高中数学必修一集合经典习题
高中数学必修一集合经典大题例题

(每日一练)高中数学必修一集合经典大题例题单选题1、若集合A={1,m2},集合B={2,4},若A∪B={1,2,4},则实数m的取值集合为()A.{−√2,√2}B.{2,√2}C.{−2,2}D.{−2,2,−√2,√2}答案:D解析:由题中条件可得m2=2或m2=4,解方程即可.因为A={1,m2},B={2,4},A∪B={1,2,4},所以m2=2或m2=4,解得m=±√2或m=±2,所以实数m的取值集合为{−2,2,−√2,√2}.故选:D.2、已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A.∅B.S C.T D.Z答案:C解析:分析可得T⊆S,由此可得出结论.任取t∈T,则t=4n+1=2⋅(2n)+1,其中n∈Z,所以,t∈S,故T⊆S,因此,S∩T=T.故选:C.3、集合A={0,−1,a2},B={−2,a4}.若A∪B={−2,−1,0,4,16},则a=()A.±1B.±2C.±3D.±4答案:B解析:根据并集运算,结合集合的元素种类数,求得a的值.由A∪B={−2,−1,0,4,16}知,{a2=4,解得a=±2a4=16故选:B4、已知集合A={x|x2+2x−15≤0},B={−3,−1,1,3,5},则A∩B=()A.{−3,−1,1,3}B.{−3,−1,1}C.{−1,1,3}D.{−3,−1,1,3,5}答案:A解析:求出集合A,直接进行集合的交集运算.因为A={x|x2+2x−15≤0}={x|−5≤x≤3},所以A∩B={−3,−1,1,3}. 故选:A小提示:本题考查集合的交集,考查运算求解能力,属于基础题.5、已知U=R,M={x|x≤2},N={x|−1≤x≤1},则M∩∁U N=()A.{x|x<−1或1<x≤2}B.{x|1<x≤2}C.{x|x≤−1或1≤x≤2}D.{x|1≤x≤2}答案:A解析:先求∁U N,再求M∩∁U N的值.因为∁U N={x|x<−1或x>1},所以M∩C U N={x|x<−1或1<x≤2}. 故选:A.。
高一数学必修一集合练习题及单元测试(含答案及解析)

集合练习题1 .设集合A = {x|2 4}, B = {x|3x —7 >8 —2x},贝U A UB 等于()A. {x|x > 3}B. {x|x > 2}C. {x|2 <x3}D. {x|x > 4}2 .已知集合A = {1,3,5,7,9} , B= {0,3,6,9,12},贝U A AB =( )A. {3,5}B. {3,6}C. {3,7}D. {3,9}3. 已知集合A = {x|x>0} , B= {x| —1 w x w 2}则A UB =( )A. {x|x —1}B. {x|x w 2 }C. {x|0<x w 2}D. {x| —1 w x w 2}4. 满足M?{町,口2 ,巾,h },且MQp i ,叱,靭}= ,叱}的集合M的个数是()A . 1B . 2C . 3D . 45 .集合A = {0,2 , a}, B= {1,只}.若A UB = {0,1,2,4,16},贝U a 的值为()A . 0B . 1C . 2 D. 46 .设S= {x|2x + 1>0} , T = {x|3x —5<0},贝U S AT=( )A . ?B . {x|x< —1/2}C . {x|x>5/3}D . {x| —1/2<x<5/3}7 . 50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为______________ .8.满足{1,3} U4 {1,3,5}的所有集合A的个数是________________ .9 .已知集合A = {x|x w 1}B = {x|x > a}且A UB = R,则实数a的取值范围是_________________ .10.已知集合A = {—4,2a —1,白}, B= {a —5,1 —a,9},若A AB = {9},求a 的值.11 .已知集合A = {1,3,5} , B= {1,2 , —1},若A UB = {1,2,3,5},求x 及A A B.12 .已知A = {x|2a w x^3}, B= {x|x< —1 或x>5},若A AB = ?,求a 的取值范围.13 . (10分)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13 ,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?集合测试一、选择题:本大题共10小题,每小题5分,共50分。
高中数学必修一集合习题大全含答案

《集合》练习一一、选择题 :( 每小题 5分共 60分)1. 下列命题正确的有()( 1)很小的实数可以构成 集合;( 2)集合 y | y x 2 1 与集合 x, y | y x 2 1 是同一个集合 ;(3)1,3,6,1,0.5 这些数组成 的集合有 5 个元素;2 42( 4)集合 x, y | xy0, x, y R 是指第二和第 四象限内的点集。
A . 0 个B .1个C .2个D .3个2. 若全集 U0,1,2,3 且 C U A 2 ,则集合 A 的真子集共有()A .3个B .5个C . 7个D . 8个3. 若集合 A{ 1,1} , B { x | mx 1},且 ABA ,则 m 的值为()A . 1B . 1C . 1或 1D . 1或 1或 04. 若集合 M( x, y) x y 0 , N( x, y) x 2 y 2 0, xR, y R ,则有()A .M N MB .M N NC .M N MD .M Nxy 1B . 5, 4C .5,4 D . 5, 4 。
5. 方程组y 2的解集是() A . 5,4x 296. 下列式子中,正确的是( )A . RR B .Zx | x 0, xZ C .空集是任何集合 的真子集 D .7. 下列表述中错误的是()A .若 A B,则AB A B .若 A B B ,则A BC . (A B)A (A B)D .C U A BC U A C U B8. 若集合 X{ x | x1} ,下列关系式中成立的为()A .0 XB . 0 XC . XD .0X9. 已知集合 Ax | x 2mx 1 0,若A R ,则实数 m 的取值范围是()A . m 4B . m 4C . 0 m 4D . 0 m 410.下列说 法中, 正确的是( )A. 一个集合必有两个子集;B. 则 A, B 中至少有一个为C.集合必有一个真子集;D. 若 S 为全集,且 AB S, 则 A B S,11.若 U 为全集,下面三个命题中真命题的个数是()(1)若A B ,则C U AC U B U(2)若A B U,则 C U AC U B(3)若A B ,则 A BA.0个 B.1个 C.2个 D.3个12.设集合M { x | x k 1 Z},N k 1, k Z},则()2,k { x | x24 4. M N .M N . NM. M NA B C D二、填空题 ( 每小题 4 分, 共 16 分 )13.某班有学生55 人,其中体育爱好者43 人,音乐爱好者34 人,还有4 人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为人_______。
高中数学必修一第一章集合与常用逻辑用语经典大题例题

(每日一练)高中数学必修一第一章集合与常用逻辑用语经典大题例题单选题1、已知集合A={x|−1<x≤2},B={−2,−1,0,2,4},则(∁R A)∩B=()A.∅B.{−1,2}C.{−2,4}D.{−2,−1,4}答案:D分析:利用补集定义求出∁R A,利用交集定义能求出(∁R A)∩B.解:集合A={x|−1<x≤2},B={−2,−1,0,2,4},则∁R A={x|x≤−1或x>2},∴(∁R A)∩B={−2,−1,4}.故选:D2、已知集合A={−1,1,2,4},B={x||x−1|≤1},则A∩B=()A.{−1,2}B.{1,2}C.{1,4}D.{−1,4}答案:B分析:方法一:求出集合B后可求A∩B.[方法一]:直接法因为B={x|0≤x≤2},故A∩B={1,2},故选:B.[方法二]:【最优解】代入排除法x=−1代入集合B={x||x−1|≤1},可得2≤1,不满足,排除A、D;x=4代入集合B={x||x−1|≤1},可得3≤1,不满足,排除C.故选:B.【整体点评】方法一:直接解不等式,利用交集运算求出,是通性通法;方法二:根据选择题特征,利用特殊值代入验证,是该题的最优解.3、已知集合A={−1,0,1,2},B={x|x2≤1},则A∩B=()A.{−1,0,1}B.{0,1}C.{−1,1}D.{0,1,2}答案:A分析:先计算集合B里的不等式,将B所代表的区间计算出来,再根据交集的定义计算即可. 不等式x2≤1,即−1≤x≤1,B=[−1,1],A={−1,0,1,2},B={x|−1≤x≤1},所以A∩B={−1,0,1};故选:A.4、设集合A={2,a2−a+2,1−a},若4∈A,则a的值为().A.−1,2B.−3C.−1,−3,2D.−3,2答案:D分析:由集合中元素确定性得到:a=−1,a=2或a=−3,通过检验,排除掉a=−1.由集合中元素的确定性知a2−a+2=4或1−a=4.当a2−a+2=4时,a=−1或a=2;当1−a=4时,a=−3.当a=−1时,A={2,4,2}不满足集合中元素的互异性,故a=−1舍去;当a=2时,A={2,4,−1}满足集合中元素的互异性,故a=2满足要求;当a=−3时,A={2,14,4}满足集合中元素的互异性,故a=−3满足要求.综上,a=2或a=−3.5、已知非空集合A 、B 、C 满足:A ∩B ⊆C ,A ∩C ⊆B .则( ).A .B =C B .A ⊆(B ∪C )C .(B ∩C )⊆AD .A ∩B =A ∩C答案:C分析:作出符合题意的三个集合之间关系的venn 图即可判断.解:因为非空集合A 、B 、C 满足:A ∩B ⊆C ,A ∩C ⊆B ,作出符合题意的三个集合之间关系的venn 图,如图所示,所以A ∩B =A ∩C .故选:D .6、已知“命题p:∃x ∈R,使得ax 2+2x +1<0成立”为真命题,则实数a 满足( )A .[0,1)B .(-∞,1)C .[1,+∞)D .(-∞,1]答案:B分析:讨论a =0或a ≠0,当a =0时,解得x <−12,成立;当a ≠0时,只需{a >0Δ>0或a <0即可. 若a =0时,不等式ax 2+2x +1<0等价为2x +1<0,解得x <−12,结论成立.当a ≠0时,令y =ax 2+2x +1,要使ax 2+2x +1<0成立,则满足{a >0Δ>0或a <0,解得0<a <1或a <0,综上a <1,小提示:本题考查了根据特称命题的真假求参数的取值范围,考查了分类讨论的思想,属于基础题.7、已知集合P={x|x=2k−1,k∈N∗}和集合M={x|x=a⊕b,a∈P,b∈P},若M⊆P,则M中的运算“⊕”是()A.加法B.除法C.乘法D.减法答案:C分析:用特殊值,根据四则运算检验.若a=3,b=1,则a+b=4∉P,a−b=2∉P,ba =13∉P,因此排除ABD.故选:C.8、下列各式中关系符号运用正确的是()A.1⊆{0,1,2}B.∅⊄{0,1,2}C.∅⊆{2,0,1}D.{1}∈{0,1,2}答案:C分析:根据元素和集合的关系,集合与集合的关系,空集的性质判断即可. 根据元素和集合的关系是属于和不属于,所以选项A错误;根据集合与集合的关系是包含或不包含,所以选项D错误;根据空集是任何集合的子集,所以选项B错误,故选项C正确.故选:C.9、已知集合M={x|x=m−56,m∈Z},N={x|x=n2−13,n∈Z},P={x|x=p2+16,p∈Z},则集合M,N,P的关系为()A.M=N=P B.M⊆N=PC.M⊆N⊈P D.M⊆N,N∩P=∅答案:B分析:对集合M,N,P中的元素通项进行通分,注意3n-2与3p+1都是表示同一类数,6m-5表示的数的集合是前者表示的数的集合的子集,即可得到结果.对于集合M={x|x=m-56,m∈Z},x=m-56=6m-56=6(m-1)+16,对于集合N={x|x=n2-13,n∈Z},x=n2-13=3n-26=3(n-1)+16,对于集合P={x|x=p2+16,p∈Z},x=p2+16=3p+16,由于集合M,N,P中元素的分母一样,只需要比较其分子即可,且m,n,p∈Z,注意到3(n-1)+1与3p+1表示的数都是3的倍数加1,6(m-1)+1表示的数是6的倍数加1,所以6(m-1)+1表示的数的集合是前者表示的数的集合的子集,所以M∈N=P.故选:B.10、已知集合A={x|ax2+2x+1=0,a∈R}只有一个元素,则a的取值集合为()A.{1}B.{0}C.{0,−1,1}D.{0,1}答案:D分析:对参数分类讨论,结合判别式法得到结果.解:①当a=0时,A={−12},此时满足条件;②当a≠0时,A中只有一个元素的话,∆=4−4a=0,解得a=1,综上,a的取值集合为{0,1}.故选:D.多选题11、下列四个选项中正确的是()A.{∅}⊆{a,b}B.{(a,b)}={a,b}C.{a,b}⊆{b,a}D.∅⊆{0}答案:CD分析:注意到空集和由空集构成的集合的不同,可以判定AD;注意到集合元素的无序性,可以判定C;注意到集合的元素的属性不同,可以否定B.对于A选项,集合{∅}的元素是∅,集合{a,b}的元素是a,b,故没有包含关系,A选项错误;对于B选项,集合{(a,b)}的元素是点,集合{a,b}的元素是a,b,故两个集合不相等,B选项错误;对于C选项,由集合的元素的无序性可知两个集合是相等的集合,故C选项正确;对于D选项,空集是任何集合的子集,故D选项正确.故选:CD.12、对任意A,B⊆R,记A⊕B={x|x∈A∪B,x∉A∩B},并称A⊕B为集合A,B的对称差.例如,若A={1,2,3},B={2,3,4},则A⊕B={1,4},下列命题中,为真命题的是()A.若A,B⊆R且A⊕B=B,则A=∅B.若A,B⊆R且A⊕B=∅,则A=BC.若A,B⊆R且A⊕B⊆A,则A⊆BD.存在A,B⊆R,使得A⊕B=∁R A⊕∁R BE.存在A,B⊆R,使得A⊕B≠B⊕A答案:ABD解析:根据新定义判断.根据定义A⊕B=[(∁R A)∩B]∪[A∩(∁R B)],A.若A⊕B=B,则∁R A∩B=B,A∩∁R B=∅,∁R A∩B=B⇒B⊆∁R A,A∩∁R B=∅⇒A⊆B,∴A=∅,A正确;B.若A⊕B=∅,则∁R A∩B=∅,A∩∁R B=∅,A∩B=A=B,B正确;C. 若A⊕B⊆A,则∁R A∩B=∅,A∩∁R B⊆A,则B⊆A,C错;D.A=B时,A⊕B=∅,(∁R A)⊕(∁R B)=∅=A⊕B,D正确;E.由定义,A⊕B=[(∁R A)∩B]∪[A∩(∁R B)]=B⊕A,E错.故选:ABD.小提示:本题考查新定义,解题关键是新定义的理解,把新定义转化为集合的交并补运算.13、(多选)下列命题的否定中,是全称量词命题且为真命题的是()A.∃x∈R,x2−x+14<0B.所有的正方形都是矩形C.∃x∈R,x2+2x+2=0D.至少有一个实数x,使x3+1=0答案:AC分析:AC.原命题的否定是全称量词命题,原命题的否定为真命题,所以该选项符合题意;B. 原命题为全称量词命题,其否定为存在量词命题. 所以该选项不符合题意;D. 原命题的否定不是真命题,所以该选项不符合题意.A.原命题的否定为:∀x∈R,x2−x+14≥0,是全称量词命题;因为x2−x+14=(x−12)2≥0,所以原命题的否定为真命题,所以该选项符合题意;B. 原命题为全称量词命题,其否定为存在量词命题. 所以该选项不符合题意;C. 原命题为存在量词命题,所以其否定为全称量词命题,对于方程x2+2x+2=0,Δ=22−8=−4<0,所以x2+2x+2>0,所以原命题为假命题,即其否定为真命题,所以该选项符合题意;.D. 原命题的否定为:对于任意实数x,都有x3+1≠0,如x=−1时,x3+1=0,所以原命题的否定不是真命题,所以该选项不符合题意.故选:AC14、已知关于x 的方程x 2+(m −3)x +m =0,下列结论正确的是( )A .方程x 2+(m −3)x +m =0有实数根的充要条件是m ∈{m|m <1或m >9}B .方程x 2+(m −3)x +m =0有一正一负根的充要条件是m ∈{m ∣0<m ≤1}C .方程x 2+(m −3)x +m =0有两正实数根的充要条件是m ∈{m ∣0<m ≤1}D .方程x 2+(m −3)x +m =0无实数根的必要条件是m ∈{m|m >1}答案:CD解析:根据充分条件和必要条件的定义对选项逐一判断即可.在A 中,二次方程有实数根,等价于判别式Δ=(m −3)2−4m ≥0,解得m ≤1或m ≥9,即二次方程有实数根的充要条件是m ∈{m|m ≤1或m ≥9},故A 错误;在B 中,二次方程有一正一负根,等价于{(m −3)2−4m >0m <0,解得m <0, 方程有一正一负根的充要条件是m ∈{m |m <0 },故B 错误;在C 中,方程有两正实数根,等价于{Δ=(m −3)2−4m ≥03−m >0,m >0,解得0<m ≤1,故方程有两正实数根的充要条件是m ∈{m ∣0<m ≤1},故C 正确;在D 中,方程无实数根,等价于Δ=(m −3)2−4m <0得1<m <9,而{m |1<m <9 }⊆{m |m >1 },故m ∈{m|m >1}是方程无实数根的必要条件,故D 正确;故选:CD .小提示:名师点评关于充分条件和必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的充分条件,则p 可推出q ,即p 对应集合是q 对应集合的子集;(2)若p 是q 的必要条件,则q 可推出p ,即q 对应集合是p 对应集合的子集;(3)若p 是q 的充要条件,则p ,q 可互推,即p 对应集合与q 对应集合相等.15、下列四个条件中可以作为方程ax 2−x +1=0有实根的充分不必要条件是( )A .a =0B .a ≤14C .a =−1D .a ≠0答案:AC分析:先化简方程ax 2−x +1=0有实根得到a ≤14,再利用集合的关系判断得解.当a =0时,方程ax 2−x +1=0有实根x =1;当a ≠0时,方程ax 2−x +1=0有实根即Δ=1−4a ≥0,∴a ≤14. 所以a ≤14且a ≠0.综合得a ≤14.设选项对应的集合为A , 集合B =(−∞,14],由题得集合A 是集合B 的真子集,所以只能选AC.所以答案是:AC小提示:方法点睛:充分条件必要条件的判定,常用的方法有:(1)定义法;(2)集合法;(3)转化法. 要根据已知条件灵活选择方法求解.16、设A ={x |x 2−9x +14=0 },B ={x |ax −1=0 },若A ∩B =B ,则实数a 的值可以为( )A .2B .12C .17D .0答案:BCD分析:先求出集合A ,再由A ∩B =B 可知B ⊆A ,由此讨论集合B 中元素的可能性,即可判断出答案. 集合A ={x|x 2−9x +14=0}={2,7},B ={x|ax −1=0},又A ∩B =B ,所以B ⊆A ,当a =0时,B =∅,符合题意,当a ≠0时,则B ={1a },所以1a =2或1a=7, 解得a =12或a =17,综上所述,a =0或12或17,故选:BCD17、已知全集为U ,A ,B 是U 的非空子集且A ⊆∁U B ,则下列关系一定正确的是( )A .∃x ∈U ,x ∉A 且x ∈B B .∀x ∈A ,x ∉BC .∀x ∈U ,x ∈A 或x ∈BD .∃x ∈U ,x ∈A 且x ∈B答案:AB分析:根据给定条件画出韦恩图,再借助韦恩图逐一分析各选项判断作答. 全集为U ,A ,B 是U 的非空子集且A ⊆∁U B ,则A ,B ,U 的关系用韦恩图表示如图,观察图形知,∃x ∈U ,x ∉A 且x ∈B ,A 正确;因A ∩B =∅,必有∀x ∈A ,x ∉B ,B 正确;若A∁U B ,则(∁U A)∩(∁U B)≠∅,此时∃x ∈U ,x ∈[(∁U A)∩(∁U B)],即x ∉A 且x ∉B ,C 不正确; 因A ∩B =∅,则不存在x ∈U 满足x ∈A 且x ∈B ,D 不正确.故选:AB18、下列“若p ,则q ”形式的命题中,p 是q 的必要条件的是( )A .若x 2>y 2,则x >yB .若x >5,则x >10C .若ac =bc ,则a =bD .若2x +1=2y +1,则x =y答案:BCD分析:利用必要条件的定义、特殊值法判断可得出合适的选项.对于A 选项,取x =1,y =−1,则x >y ,但x 2=y 2,即“x 2>y 2”不是“x >y ”的必要条件;对于B 选项,若x >10,则x >5,即“x >5”是“x >10”的必要条件;对于C 选项,若a =b ,则ac =bc ,即“ac =bc ”是“a =b ”的必要条件;对于D 选项,若x =y ,则2x +1=2y +1,即“2x +1=2y +1”是“x =y ”的必要条件.故选:BCD.19、已知集合A ={x|x 2−x −6=0},B ={x|mx −1=0}, A ∩B =B ,则实数m 取值为()A .13B .−12C .−13D .0答案:ABD解析:先求集合A ,由A ∩B =B 得B ⊆A ,然后分B =∅和B ≠∅两种情况求解即可解:由x 2−x −6=0,得x =−2或x =3,所以A ={−2,3},因为A ∩B =B ,所以B ⊆A ,当B =∅时,方程mx −1=0无解,则m =0,当B ≠∅时,即m ≠0,方程mx −1=0的解为x =1m ,因为B ⊆A ,所以1m =−2或1m =3,解得m =−12或m =13,综上m =0,或m =−12,或m =13,故选:ABD小提示:此题考查集合的交集的性质,考查由集合间的包含关系求参数的值,属于基础题20、下列四个命题中正确的是()A.∅={0}3所组成的集合最多含2个元素B.由实数x,-x,|x|,√x2,−√x3C.集合{x|x2−2x+1=0}中只有一个元素∈N}是有限集D.集合{x∈N|5x答案:BCD分析:根据集合的定义和性质逐项判断可得答案.对于A,空集不含任何元素,集合{0}有一个元素0,所以∅={0}不正确;3=−x,且在x,-x,|x|中,当x>0时,|x|=x,当x<0时,|x|=−x,当对于B,由于√x2=|x|,−√x3x=0时,|x|=x=−x=0,三者中至少有两个相等,所以由集合中元素的互异性可知,该集合中最多含2个元素,故B正确;对于C,{x|x2−2x+1=0}={1},故该集合中只有一个元素,故C正确;∈N}={1,5}是有限集,故D正确.对于D,集合{x∈N|5x故选:BCD.填空题21、已知[x]表示不超过x的最大整数.例如[2.1]=2,[−1.3]=−2,[0]=0,若A={y∣y=x−[x]},B={y∣0≤y≤m},y∈A是y∈B的充分不必要条件,则m的取值范围是______.答案:[1,+∞)分析:由题可得A={y∣y=x−[x]}=[0,1),然后利用充分不必要条件的定义及集合的包含关系即求.∵[x]表示不超过x的最大整数,∴[x]≤x,0≤x−[x]<1,即A={y∣y=x−[x]}=[0,1),又y∈A是y∈B的充分不必要条件,B={y∣0≤y≤m},∴A⊊B,故m≥1,即m的取值范围是[1,+∞).所以答案是:[1,+∞).22、已知集合A=(−3,3),集合B={0,1,2,3,4,5},则A∩B=_______.答案:{0,1,2}分析:根据集合交集运算求解.因为集合A=(−3,3),集合B={0,1,2,3,4,5},所以A∩B={0,1,2}.所以答案是:{0,1,2}23、满足{1}⊆A{1,2,3}的所有集合A是___________.答案:{1}或{1,2}或{1,3}分析:由题意可得集合A中至少有一个元素1,且为集合{1,2,3}的真子集,从而可求出集合A 因为{1}⊆A{1,2,3},所以集合A中至少有一个元素1,且为集合{1,2,3}的真子集,所以集合A是{1}或{1,2}或{1,3},所以答案是:{1}或{1,2}或{1,3}。
数学必修一集合练习题及答案

数学必修一集合练习题及答案数学必修一集合练习题及答案集合练习题一.选择题1.满足条件{1,2,3}⊂M ⊂{1,2,3,4,5,6}的集合M 的个数是≠≠()A 、8 B、7C 、6D 、52.若集合A =x |x 2≤0,则下列结论中正确的是()A 、A=0 B 、0⊆A C 、A =∅ D 、∅⊆A3.下列五个写法中①⑤0 ∅{}{0}∈{0, 1, 2},②∅⊂{0},③{0, 1, 2}⊆{1, 2, 0},④0∈∅,≠=∅,错误的写法个数是()A 、1个B 、2个C 、3个D 、4个4.方程组⎨⎨x +y =1的解集是()⎨x -y =-1A {x =0, y =1}B {0, 1}C {(0, 1) }D {(x , y ) |x =0或y =1} 5.设A 、B 是全集U 的两个子集,且A ⊆B ,则下列式子成立的是()(A )C U A ⊆C U B (B )C U A ⋃C U B=U (C )A ⋂C U B=φ (D )C U A ⋂B=φ6.已知全集M =⎨a |⎨⎨6⎨∈N 且a ∈Z ⎨, 则M=( ) 5-a ⎨A 、{2,3}B 、{1,2,3,4}C 、{1,2,3,6}D 、{-1,2,3,4}7.集合M ={x x +2x -a =0, x ∈R },且φA 、a ≤-1B 、a ≤1C 、a ≥-12M ,则实数a 的范围是()D 、a ≥1()(D )S=P。
8. 设集合P 、S 满足P ⋂S=P,则必有(A );(B )P ⊆S ;(C );9. 设全集U ={a , b , c , d , e },A 、B 都是U 的子集A ⋂B ={e },C U A ⋂B ={d },C U A ⋂C U B ={a , b },则下列判断中正确的是(A )c ∉ A 且c ∉ B ;(B )c ∈A 且c ∈B ;(C )c ∉A 且c ∈B ;10. 若A ⋃B =A ⋃C ,则一定有()(D )c ∈A 且c ∉B 。
高一数学必修一集合练习试题及答案

高一数学必修一集合练习试题及答案高一数学必修一集合练习试题及答案一、选择题1.下列各组对象能构成集合的有()①美丽的小鸟;②不超过10的非负整数;③立方接近零的正数;④高一年级视力比较好的同学A.1个B.2个C.3个D.4个【解析】①③中“美丽”“接近零”的范畴太广,标准不明确,因此不能构成集合;②中不超过10的非负整数有:0,1,2,3,4,5,6,7,8,9,10共十一个数,是确定的,故能够构成集合;④中“比较好”,没有明确的界限,不满足元素的确定性,故不能构成集合.【答案】A2.小于2的自然数集用列举法可以表示为()A.{0,1,2}B.{1}C.{0,1}D.{1,2}【解析】小于2的自然数为0,1,应选C.【答案】C3.下列各组集合,表示相等集合的是()①M={(3,2)},N={(2,3)};②M={3,2},N={2,3};③M={(1,2)},N={1,2}.A.①B.②C.③D.以上都不对【解析】①中M中表示点(3,2),N中表示点(2,3),②中由元素的无序性知是相等集合,③中M表示一个元素:点(1,2),N中表示两个元素分别为1,2.【答案】B4.集合A中含有三个元素2,4,6,若a∈A,则6-a∈A,那么a为()A.2B.2或4C.4D.0【解析】若a=2,则6-a=6-2=4∈A,符合要求;若a=4,则6-a=6-4=2∈A,符合要求;若a=6,则6-a=6-6=0∉A,不符合要求.∴a=2或a=4.【答案】B5.(2013•曲靖高一检测)已知集合M中含有3个元素;0,x2,-x,则x满足的条件是()A.x≠0B.x≠-1C.x≠0且x≠-1D.x≠0且x≠1【解析】由x2≠0,x2≠-x,-x≠0,解得x≠0且x≠-1.【答案】C二、填空题6.用符号“∈”或“∉”填空(1)22________R,22________{x|x7};(2)3________{x|x=n2+1,n∈N+};(3)(1,1)________{y|y=x2};(1,1)________{(x,y)|y=x2}.【解析】(1)22∈R,而22=87,∴22∉{x|x7}.(2)∵n2+1=3,∴n=±2∉N+,∴3∉{x|x=n2+1,n∈N+}.(3)(1,1)是一个有序实数对,在坐标平面上表示一个点,而{y|y=x2}表示二次函数函数值构成的集合,故(1,1)∉{y|y=x2}.集合{(x,y)|y=x2}表示抛物线y=x2上的点构成的集合(点集),且满足y=x2,∴(1,1)∈{(x,y)|y=x2}.【答案】(1)∈∉(2)∉(3)∉∈7.已知集合C={x|63-x∈Z,x∈N_},用列举法表示C=________.【解析】由题意知3-x=±1,±2,±3,±6,∴x=0,-3,1,2,4,5,6,9.又∵x∈N_,∴C={1,2,4,5,6,9}.【答案】{1,2,4,5,6,9}8.已知集合A={-2,4,x2-x},若6∈A,则x=________.【解析】由于6∈A,所以x2-x=6,即x2-x-6=0,解得x=-2或x=3.【答案】-2或3三、解答题9.选择适当的方法表示下列集合:(1)绝对值不大于3的整数组成的集合;(2)方程(3x-5)(x+2)=0的实数解组成的集合;(3)一次函数y=x+6图像上所有点组成的集合.【解】(1)绝对值不大于3的整数是-3,-2,-1,0,1,2,3,共有7个元素,用列举法表示为{-3,-2,-1,0,1,2,3};(2)方程(3x-5)(x+2)=0的实数解仅有两个,分别是53,-2,用列举法表示为{53,-2};(3)一次函数y=x+6图像上有无数个点,用描述法表示为{(x,y)|y=x+6}.10.已知集合A中含有a-2,2a2+5a,3三个元素,且-3∈A,求a的值.【解】由-3∈A,得a-2=-3或2a2+5a=-3.(1)若a-2=-3,则a=-1,当a=-1时,2a2+5a=-3,∴a=-1不符合题意.(2)若2a2+5a=-3,则a=-1或-32.当a=-32时,a-2=-72,符合题意;当a=-1时,由(1)知,不符合题意.综上可知,实数a的值为-32.11.已知数集A满足条件:若a∈A,则11-a∈A(a≠1),如果a=2,试求出A中的所有元素.【解】∵2∈A,由题意可知,11-2=-1∈A;由-1∈A可知,11--1=12∈A;由12∈A可知,11-12=2∈A.故集合A中共有3个元素,它们分别是-1,12,2.学好数学的几条建议1、要有学习数学的兴趣。
高一数学必修一集合练习题含答案

高一数学必修一集合练习题含答案进入高中一之后,第一个学习的重要数学知识点就是集合,学生需要通过练习巩固集合内容,下面是店铺给大家带来的高一数学必修一集合练习题,希望对你有帮助。
高一数学必修一集合练习题一、选择题(每小题5分,共20分)1.下列命题中正确的( )①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};④集合{x|4A.只有①和④B.只有②和③C.只有②D.以上语句都不对【解析】{0}表示元素为0的集合,而0只表示一个元素,故①错误;②符合集合中元素的无序性,正确;③不符合集合中元素的互异性,错误;④中元素有无穷多个,不能一一列举,故不能用列举法表示.故选C.【答案】 C2.用列举法表示集合{x|x2-2x+1=0}为( )A.{1,1}B.{1}C.{x=1}D.{x2-2x+1=0}【解析】集合{x|x2-2x+1=0}实质是方程x2-2x+1=0的解集,此方程有两相等实根,为1,故可表示为{1}.故选B.【答案】 B3.已知集合A={x∈N*|-5≤x≤5},则必有( )A.-1∈AB.0∈AC.3∈AD.1∈A【解析】∵x∈N*,-5≤x≤5,∴x=1,2,即A={1,2},∴1∈A.故选D.【答案】 D4.定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为( )A.0B.2C.3D.6【解析】依题意,A*B={0,2,4},其所有元素之和为6,故选D.【答案】 D二、填空题(每小题5分,共10分)5.已知集合A={1,a2},实数a不能取的值的集合是________.【解析】由互异性知a2≠1,即a≠±1,故实数a不能取的值的集合是{1,-1}.【答案】{1,-1}6.已知P={x|2【解析】用数轴分析可知a=6时,集合P中恰有3个元素3,4,5.【答案】 6三、解答题(每小题10分,共20分)7.选择适当的方法表示下列集合集.(1)由方程x(x2-2x-3)=0的所有实数根组成的集合;(2)大于2且小于6的有理数;(3)由直线y=-x+4上的横坐标和纵坐标都是自然数的点组成的集合.【解析】(1)方程的实数根为-1,0,3,故可以用列举法表示为{-1,0,3},当然也可以用描述法表示为{x|x(x2-2x-3)=0},有限集.(2)由于大于2且小于6的有理数有无数个,故不能用列举法表示该集合,但可以用描述法表示该集合为{x∈Q|2(3)用描述法表示该集合为M={(x,y)|y=-x+4,x∈N,y∈N}或用列举法表示该集合为{(0,4),(1,3),(2,2),(3,1),(4,0)}.8.设A表示集合{a2+2a-3,2,3},B表示集合{2,|a+3|},已知5∈A且5∉B,求a的值.【解析】因为5∈A,所以a2+2a-3=5,解得a=2或a=-4.当a=2时,|a+3|=5,不符合题意,应舍去.当a=-4时,|a+3|=1,符合题意,所以a=-4.9.(10分)已知集合A={x|ax2-3x-4=0,x∈R}.(1)若A中有两个元素,求实数a的取值范围;(2)若A中至多有一个元素,求实数a的取值范围.【解析】(1)∵A中有两个元素,∴方程ax2-3x-4=0有两个不等的实数根,∴a≠0,Δ=9+16a>0,即a>-916.∴a>-916,且a≠0.(2)当a=0时,A={-43};当a≠0时,若关于x 的方程ax2-3x-4=0有两个相等的实数根,Δ=9+16a=0,即a=-916;若关于x的方程无实数根,则Δ=9+16a<0,即a<-916;故所求的a的取值范围是a≤-916或a=0.高一数学必修一集合知识点集合通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。
高中数学必修一集合习题及答案

必修1 第一章 集合测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.下列选项中元素的全体可以组成集合的是 ( )A.学校篮球水平较高的学生B.校园中长的高大的树木C.2007年所有的欧盟国家D.中国经济发达的城市2.方程组20{=+=-y x y x 的解构成的集合是 ( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{ 3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( )A. aB. {a ,c }C. {a ,e }D.{a ,b ,c ,d }4.下列图形中,表示N M ⊆的是 ( )5.下列表述正确的是 ( )A.}0{=∅B. }0{⊆∅C. }0{⊇∅D. }0{∈∅6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参 加自由泳又参加蛙泳的运动员”用集合运算表示为 ( )A.A∩BB.A ⊇BC.A ∪BD.A ⊆B7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14} 又,,B b A a ∈∈则有 ( )A.(a+b )∈ AB. (a+b) ∈BC.(a+b) ∈ CD. (a+b) ∈ A 、B 、C 任一个8.集合A ={1,2,x },集合B ={2,4,5},若B A ={1,2,3,4,5},则x =( )A. 1B. 3C. 4D. 59.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是( ) A. 8 B . 7C. 6D. 510.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 , 6 },那么集合 { 2 ,7 ,8}是 ( )M N A M N B N M C M NDA. A BB. B AC. B C A C U UD. B C A C U U11.设集合{|32}M m m =∈-<<Z ,{|13}N n n MN =∈-=Z 则,≤≤ ( ) A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,, 12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是( ) A .0 B .0 或1 C .1 D .不能确定二、填空题(共4小题,每题4分,把答案填在题中横线上)13.用描述法表示被3除余1的集合 .14.用适当的符号填空:(1)∅ }01{2=-x x ; (2){1,2,3} N ;(3){1} }{2x x x =; (4)0 }2{2x x x =.15.含有三个实数的集合既可表示成}1,,{ab a ,又可表示成}0,,{2b a a +,则=+20042003b a .16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M .三、解答题(共4小题,共44分,解答应写出文字说明,证明过程或演算步骤)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18. 已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A ,求实数a 的值.19. 已知方程02=++b ax x .(1)若方程的解集只有一个元素,求实数a ,b 满足的关系式;(2)若方程的解集有两个元素分别为1,3,求实数a ,b 的值20. 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ⊆,求实数a 的取值范围.必修1 第一章 集合测试集合测试参考答案:一、1~5 CABCB 6~10 CBBCC 11~12 BB 二、13 },13{Z n n x x ∈+=,14 (1)φ⊆}01{2=-x x ;(2){1,2,3}⊆N ; (3){1}⊆}{2x x x =;(4)0∈}2{2x x x =; 15 -1 16 03|{≤≤-=x x N 或}32≤≤x ;}10|{)(<<=⋂x x N C M U ; 13|{<≤-=⋃x x N M 或}32≤≤x . 三、17 .{0.-1,1};18. 2=a ; 19. (1) a 2-4b=0 (2) a=-4, b=3 20. 32≤≤a .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合练习题
一、选择题(每小题5分,计5×12=60分)
1.下列集合中,结果是空集的为()
(A)(B)
(C)(D)
2.设集合,,则()
(A)(B)
(C)(D)
3.下列表示①②③④中,正确的个数为( )
(A)1 (B)2 (C)3 (D)4
4.满足的集合的个数为()
(A)6 (B) 7 (C) 8 (D)9
5.若集合、、,满足,,则与之间的关系为()
(A)(B)(C)(D)
6.下列集合中,表示方程组的解集的是()
(A)(B)(C)(D)
7.设,,若,则实数的取值范围是()(A)(B)(C)(D)
8.已知全集合,,,那么是()
(A)(B)(C)(D)
9.已知集合,则等于()
(A)(B)
(C)(D)
10.已知集合,,那么()
(A)(B)(C)(D)
11.如图所示,,,是的三个子集,则阴影部分所表示的集合是()
(A)(B)
(C)(D)
12.设全集,若,,
,则下列结论正确的是()
(A)且(B)且
(C)且(D)且
二、填空题(每小题4分,计4×4=16分)
13.已知集合,,则集合14.用描述法表示平面内不在第一与第三象限的点的集合为
15.设全集,,,则的值为
16.若集合只有一个元素,则实数的值为三、解答题(共计74分)
17.(本小题满分12分)若,求实数的值。
18.(本小题满分12分)设全集合,,
,求,,,
19.(本小题满分12分)设全集,集合与集合,且,求,
20.(本小题满分12分)已知集合
,
,且
,求实数
的取值范围。
21.(本小题满分12分)已知集合
,
,
,求实数的取值范围
22.(本小题满分14分)已知集合
,
,若
,求实数的取值范围。
已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ⊆,
求实数a 的取值范围.
已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A ,求
实数a 的值.。