 在(2)的条件下,点M在直线AP上,在平面内是否存在点N,使四边形OAMN为菱形?若存在,求出所有满足条件的点N的坐标;若不存在,请说明理由.19.已知集合A={a1,a2,a3,⋯,a n},其中a i∈R(1≤i≤n,n>2),l(A)表示a i+a j(1≤i<j≤n)的所有不同值的个数.(1) 已知集合P={2,4,6,8},Q={2,4,8,16},分别求l(P),l(Q);.(2) 若集合A={2,4,8,⋯,2n},求证:l(A)=n(n−1)220.已知集合M={x∣ x<−3或x>5},P={x∣ a≤x≤8}.(1) 求实数a的取值范围,使它成为M∩P={x∣ 5<x≤8}的充要条件;(2) 求实数a的一个值,使它成为M∩P={x∣ 5<x≤8}的一个充分不必要条件;(3) 求实数a的取值范围,使它成为M∩P={x∣ 5<x≤8}的一个必要不充分条件.21.已知命题p:方程x2−2x−a=0没有实数根;命题q:不等式x2−ax+4>0对一切实数x恒成立.若命题p和q都是真命题,求实数a的取值范围.22.已知集合A={a∣ a=x2−y2,x,y∈Z}.(1) 证明:2k+1∈A,其中k∈Z;(2) 请你指出集合A中元素所具有的至少三个性质,并加以证明;(3) 根据你的研究,若将A中的正整数由小到大排列,则第2008个数是多少?答案一、选择题(共12题)1. 【答案】A【解析】因为A={x∣ x≤−1或x≥3},故A∩B=[−2,−1].【知识点】交、并、补集运算2. 【答案】A【解析】因为U={1,2,3,4,5,6,7,8},所以∁U T={1,2,4,6,8},所以S∩(∁U T)={1,2,4}.【知识点】交、并、补集运算3. 【答案】A【解析】当x=3时,有x2=9,但当x2=9时,x=3或x=−3,故“x=3”是“x2=9”的充分不必要条件.【知识点】充分条件与必要条件4. 【答案】A【解析】充分性:当a>0时,a+1>0,则a(a+1)=a2+a>0,故充分性成立;必要性:解不等式a2+a>0得a(a+1)>0,即a<−1或a>0,故必要性不成立.所以p是q的充分不必要条件.【知识点】充分条件与必要条件5. 【答案】D【知识点】指数函数及其性质、对数函数及其性质6. 【答案】D【解析】因为集合A={1,2},B={1,2,3,4},所以当满足A⊆C⊆B时,集合C可以为{1,2},{1,2,3},{1,2,4},{1,2,3,4},故满足条件的集合C的个数为4.【知识点】n元集合的子集个数7. 【答案】C【解析】坐标轴上的点的横、纵坐标至少有一个为0.故选C.【知识点】集合的表示方法8. 【答案】B,n∈Z},【解析】N={x∣ x=n2当n=2k,k∈Z时,N={x∣ x=k,k∈Z};当n=2k+1,k∈Z时,N={x∣ x=k+12,k∈Z}.故P⊆N,M⊆N,N=M∪P.故选B.【知识点】交、并、补集运算9. 【答案】C【解析】p:∣x+1∣>2⇒x>1或x<−3,当a≥0时,q:∣x∣>a⇒x>a或x<−a,当a<0时,q:∣x∣>a⇒x∈R,因为¬p是¬q的必要不充分条件,所以q是p的必要不充分条件,因此p⫋q.从而a<0或{a≥0,a≤1,−a≥−3⇒0≤a≤1,即a≤1.【知识点】充分条件与必要条件10. 【答案】A【知识点】充分条件与必要条件11. 【答案】A【解析】若a=1,则N={1},故N⊆M.若N⊆M,则a2=1或2,故“a=1”是“N⊆M”的充分不必要条件,故选A.【知识点】充分条件与必要条件、包含关系、子集与真子集12. 【答案】A【知识点】充分条件与必要条件二、填空题(共4题)13. 【答案】①【解析】根据题意,判断给出的集合对运算⊕是否满足条件(1)(2)即可.其中,条件(1)的含义是:集合G中任意两个元素关于运算⊕的结果仍然是集合G的元素;条件(2)的含义是:集合G中存在一个特殊元素e,它与G中任何一个元素a关于运算⊕满足交换律,且运算结果等于a.① G={非负整数},⊕为整数的加法,满足对任意a,b∈G,都有a⊕b∈G,且存在e=0,使得a⊕0=0⊕a=a,所以①中的G关于运算⊕为“融洽集”;② G= {偶数},⊕为整数的乘法,若存在e∈G,使a⊕e=e⊕a=a,则e=1,与e∈G矛盾,所以②中的G关于运算⊕不是“融洽集”;③ G={二次三项式},⊕为多项式的加法,两个二次三项式相加得到的可能不是二次三项式,所以③中的G关于运算⊕不是“融洽集”.综上所述,G关于运算⊕为“融洽集”的只有①.【知识点】元素和集合的关系14. 【答案】7【解析】根据题意,S4的所有奇子集为{1},{3},{1,3},分析可得{1}的容量为1,{3}的容量为3,{1,3}的容量为3,则其容量之和为1+3+3=7.【知识点】包含关系、子集与真子集15. 【答案】2【知识点】交、并、补集运算16. 【答案】必要非充分.【知识点】充分条件与必要条件三、解答题(共6题)17. 【答案】(1) 因为U={x∣ x≤4},A={x∣ −1≤x≤2},所以∁U A={x∣ x<−1或2<x≤4}.因为B={x∣ 1≤x≤3},所以(∁U A)∪B={x∣ x<−1或1≤x≤4}.(2) 因为U={x∣ x≤4},B={x∣ 1≤x≤3},所以∁U B={x∣ x<1或3<x≤4},所以(∁U A)∩(∁U B)={x∣ x<−1或3<x≤4}.【知识点】交、并、补集运算18. 【答案】(1) (0,1);y轴(或直线x=0)(2) 如图所示,因为△PAB是等边三角形,所以∠ABO=90∘−60∘=30∘.所以AB=2OA=4,所以PB=4.x2+1,得x=±2√3.方法一;把y=4代入y=14所以P1(2√3,4),P2(−2√3,4).方法二:因为OB=√AB2−OA2=2√3,所以P1(2√3,4).根据抛物线的对称性,得P2(−2√3,4).(3) 存在.因为四边形OAMN为菱形,所以AP∥ON.设直线AP1:y=kx+b,将点A(0,2),P1(2√3,4)的坐标分别代入,,b=2,得k=√33所以y=√33x+2.故点N在直线y=√33x上,设N(x0,√33x0),则x02+(√33x0)2=4,解得x0=±√3,所以N1(√3,1),N2(−√3,−1).同理得点M在直线AP2上时,N3(−√3,1),N4(√3,−1).综上所述,所有满足条件的点N的坐标分别为(√3,1),(−√3,−1),(−√3,1),(√3,−1).【知识点】二次函数的性质与图像19. 【答案】(1) 由2+4=6,2+6=8,2+8=10,4+6=10,4+8=12,6+8=14,得l(P)=5,由2+4=6,2+8=10,2+16=18,4+8=12,4+16=20,8+16=24,得l(Q)=6.(2) 因为a i+a j(1≤i<j≤n)共有(n−1)+(n−2)+(n−3)+⋯+4+3+2+1=n(n−1)2个值,所以l(A)≤n(n−1)2.又集合A={2,4,8,⋯,2n},不妨设a m=2m,m=1,2,⋯,n.a i+a j,a k+a l(1≤i<j≤n,1≤k<l≤n),当j≠l时,不妨设j<l,则a i+a j<2a j=2j+1≤a l<a k+a l,即a i+a j≠a k+a l,当j=l,i≠k时,a i+a j≠a k+a l,因此当且仅当i=k,j=l时,a i+a j=a k+a l.即所有a i+a j(1≤i<j≤n)的值两两不同,因此l(A)=n(n−1)2.【知识点】交、并、补集运算20. 【答案】(1) M∩P={x∣ 5<x≤8}的充要条件是−3≤a≤5,所以实数a的取值范围是{a∣ −3≤a≤5}.(2) 显然,满足−3≤a≤5的任意一个a的值都是M∩P={x∣ 5<x≤8}的充分不必要条件.比如a=0.(3) 若a=−5,显然M∩P={x∣ −5≤x<−3或5<x≤8},则a=−5是M∩P={x∣ 5<x≤8}的一个必要不充分条件.结合数轴可知a<−3时符合题意,则实数a的取值范围是{a∣ a<−3}.【知识点】充分条件与必要条件21. 【答案】当命题 p 是真命题时,应用 4+4a <0,解得 a <−1;当命题 q 是填命题时,应有 a 2−16<0,解得 −4<a <4. 所以当命题 p 与 q 都是真命题时,a 应满足 {a <−1,−4<a <4,即 −4<a <−1,因此,实数 a 的取值范围是 (−4,−1). 【知识点】全(特)称命题的概念与真假判断22. 【答案】(1) 2k +1=(k +1)2−k 2,则 2k +1∈A .(2) 1=12−02,3=22−12,4=22−02,5=32−22,7=42−32,8=32−12,⋯⋯ ① 4k ∈A ,其中 k ∈Z ;证明:4k =(k +1)2−(k −1)2,则 4k ∈A . ② 4k +2∉A ,其中 k ∈Z ;证明:假设 4k +2∈A ,即 4k +2=x 2−y 2,也即 2(2k +1)=(x +y )(x −y ). 因为 x +y 与 x −y 的奇偶性相同,所以 x +y 与 x −y 都为偶数. 则 x 2−y 2=(x +y )(x −y ) 是 4 的倍数,与 2(2k +1) 不是 4 的倍数矛盾. 故 4k +2∉A . ③ A ⫋Z ;证明:a =x 2−y 2=(x +y )(x −y )∈Z ,但 2∉A ,则 A ⫋Z . ④ A 为无穷集;证明:2k +1∈A ,奇数有无穷多个,则 A 为无穷集. ⑤集合 A 中的元素在数轴上关于原点对称;证明:若 a =x 2−y 2∈A ,则 −a =y 2−x 2∈A ,所以集合 A 中的元素关于原点对称. ⑥所有的完全平方数属于 A ; 证明:a =x 2=x 2−02.⑦集合 A 中的两个元素的积仍属于集合 A ;证明:设 a,b ∈A ,则 ab =(x 12−y 12)(x 22−y 22)=x 12x 22−x 12y 22−x 22y 12+y 12y 22=(x 1x 2+y 1y 2)2−(x 1y 2+x 2y 1)2, 所以 ab ∈A . ⋯⋯⋯⋯(3) 2008÷3=669⋯1,669×4+1=2677,则第 2008 个数是 2677. 【知识点】包含关系、子集与真子集、元素和集合的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
章末检测
一、选择题
1.设P ={x|x<4},Q ={x|x 2<4},则 ( B ) A .P ⊆Q B .Q ⊆P C .P ⊆∁R Q D .Q ⊆∁R P 2.已知集合M ={1,2},则集合M 的子集个数为 ( D ) A .1 B .2 C .3 D .4 3.符合条件{a}ØP ⊆{a ,b ,c}的集合P 的个数是 ( B ) A .2 B .3 C .4 D .5 4.若集合A ={x||x|≤1,x ∈R},B ={y|y =x 2,x ∈R},则A∩B 等于
(
C )
A .{x|-1≤x≤1}
B .{x|x≥0}
C .{x |0≤x≤1}
D .∅
5.已知集合A 中有且仅有两个元素2-a 和a 2
,且a ∈R ,则A 中一定不含元素 ( D ) A .0和1 B .1和-2 C .-1和2 D .1和4
6.设全集I ={a ,b ,c ,d ,e},集合M ={a ,b ,c},N ={b ,d ,e},那么∁I M∩∁I N 等于 ( A ) A .∅ B .{d} C .{b ,e} D .{a ,c}
7.已知全集U =R ,集合A ={1,2,3,4,5},B ={x ∈R|x≥3},下图中阴影部分所表示的集合为 ( B ) A .{1} B .{1,2} C .{1,2,3} D .{0,1,2}
8.有下列说法:
①0与{0}表示同一个集合;
②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};
③方程(x -1)2(x -2)=0的所有解的集合可表示为{1,1,2};
④集合{x|4<x<5}是有限集. 其中正确的说法是 ( C ) A .只有①和④ B .只有②和③ C .只有② D .以上四种说法都不对
9.已知全集I ={1,2,3,4,5,6,7,8},集合M ={3,4,5},集合N ={1,3,6},则集合{2,7,8}是 ( D ) A .M ∪N B .M∩N C .∁I M ∪∁I N D .∁I M∩∁I N
10.已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若N∩∁I M =∅,则M ∪N 等于 ( A ) A .M B .N C .I D .∅
11.已知集合A ={x|x<3或x≥7},B ={x|x<a}.若∁R A∩B≠∅,则a 的取值范围为 ( A ) A .a>3 B .a≥3 C .a≥7 D .a>7
12.已知集合A ,B 均为集合U ={1,3,5,7,9}的子集,若A∩B ={1,3},∁U A∩B ={5},则集合B 等于 ( D ) A .{1,3} B .{3,5} C .{1,5} D .{1,3,5} 二、填空题
13.已知P ={x|x =a 2+1,a ∈R},Q ={x|x =a 2-4a +5,a ∈R},则P 与Q 的关系为_ P =Q _. 14.已知全集U ={3,7,a 2-2a -3},A ={7,|a -7|},∁U A ={5},则a =__4__. 15.集合A ={1,2,3,5},当x ∈A 时,若x -1∉A ,x +1∉A ,则称x 为A 的一个“孤立元素”则A 中孤立元素的个数为_1_.
16.用描述法表示图中阴影部分的点(含边界)的坐标的集合为_{(x ,y)|-1≤x≤2,-1
2
≤y≤1,且xy≥0}_.
三、解答题
17.(12分)已知全集U =R ,集合M ={x|x ≤3},N ={x|x<1},求M ∪N ,∁U M∩N ,∁U M ∪∁U N.
18.A ={x|-2<x <-1或x >1},B ={x|a≤x <b},A ∪B ={x|x >-2},A∩B ={x|1<x <3},求实数a ,b 的值. 解:∵A∩B ={x|1<x <3},
∴b =3,又A ∪B ={x|x >-2},
∴-2<a ≤-1,又A∩B ={x|1<x <3}, ∴-1≤a <1,∴a =-1.
19.已知非空集合M⊆{1,2,3,4,5},且当a∈M时,也有6-a∈M,试求所有这样的集合M.
解:由a∈M,且6-a∈M,知当1∈M时,必有5∈M;
当2∈M时,必有4∈M;又3=6-3,
∴集合M可以是{3}、{1,5}、{2,4}、{1,3,5}、{2,3,4}、{1,2,4,5}和{1,2,3,4,5}.
20.设A={x|x2+ax+b=0},B={x|x2+cx+15=0},又A∪B={3,5},A∩B={3},求实数a,b,c的值.解:∵A∩B={3},
∴3∈B,
∴32+3c+15=0,
∴c=-8.
由方程x2-8x+15=0解得x=3或x=5,
∴B={3,5}.
由A⊆(A∪B)={3,5}知,
3∈A,5 A
(否则5∈A∩B,与A∩B={3}矛盾),
故必有A={3},
∴方程x2+ax+b=0有两相同的根3,
由根与系数的关系得3+3=-a,3×3=b,
即a=-6,b=9,c=-8.
21.设A={-4,2a-1,a2},B={a-5,1-a,9},已知A∩B={9},求A∪B.
解:∵A∩B={9},
∴9∈A,
所以a2=9或2a-1=9,解得a=±3或a=5.
当a=3时,A={9,5,-4},B={-2,-2,9},B中元素违背了互异性,舍去.
当a=-3时,A={9,-7,-4},B={-8,4,9},A∩B={9}满足题意,
故A∪B={-7,-4,-8,4,9}.
当a=5时,A={25,9,-4},B={0,-4,9},此时A∩B={-4,9},与A∩B={9}矛盾,故舍去.
综上所述,A∪B={-7,-4,-8,4,9}.
22.若集合A={x|x2-2x-8<0},B={x|x-m<0}.
(1)若m=3,全集U=A∪B,试求A∩∁U B;
(2)若A∩B=∅,求实数m的取值范围;
(3)若A∩B=A,求实数m的取值范围.
解:
(1)由x2-2x-8<0,得-2<x<4,
∴A={x|-2<x<4}.
当m=3时,由x-m<0,得x<3,
∴B={x|x<3},
∴U=A∪B={x|x<4},∁U B={x|3≤x<4}.
∴A∩∁U B={x|3≤x<4}.
(2)∵A={x|-2<x<4},B={x|x<m},
又A∩B=∅,
∴m≤-2.
(3)∵A={x|-2<x<4},B={x|x<m},
由A∩B=A,得A⊆B,∴m≥4.。