高中数学必修一集合知识点总结

合集下载

高一集合的概念知识点归纳

高一集合的概念知识点归纳

高一集合的概念知识点归纳在高中数学的学习中,集合是一个重要而基础的概念。

集合不仅贯穿于高中数学的各个分支中,而且在现实生活中也有着广泛的应用。

因此,掌握集合的基本概念和性质对于高中数学的学习至关重要。

接下来,我们将对高一阶段学习的集合的概念知识点进行归纳总结。

一、集合的基本概念1. 集合的定义集合是由一些特定的事物组成的整体。

这些事物被称为集合的元素,用大写字母A、B、C等表示集合,用小写字母a、b、c 等表示元素。

如果a是集合A的元素,我们则记作a∈A。

2. 集合的表示方法集合的表示方法有三种:列举法、描述法和图示法。

列举法是将集合中的元素逐个列举出来;描述法是通过给出元素满足的条件来描述集合;图示法是用图形表示集合中的元素,常用的图形有圆形和长方形。

3. 集合的相等和子集集合A和B相等,表示A和B的元素完全相同,记作A=B;如果集合A的所有元素都是集合B的元素,我们称A是B的子集,记作A⊆B。

特别地,集合A包含于集合B,即A⊆B,且A≠B,则称A是B的真子集,记作A⊂B。

二、集合的运算1. 交集和并集集合A和B的交集,表示同时属于A和B的元素组成的集合,记作A∩B;集合A和B的并集,表示属于A或B(或同时属于A 和B)的元素组成的集合,记作A∪B。

2. 补集和差集集合A相对于全集U的补集,表示全集中不属于A的元素组成的集合,记作A'或A^C;集合A和B的差集,表示属于A而不属于B的元素组成的集合,记作A-B。

3. 积集笛卡尔积是集合A和B的一个新集合,表示A中的每个元素与B中的每个元素按一定顺序组成的有序对,记作A×B。

三、集合的性质和应用1. 同一律、交换律、结合律和分配律集合的运算满足同一律、交换律、结合律和分配律,这些性质在集合的计算中起着重要的作用。

2. 集合的应用集合在现实生活中有着广泛的应用,例如:用集合来表示各种人群、事物的分类;集合也是概率论和数理统计的基础,用于研究随机事件和统计现象。

高一数学集合知识点归纳总结大全

高一数学集合知识点归纳总结大全

高一数学集合知识点归纳总结大全集合是数学中的一个基本概念,也是高中数学中的一门重要内容。

在高一数学学习中,集合知识点的理解和掌握对于后续数学学习的成功至关重要。

本文将从集合的基本概念、常用运算、集合间的关系以及应用领域等方面,对高一数学集合知识点进行归纳总结。

一、集合的基本概念集合是由一些确定的、互不相同的对象所组成的整体。

常用大写字母A、B、C等表示集合,小写字母a、b、c等表示集合中的元素。

集合的元素可以是数字、字母、符号等。

集合中的元素用花括号{}括起来,用逗号分隔。

例子1:集合A={1, 2, 3, 4}例子2:集合B={a, b, c, d}二、集合的表示方法1. 列举法:直接将集合中的元素列出来并用花括号{}括起来。

例如:A={1, 2, 3, 4},B={a, b, c, d}2. 描述法:根据给定条件描述集合中的元素。

例如:A={x | x是整数,1≤x≤4},B={y | y是英文字母,a≤y≤d}三、集合的分类1. 空集:不包含任何元素的集合,用符号∅表示。

2. 单元素集合:只包含一个元素的集合。

3. 有限集:元素个数有限的集合。

4. 无限集:元素个数无限的集合。

5. 并集:将两个集合的所有元素合并在一起形成的集合,用符号∪表示。

6. 交集:两个集合中共同具有的元素形成的集合,用符号∩表示。

7. 子集:如果一个集合的所有元素都属于另一个集合,那么称前一个集合是后一个集合的子集,用符号⊆表示。

四、集合的运算1. 并集运算:将两个集合的所有元素合并在一起形成的集合。

例如:A={1, 2, 3, 4},B={3, 4, 5, 6},则A∪B={1, 2, 3, 4, 5, 6}2. 交集运算:两个集合中共同具有的元素形成的集合。

例如:A={1, 2, 3, 4},B={3, 4, 5, 6},则A∩B={3, 4}3. 差集运算:从一个集合中去掉与另一个集合相同的元素,所得到的元素组成的集合。

高一数学集合知识点总结

高一数学集合知识点总结

高一数学集合知识点总结# 高一数学集合知识点总结集合是数学中最基本的概念之一,它描述了一组具有某种特定性质的元素的全体。

在高中数学中,集合的概念和运算是学习其他数学知识的基础。

以下是高一数学中关于集合的一些重要知识点。

## 1. 集合的定义集合是由一些确定的、互不相同的元素所组成的整体。

用大写字母表示集合,元素用小写字母表示,属于关系用符号∈ 表示。

## 2. 集合的表示方法- 列举法:直接列举出集合中的所有元素,如集合A={1, 2, 3}。

- 描述法:用文字描述集合中的元素,如集合B={x | x是小于10的正整数}。

## 3. 集合的分类- 有限集:元素数量有限的集合。

- 无限集:元素数量无限的集合。

- 空集:不含任何元素的集合,记作∅。

## 4. 子集与真子集- 子集:如果集合A的所有元素都属于集合B,则称A是B的子集,记作A ⊆ B。

- 真子集:如果A是B的子集,且A不等于B,则称A是B的真子集,记作A ⊂ B。

## 5. 集合的运算- 并集:两个集合所有元素的集合,记作A ∪ B。

- 交集:两个集合共有的元素的集合,记作A ∩ B。

- 差集:属于集合A但不属于集合B的元素的集合,记作A - B。

- 补集:属于全集U但不属于集合A的元素的集合,记作∁_U A。

## 6. 集合的包含关系- 相等:如果A的每个元素都属于B,且B的每个元素都属于A,则称A等于B,记作A = B。

- 子集关系:如果A的所有元素都属于B,则A是B的子集。

## 7. 集合的幂集幂集是指一个集合的所有子集的集合,包括空集和该集合本身。

## 8. 集合的笛卡尔积两个集合A和B的笛卡尔积是所有可能的有序对(a, b)的集合,其中a 属于A,b属于B,记作A × B。

## 9. 特殊集合- 自然数集:表示为N。

- 整数集:表示为Z。

- 有理数集:表示为Q。

- 实数集:表示为R。

## 10. 集合的运算律集合运算满足交换律、结合律和分配律。

高中数学必修一知识点总结完整版

高中数学必修一知识点总结完整版

高中数学必修一知识点总结完整版高中数学必修一是整个高中数学学习的基础,涵盖了集合、函数的概念与性质、基本初等函数等重要内容。

以下是对这些知识点的详细总结。

一、集合1、集合的概念集合是由某些确定的对象所组成的整体。

这些对象称为集合的元素。

2、集合的表示方法(1)列举法:将集合中的元素一一列举出来,用花括号括起来。

(2)描述法:用确定的条件表示某些对象是否属于这个集合。

3、集合间的关系(1)子集:如果集合 A 中的所有元素都属于集合 B,那么称 A 是B 的子集,记作 A⊆B。

(2)真子集:如果 A 是 B 的子集,且 B 中至少有一个元素不属于A,那么称 A 是 B 的真子集,记作 A⊂B。

(3)集合相等:如果 A⊆B 且 B⊆A,则 A = B。

4、集合的运算(1)交集:由属于集合 A 且属于集合 B 的所有元素组成的集合,记作A∩B。

(2)并集:由属于集合 A 或属于集合 B 的所有元素组成的集合,记作 A∪B。

(3)补集:设 U 是一个全集,A 是 U 的子集,由 U 中不属于 A 的所有元素组成的集合称为 A 在 U 中的补集,记作∁UA。

二、函数的概念1、函数的定义设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数,记作 y =f(x),x∈A。

2、函数的三要素(1)定义域:函数中自变量 x 的取值范围。

(2)值域:函数值的集合。

(3)对应关系:函数的表达式或法则。

3、函数的表示方法(1)解析法:用数学表达式表示两个变量之间的对应关系。

(2)图象法:用图象表示函数关系。

(3)列表法:列出表格来表示两个变量之间的对应关系。

三、函数的基本性质1、单调性(1)增函数:设函数 f(x)的定义域为 I,如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x1,x2,当 x1 < x2 时,都有 f(x1) < f(x2),那么就说函数 f(x)在区间 D 上是增函数。

高中数学集合知识点总结6篇

高中数学集合知识点总结6篇

高中数学集合知识点总结6篇篇1一、集合的基本概念集合是数学中非常重要的概念,它是具有某种特定性质的事物的总体。

集合通常由大括号{}括起来,其元素之间用逗号隔开。

集合分为有限集合和无限集合,有限集合的元素个数是有限的,无限集合的元素个数是无限的。

例如,自然数集合就是一个无限集合。

二、集合的表示方法集合的表示方法有多种,包括列举法、描述法、图示法等。

列举法是将集合中的元素一一列举出来;描述法是通过描述元素的一般性质来确定集合;图示法则是通过画图来表示集合。

在实际应用中,可以根据需要选择适当的表示方法。

三、集合的分类根据元素的性质,集合可以分为多种类型,包括数集、点集、线集等。

数集是最常见的集合类型,它包含具有一定数学规律的数的总体。

点集则是包含具有某种几何性质的点的总体,如平面上的点集。

线集则包含直线、线段等几何图形的总体。

四、集合的基本运算集合的基本运算包括并集、交集、差集和对称差等。

并集是两个或多个集合中所有元素的集合;交集是两个集合中共有的元素的集合;差集是一个集合中不属于另一个集合的元素的集合;对称差是两个集合的并集中去掉它们的交集后的元素构成的集合。

在进行集合运算时,需要明确各个运算的定义和性质。

五、数集的表示及基本性质数集是数学中最重要的集合之一,它包含具有一定数学规律的数的总体。

常见的数集包括自然数集、整数集、有理数集和无理数集等。

自然数集包括所有非负整数;整数集包括所有正整数、负整数和零;有理数集包括所有可以表示为两个整数之比的数;无理数集则是无法表示为两个整数之比的数。

数集具有一些基本性质,如可数性、有序性等。

这些性质在进行数学运算和证明时非常重要。

六、高中数学中的其他相关知识点高中数学中还有许多与集合相关的知识点,如区间与邻域的概念、数列与序列的概念、映射与函数的概念等。

这些知识点都与集合有着密切的联系,在进行数学学习时需要掌握这些知识点。

区间和邻域的概念对于理解数列和函数的性质非常重要;数列和序列的概念有助于理解数学中的有序结构;映射和函数的概念则是数学中非常重要的基础概念之一。

高一数学关于集合的知识点总结

高一数学关于集合的知识点总结

高一数学关于集合的知识点总结
一、集合有关概念
1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:
①.元素的确定性; ②.元素的互异性; ③.元素的无序性
说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的分类:。

高中数学集合知识点总结8篇

高中数学集合知识点总结8篇

高中数学集合知识点总结8篇篇1一、集合的基本概念集合是数学中的基本概念之一,它是由具有某种共同属性的事物组成的总体。

在数学中,我们常常用集合来表示一些数、点、线等的总体。

集合的基本特性包括确定性、互异性、无序性以及可表示性。

常见的集合表示方法有列举法、描述法以及图像法等。

对于集合的学习,首先要明确集合的概念及其表示方法,这是后续学习的基础。

二、集合的运算集合的运算包括并集、交集、差集和补集等。

并集表示两个或多个集合中所有元素的集合;交集表示两个集合中共有的元素组成的集合;差集表示在一个集合中但不在另一个集合中的元素组成的集合;补集则表示属于某个集合的所有元素之外的所有元素组成的集合。

在解题过程中,要根据题目的要求,选择合适的集合运算方法。

三、集合的基本关系集合之间的关系包括子集、真子集、相等集合等。

子集表示一个集合的所有元素都在另一个集合中;真子集表示一个集合是另一个集合的子集,且两者不相等;相等集合表示两个集合完全相同。

此外,还要了解空集的概念,即不含有任何元素的集合。

掌握集合的基本关系,有助于理解集合的运算及其性质。

四、数列与集合数列是一种特殊的集合,它按照一定规律排列的数序列。

等差数列和等比数列是数列中最常见的两种形式。

等差数列中的任意两项之差相等,等比数列中的任意两项之比相等。

在解决数列问题时,要充分利用数列的性质和公式,简化计算过程。

五、函数的定义域与值域与集合的关系函数的定义域与值域是函数概念的重要组成部分。

函数的定义域是指函数自变量的取值范围,值域则是函数因变量的取值范围。

这两个范围都可以用集合来表示。

在求解函数的定义域和值域时,要充分利用函数的性质,结合数轴或不等式等方法进行求解。

六、总结与应用掌握高中数学集合知识点,首先要明确集合的基本概念、表示方法以及运算性质。

在此基础上,要理解数列与集合的关系,掌握函数的定义域与值域与集合的联系。

在实际应用中,要灵活运用所学知识,解决数学问题。

高中数学必修1知识点总结及题型

高中数学必修1知识点总结及题型

高中数学必修1知识点总结及题型高中数学讲义必修一第一章复知识点一:集合的概念集合是由一些能够归纳在一起的对象构成的整体,通常用大写拉丁字母A、B、C等表示。

构成集合的对象称为元素,通常用小写拉丁字母a、b、c等表示。

不含任何元素的集合称为空集,记为∅。

知识点二:集合与元素的关系如果元素a是集合A的一部分,则称a属于集合A,记作a∈A;如果a不是集合A中的元素,则称a不属于集合A,记作a∉A。

知识点三:集合的特性及分类集合元素具有唯一性、无序性和互异性。

集合可以分为有限集和无限集。

有限集包含有限个元素,无限集包含无限个元素。

知识点四:集合的表示方法集合的元素可以通过列举法和描述法来表示。

列举法是将集合的元素一一列举,并用花括号“{}”括起来表示集合的方法。

描述法是用集合所含元素的共同属性来表示集合的方法。

知识点五:集合与集合的关系子集是指集合A中的所有元素都是集合B中的元素,此时称集合A是集合B的子集,记作A⊆B。

如果A是B的子集且A不等于B,则称A是B的真子集,记作A⊂B。

空集是任何集合的子集,任何集合都是其本身的子集。

如果A是B的子集,B是C的子集,则A是C的子集。

如果A是B的真子集,B是C的真子集,则A是C的真子集。

集合相等是指A是B的子集,B是A的子集,此时称A与B相等,记作A=B。

知识点六:集合的运算交集是指两个集合中共同存在的元素构成的集合,记作A∩B。

并集是指两个集合中所有元素构成的集合,记作A∪B。

1.自然语言中,由文字、符号和图形语言组成的集合,称为集合A与B的并集。

2.交集的运算性质包括:A∩B=B∩A(交换律)A∩A=A(恒等律)A∩∅=∅(零律)A⊆B⇔A∩B=A(吸收律)3.在研究集合与集合之间的关系时,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U。

4.对于一个集合A,由全集U中除A的所有元素组成的集合称为集合A相对于全集U的补集,记作∁UA。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修一
第一章集合与函数概念
课时一:集合有关概念
1.集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东
西,并且能判断一个给定的东西是否属于这个整体。

2.一般的研究对象统称为元素,一些元素组成的总体叫集合,简称为集。

3.集合的中元素的三个特性:
(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于
或不属于。

例:世界上最高的山、中国古代四大美女、……
(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。

例:由HAPPY的字母组成的集合{H,A,P,Y}
(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合
例:{a,b,c}和{a,c,b}是表示同一个集合
3.集合的表示:{…} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰
洋}
(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(2)集合的表示方法:列举法与描述法。

1)列举法:将集合中的元素一一列举出来 {a,b,c……}
2)描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。

{x R| x-3>2} ,{x| x-3>2}
①语言描述法:例:{不是直角三角形的三角形}
②Venn图:画出一条封闭的曲线,曲线里面表示集合。

4、集合的分类:
(1)有限集:含有有限个元素的集合
(2)无限集:含有无限个元素的集合
(3)空集:不含任何元素的集合例:{x|x2=-5}
5、元素与集合的关系:
(1)元素在集合里,则元素属于集合,即:a A
(2)元素不在集合里,则元素不属于集合,即:a A
注意:常用数集及其记法:(&&&&&)
非负整数集(即自然数集)记作:N
正整数集 N*或 N+
整数集Z
有理数集Q
实数集R
课时二、集合间的基本关系
1.“包含”关系—子集
(1)定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。

记作:B
A⊆(或B⊇A)注意:B
A⊆有两种可能(1)A是B的一部分,;
(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5)
实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”
即:①任何一个集合是它本身的子集。

A A
②真子集:如果A B,且A B那就说集合A是集合B的真子集,记作
A B(或
B A)
或若集合A B,存在x∈B且x A,则称集合A是集合B的真子集。

③如果 A B, B C ,那么 A C
④如果A B 同时 B A 那么A=B
3. 不含任何元素的集合叫做空集,记为Φ(&&&&&)
规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集
课时三、集合的运算




交集并集补集
定义由所有属
于A且属于
B的元素所
组成的集
合,叫做
A,B的交
集.记作
A B(读作
‘A交B’),
即A B=
{x|x∈A,
且x∈B}.
由所有属
于集合A或
属于集合B
的元素所
组成的集
合,叫做
A,B的并
集.记作:
A B(读作
‘A并B’),
即A B
={x|x∈A,
或x∈B}).
全集:一般,
若一个集合
汉语我们所
研究问题中
这几道的所
有元素,我们
就称这个集
合为全集,记
作:U
设S是一个集
合,A是S的
一个子集,由
S中所有不属。

相关文档
最新文档