高中数学必修一集合与集合的关系知识点总结与练习

合集下载

高中数学第1章预备知识1集合1-2集合的基本关系北师大版必修第一册

高中数学第1章预备知识1集合1-2集合的基本关系北师大版必修第一册
(2)当B=⌀时,2a-3≥a-2,解得a≥1.
当B≠⌀时,2a-3<a-2,解得a<1.
2-3 ≥ -5,
由已知 B⊆A,则
解得-1≤a≤4.
-2 ≤ 2,
又因为a<1,所以实数a的取值范围为[-1,1).
综上,实数a的取值范围为[-1,+∞).
变式探究(1)例4(2)中,是否存在实数a,使得A⊆B?若存在,求出实数a的取值
变式训练 3 已知集合 A={x|0<ax+1≤5},集合 B= x
1
- <x≤2
2
,若 A=B,
则实数 a 的值为( C )
A.0
1
B.-2
C.2
D.5
解析 A={x|-1<ax≤4},若 A=B,则需 a>0,则
得 a=2.
1
4
1 1
4
A={x|- <x≤ },所以- =- ,且 =2,


2
A={x|x是四边形},B={x|x是平行四边形},C={x|x是矩形},D={x|x是正方形}.
解 (1)A⫋B.(2)B⫋A.(3)A=B.
重难探究·能力素养全提升
探究点一
写出给定集合的子集
【例1】 (1)写出集合{a,b,c,d}的所有子集,并指出其中哪些是它的真子集;
解 集合{a,b,c,d}所有的子集为:
目录索引
基础落实·必备知识全过关
重难探究·能力素养全提升
成果验收·课堂达标检测
1.理解集合之间包含与相等的含义.
课程标准
2.能识别给定集合的子集.
3.会判断两个集合间的基本关系.
基础落实·必备知识全过关

高中数学必修一1.2 集合间的基本关系-单选专项练习(1)(人教A版,含解析)

高中数学必修一1.2 集合间的基本关系-单选专项练习(1)(人教A版,含解析)

1.2 集合间的基本关系一、单选题1.集合M= x ∈N*| x (x -3)< 0}的子集个数为 A .1 B .2 C .3 D .4答案:D 详解:{}{*|(3)0}{*|03}1,2M x N x x x N x =∈-<=∈<<=所以集合的子集个数为224=个,故选D .2.若集合{|11}M x x =∈-≤≤Z ,2{|,}P y y x x M ==∈,则集合M 与P 的关系是( ) A .M P = B .M P C .P MD .M P ⋂=∅答案:C解析:根据集合M ,求出集合P ,进而可得集合M 与P 的关系. 详解:解:由题意可得{1,0,1}M ,{0,1}P =,所以P M .故选:C . 点睛:本题考查了集合包含关系的判断及应用,属基础题.3.已知集合{}12A x x =<≤,{}B x x a =<.若A B ⊆,则a 的取值范围是( ) A .1a a ≥ B .1a a ≤C .{}2a a ≥D .{}2a a >答案:D解析:利用数轴法,根据集合间的关系,即可得答案; 详解: 根据题意作图:易知2a >. 故选:D.点睛:本题考查根据集合间的关系求参数的取值,求解时注意等号成立的条件. 4.已知集合{}0,1A =,{}1,0,2B a =-+,若A B ⊆,则a 的值为( ) A .2- B .1- C .0 D .1答案:B解析:根据A B ⊆可得出关于a 的等式,解出即可. 详解:集合{}0,1A =,{}1,0,2B a =-+,A B ⊆,21a ∴+=,解得1a =-. 故选:B. 点睛:本题考查利用集合的包含关系求参数,考查计算能力,属于基础题. 5.集合(1,2)(3,4)}的子集个数为( ) A .3 B .4C .15D .16答案:B解析:直接枚举求解即可. 详解:易得()(){}1,2,3,4的子集有∅,(){}1,2,(){}3,4,()(){}1,2,3,4. 故选:B 点睛:本题主要考查了集合的子集个数,属于基础题. 6.集合{1,0,1}-的非空真子集共有( ) A .5个 B .6个C .7个D .8个答案:B解析:将集合的所有非空真子集列举出来,即可得解. 详解:集合{1,0,1}-,则其非空真子集为{}1-,{0},{1},{1,0}-,{0,1},{1,1}-, 所以非空真子集共有6个, 故选:B. 点睛:本题考查了集合的真子集概念,真子集个数计算,属于基础题.7.已知集合{}0,1,2A =,则A 的子集共有( ) A .2个 B .4个 C .6个 D .8个答案:D解析:根据集合中元素的个数,以及集合子集的个数2n ,简单计算可得结果. 详解:集合A 的子集共有328=个. 故选:D. 点睛:本题考查集合子集个数的计算,识记常用结论,假设集合元素个数为n ,则该集合子集个数为2n ,真子集个数为21n -,非空子集个数为21n -,非空真子集个数为22n -,属基础题. 8.含有三个实数的集合表示为,,1b a a ⎧⎫⎨⎬⎩⎭,也可表示为{}2,,0a a b +,则20092009a b +的值为 A .0 B .-1 C .1 D .答案:B解析:根据集合的相等,分别找到元素的对应关系,排除不可能的情况,再进行分类讨论,得到答案. 详解:含有三个实数的集合表示为,,1b a a ⎧⎫⎨⎬⎩⎭,也可表示为{}2,,0a a b + 所以可得0a =或者0ba=当0a =时,因有b a,所以不成立. 故只能0b a=,即0b =此时集合分别为{},0,1a 和{}2,,0a a所以有21a =,即1a =±而由集合的互异性可知,1a =时,不成立 故1a =- 故选B 项. 点睛:本题考查集合的相等,和集合的性质,属于简单题.9.集合P 具有性质“若x P ∈,则1P x∈”,就称集合P 是伙伴关系的集合,集合111,0,,,1,2,3,432A ⎧⎫=-⎨⎬⎩⎭的所有非空子集中具有伙伴关系的集合的个数为A .3B .7C .15D .31答案:C解析:首先分析集合A 中的哪些元素能是伙伴关系的集合里的元素,然后利用集合的子集个数公式求解. 详解:根据条件可知满足伙伴关系的集合里面有111,1,,3,,232-中的某些元素,13和3,12和2都以整体出现,13和3看成一个元素,12和2也看成一个元素,∴共有4个元素,集合是非空集合,∴有42115-=个.故选C 点睛:本题主要考查集合关系的判断,利用条件确定伙伴关系的元素是解决本题的关键,意在考查分析问题和解决问题的能力.10.设A=x|2≤x≤4},B=x|2a≤x≤a+3},若B 真包含于A ,则实数a 的取值范围是( ) A .[]1,3 B .(){}3,1∞+⋃ C .{}1 D .()3,∞+答案:C解析:由B 真包含于A ,讨论B =∅与B≠∅时,求出a 的取值范围. 详解:∵A=x|2≤x≤4},B =x|2a≤x≤a+3},且B 真包含于A ; 当B =∅时,2a >a+3,解得a >3;当B≠∅时,232234a a a a ≤+⎧⎪≥⎨⎪+≤⎩解得a =1;此时A=B.∴a 的取值范围是a|a >3} 故选C . 点睛:本题考查了集合之间的基本运算,解题时容易忽略B =∅的情况,是易错题.11.集合{}1,2,3的真子集有( ) A .4个 B .6个 C .7个 D .8个答案:C解析:根据集合真子集的个数公式求解即可. 详解:集合{}1,2,3的元素个数为3个, 故真子集的个数为3217-=, 故选:C 点睛:本题主要考查了集合子集,真子集的概念,考查了集合真子集个数公式,属于容易题.12.集合{}2|4,,A y y x x N y N ==-+∈∈的真子集的个数为A .9B .8C .7D .6答案:C 详解:{}0,3,4,A =故A 有7个真子集13.已知集合{}1,1A =-,{}|10B x ax =+=,若B A ⊆,则实数a 的所有可能取值的集合为 A .{}1,0,1- B .{}1,1- C .{}1 D .{}1-答案:A 详解:试题分析:B A ⊆,∴B=φ或B =-1}或B =1},∴a=0,-1,1. 考点:子集关系点评:本题考查了子集关系,勿忘空集.14.下列四个集合中,空集是A .{}2|20x R x ∈+=B .0C .{}|84x x x ><或D .{}∅答案:A 详解:试题分析:A.因为方程2+2=0x 无解,所以{}2|20x R x ∈+= =φ;B.0中含有一个元素0,所以不是空集;C. {}|84x x x ><或含有很多元素,所以不是空集;D. {}∅含有一个元素φ,所以不是空集. 考点:集合的表示方法;空集的定义.点评:空集就是不含任何元素的集合.属于基础题型.15.下列四个关系中,正确的是( ) A .{},a a b ∈ B .{}{},a a b ∈ C .{}a a ∉D .(){},a a b ∈答案:A解析:因为a 是集合{,}a b 中的元素,判断A 选项正确;因为{}a 与{},a b 是两个集合,判断B 选项错误;因为a 是集合{}a 中的元素,判断C 选项错误;因为数a 不在集合{(,)}a b 中,判断D 选项错误. 详解:解:A 选项:因为a 是集合{,}a b 中的元素,所以{},a a b ∈,故A 选项正确; B 选项:{}a 与{},a b 是两个集合,集合之间没有属于关系,故B 选项错误; C 选项:因为a 是集合{}a 中的元素,所以{}a a ∈,故C 选项错误;D 选项:因为集合{(,)}a b 中的元素是点(,)a b ,数a 不在集合{(,)}a b 中,故D 选项错误; 故选:A. 点睛:本题考查元素与集合的属于关系、集合之间的包含关系,是基础题 16.集合{1,2,3}的子集共有 A .7个 B .8个 C .6个 D .5个答案:B 详解:集合{1,2,3}中共三个元素,子集个数为:328=. 故选B.17.集合A =(x ,y)|y =x}和B =()21,|45x y x y x y ⎧⎫-=⎧⎨⎨⎬+=⎩⎩⎭,则下列结论中正确的是 ( )A .1∈AB .B ⊆AC .(1,1)⊆BD .∅∈A答案:B解析:B =()21,|45x y x y x y ⎧⎫-=⎧⎨⎨⎬+=⎩⎩⎭=(1,1)},而A =(x ,y)|y =x},B 中的元素在A 中,所以B ⊆A故选B .18.已知集合{}22,4,A a =,{}2,6B a =+,若B A ⊆,则a =( )A .-3B .-2C .3D .-2或3答案:C解析:因为B A ⊆得到64a +=或者26a a +=,但是算出a 的值后,要将a 值代回去检验是否满足集合的互异性的条件. 详解: 因为B A ⊆,若64a +=,则2a =-,24a =,集合A 中的元素不满足互异性,舍去; 若26a a +=,则3a =或-2,因为2a ≠-,所以3a =. 故选C. 点睛:根据集合之间的包含关系求解参数的值时,一定要记得将参数的值代回集合中检验是否会有重合的元素,如果有重合的情况就要舍掉这个参数的取值,切记集合的三要素:确定性,互异性,无序性.19.设集合{}125S x x x =-++>,{}4T x x a =-≤,S T R ⋃=,则a 的取值范围为( ) A .2a ≤-或1a ≥ B .21a -≤≤ C .21a -<< D .2a <-或1a >答案:B解析:{|32},[4,=4]S x x x T a a =-=-或 ,所以432142a a a -≤-⎧⇒-≤≤⎨+≥⎩,选A. 点睛:形如|x -a|+|x -b|≥c(或≤c)型的不等式主要有三种解法:(1)分段讨论法,利用绝对值号内式子对应方程的根,将数轴分为(-∞,a],(a ,b],(b ,+∞)(此处设a <b)三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集;(2)几何法,利用|x -a|+|x -b|>c(c >0)的几何意义:数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体;(3)图象法:作出函数y 1=|x -a|+|x -b|和y 2=c 的图象,结合图象求解.20.设集合{}|12A x x =<<,{}|B x x a =<,若A B ⊆,则a 的取值范围 A .2a ≤ B .1a ≤C .1a <D .2a ≥答案:D解析:结合数轴分析即可. 详解:画出数轴可得,若A B ⊆则2a ≥.故选:D点睛:本题主要考查了根据集合的关系求参数的问题,属于基础题型.。

高中数学必修一习题课——集合的概念、基本关系与基本运算

高中数学必修一习题课——集合的概念、基本关系与基本运算

习题课——集合的概念、基本关系与基本运算课后训练巩固提升1.设集合A={x|x≤4},m=1,则下列关系中正确的是()B.m∉AC.{m}∈AD.m∈A1<4,所以m∈A,故选D.M={x|-3<x≤5},N={x|x<-5,或x>5},则M∪N=()A.{x|x<-5,或x>-3}B.{x|-5<x<5}<x<5} D.{x|x<-3,或x>5}集合M={x|-3<x≤5},N={x|x<-5,或x>5},N={x|x<-5,或x>-3},故选A.U=Z,A={1,3,5,7,9},B={1,2,3,4,5},则图中阴影部分表示的集合是()A.{1,3,5}B.{1,2,3,4,5}D.{2,4}(∁U A)∩B={2,4}.U={x|-2≤x≤1},A={x|-2<x<1},B={x|x2+x-2=0},C={x|-2≤x<1},则()B.C⊆∁U AC.∁U B=CD.∁U A=BB={-2,1},∴∁U A=B.A={x|-1≤x<2},B={x|x<a},若A∩B≠⌀,则a的取值范围是()B.a>-2C.a>-1D.-1<a≤2解析:在数轴上画出集合A={x|-1≤x<2},要使A∩B≠⌀,借助数轴可知a>-1.答案:C6.设P,Q为两个非空实数集合,定义集合P*Q={z|z=ab,a∈P,b∈Q},若P={-1,0,1},Q={-2,2},则集合P*Q中元素的个数是()B.3C.4D.5a=0时,无论b取何值,z=ab=0;当a=-1,b=-2时,z=12;当a=-1,b=2时,z=-12;当a=1,b=-2时,z=-12;当a=1,b=2时,z=12.故P*Q={0,12,-12},该集合中共有3个元素.A={-2,2,3,4},B={x|x=t2,t∈A},则用列举法表示B=.B={x|x=t2,t∈A},当t=-2和2时,x=4;当t=3时,x=9;当t=4时,x=16,用列举法表示.A={x|x+m≥0},B={x|-2<x<4},全集U=R,且(∁U A)∩B=⌀,则实数m的取值范围为.A={x|x≥-m},得∁U A={x|x<-m}.∵B={x|-2<x<4},(∁U A )∩B=⌀, -2,即m ≥2,∴m 的取值范围是m ≥2.m|m ≥2}U={n|n 是小于9的正整数},A={n ∈U|n 是奇数},B={n ∈U|n 是3的倍数},则∁U (A ∪{1,2,3,4,5,6,7,8},.B={1,3,5,6,7},∴∁U (A ∪B )={2,4,8}.A={x|-2≤x ≤7},B={x|m+1<x<2m-1},若B ⊆A ,则实数m 的取值范围是 .B=⌀时,有m+1≥2m-1,则m ≤2.时,若B ⊆A ,如图,则{m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.的取值范围为m ≤4.≤4 A={-4,2a-1,a 2},B={a-5,1-a ,9},分别求适合下列条件的a 的值.(1)9∈(A ∩B );=A ∩B.∵9∈(A ∩B ),∴9∈A ,且9∈B.1=9或a 2=9.∴a=5或a=-3或a=3.经检验a=5或a=-3符合题意.∴a=5或a=-3.(2)∵{9}=A ∩B ,∴9∈A ,且9∈B ,由(1)知a=5或a=-3.当a=-3时,A={-4,-7,9},B={-8,4,9},此时A ∩B={9};当a=5时,A={-4,9,25},B={0,-4,9},此时A ∩B={-4,9},不合题意.∴a=-3.12.已知全集为R ,集合A={x|2≤x ≤6},B={x|3x-7≥8-2x }.(1)求A ∪B ;(2)求∁R (A ∩B );C={x|a-4≤x ≤a+4},且A ⊆∁R C ,求a 的取值范围.∵B={x|3x-7≥8-2x }={x|x ≥3},∪B={x|x ≥2}.(2)∵A ∩B={x|3≤x ≤6},∴∁R (A ∩B )={x|x<3,或x>6}.(3)由题意知C ≠⌀,则∁R C={x|x<a-4,或x>a+4}.∵A={x|2≤x ≤6},A ⊆∁R C ,∴a-4>6或a+4<2,解得a>10或a<-2.故a 的取值范围为a<-2或a>10.13.已知集合A={x|x 2+ax+12b=0}和B={x|x 2-ax+b=0},满足B ∩(∁U A )={2},A ∩(∁U B )={4},U=R ,求实数.B ∩(∁U A )={2},∴2∈B ,且2∉A.∩(∁U B )={4},∴4∈A ,且4∉B.∴{42+4a +12b =0,22-2a +b =0,解得{a =87,b =-127. ∴a ,b 的值为87,-127.。

高中数学必修一1.2 集合间的基本关系复习专练(人教A版,含解析)(60)

高中数学必修一1.2 集合间的基本关系复习专练(人教A版,含解析)(60)

1.2 集合间的基本关系一、单选题1.下列式子表示正确的是( )A .∅{}0⊆B .{}{}22,3∈C .∅{}1,2∈D .{}00,2,3⊆答案:A解析:根据空集的性质,集合与集合的关系,元素与集合的关系逐一判断可得答案. 详解:解:根据空集的性质,空集是任何集合的子集,{}0∅⊆,故A 正确;根据集合与集合关系的表示法,{}2{}2,3,故B 错误; ∅是任意非空集合的真子集,有∅{}1,2,但{}1,2∅∈表示方法不对,故C 错误;根据元素与集合关系的表示法,{}00,2,3∈,不是{}00,2,3⊆,故D 错误;故选:A.点睛:本题考查的知识点是集合的包含关系判断及其应用,元素与集合关系的判断,集合的表示法.2.已知集合A=x|a≤x<3),B=[1,+∞),若A 是B 的子集,则实数a 取值范围为( )A .[0,3)B .[1,3)C .[0,+∞)D .[1,+∞)答案:D 解析:根据条件讨论A 是否为空集:A =∅时,3a ;A ≠∅时,31a a <⎧⎨⎩,解出a 的范围即可.详解:解:{|3}A x a x =<,[1B =,)+∞,且A B ⊆,∴①A =∅时,3a ;②A ≠∅时,31a a <⎧⎨⎩,解得13a <, ∴综上,实数a 的取值范围为[1,)+∞.故选:D .点睛:本题考查了子集的定义,描述法、区间的定义,分类讨论的思想,考查了计算能力,属于基础题.3.已知集合{}1A x x =>,则下列判断正确的是( )A .0A ∈B .{}2A ⊆C .2A ⊆D .A ∅∈答案:B解析:先区分是集合还是元素,而后选用符合的符号.详解: 解:集合{|1}A x x =>,0A ∴∉,{2}A ⊆,2A ∈,A ∅⊆ 故选:B .4.若{}6,7,8A =,则集合A 的真子集共有A .3个B .5个C .7个D .8个答案:C解析:根据n 元集合有2n ﹣1个真子集,结合集合6,7,8}共有3个元素,代入可得答案. 详解:因为A =6,7,8}共3个元素故集合A =6,7,8}共有23﹣1=7个真子集故选C .点睛:本题考查的知识点是子集与真子集,熟练掌握n 元集合有2n 个子集,有2n ﹣1个真子集,是解答的关键.5.已知集合A=2,3},B=x|mx ﹣6=0},若B ⊆A ,则实数m=A .3B .2C .2或3D .0或2或3答案:D详解:试题分析::∵A=2,3},B=x|mx-6=0}=6m }, ∵B ⊆A , ∴2=6m ,或3=6m ,或6m 不存在, ∴m=2,或m=3,或m=0考点:集合关系中的参数取值问题6.已知集合{}{}0,2,2,0,A B a ==-,若A B ⊆,则实数a 的值为A .2B .1C .0D .2-答案:A详解:试题分析:因A B ⊆,故,应选A. 考点:子集包含关系的理解.7.已知集合,则下列式子表示正确的有 ① ② ③④ A .1个B .2个C .3个D .4个 答案:C详解: 解:因为集合,则说明A=1,-1},因此利用元素与集合的关系,以及集合与集合的关系得到①,成立,③ ④也成立,选项C8.已知集合{}{}|1,|M x x N x x a =>=>,且M N ⊆,则( )A .1a ≤B .1a <C .1a ≥D .1a >答案:A解析:根据M N ⊆,在数轴上作出,M N ,可得结果.详解:根据M N ⊆,在数轴上作出集合,M N ,如图:可得:1a ≤,故选:A.点睛:本题考查集合间的包含关系,注意利用数轴,是基础题.9.已知集合{1,2}A =,{4,5,6}B =,:f A B →为集合A 到集合B 的一个函数,那么该函数的值域C 的不同情况有( )种.A .2B .3C .6D .7答案:C解析:函数的值域C 是集合B 的一个子集,分析可知B 的非空子集共有7个,除去{4,5,6}有3个元素不能作为值域,则值域C 的不同情况有6种.详解:由函数的定义可知,函数的值域C 是集合B 的一个子集.{4,5,6}B =,非空子集共有3217-=个;而定义域A 中至多有2个元素,所以值域C 中也至多有2个元素;所以集合B 的子集{4,5,6}不能作为值域C,值域C 的不同情况只能有6种.故选:C.点睛:本题考查了集合的子集个数和函数的定义,若函数的定义域和值域里的元素个数为有限个,则值域的元素个数不会超过定义域里的元素个数.本题属于中等题.10.已知a b 、为实数,若集合,1ba ⎧⎫⎨⎬⎩⎭与{},0a 表示同一集合,则+a b 等于( ) A .-1B .0C .1D .±1答案:C 解析:由集合相等可得1,0b a a==,解出即可.详解: 解:集合相等可得1,0b a a ==,解得1,0a b ==.1a b ∴+=. 故选:C .点睛:本题考查了集合相等,属于基础题.二、填空题1.集合{}1,0,1-的子集共有___________个.答案:8解析:将子集一一列出即可.详解:集合{1A =-,0,1}的子集有:∅,{}1-,{0},{1},{1-,0},{0,1},{1-,1},{1-,0,1}共8个故答案为:8.2.已知全集U =R ,集合{|34}A x x =-≤≤,集合{|121}B x a x a =+<<-,且U A C B ⊆,则实数a 的取值范围是_________________.答案:a≥3或a≤2解析:对集合B 分类讨论B=∅与B ≠∅,结合U A C B ⊆得到关于a 的不等式组,从而得到结果. 详解:∵{|121}B x a x a =+<<-,且A ⊆∁U B ,2a ﹣1>a+1,解得a >2,∁U B=x|x≤a+1,或x≥2a﹣1},∴241a a ⎧⎨≤+⎩>或2213a a ⎧⎨-≤-⎩>, 解得a≥3或a∈∅.此时实数a 的取值范围为a≥3.当B=∅,∁U B=R ,满足A ⊆∁U B ,∴a+1≥2a﹣1,解得a≤2.综上可得:实数a 的取值范围为a≥3或a≤2.点睛:本题考查了集合的运算性质、不等式的解法,考查了推理能力与计算能力,属于中档题.3.角的集合{|,}2A x x k k ππ==+∈Z 与集合{|2,}2B x x k k ππ==±∈Z 之间的关系为________.答案:A B =解析:在集合A 中,分析k 的奇偶,可得出集合A 所表示的角的终边,与集合B 相比较,可得出结果.详解:解:集合{|,}2A x x k k ππ==+∈Z ,当k 为奇数时,假设21k n =-,则{|2,}2A x x n k πππ==-+∈Z ,即{|2,}2A x x n k ππ==-∈Z 表示终边在y 轴非正半轴上的角,当k为偶数时,假设2k n =,集合{|2,}2A x x n k ππ==+∈Z ,表示终边在y 轴非负半轴上的角; 集合{|2,}2B x x k k ππ==±∈Z ,则集合B 表示终边落在y 轴上的角的集合,所以A B =. 故答案为:A B =.4.集合∅和{0}的关系表示正确的有________.(把正确的序号都填上)①{0}=∅;②{0}∈∅;③{0}⊆∅;④∅{0}.答案:④解析:根据集合间的基本关系及定义,即可得答案;详解:∅没有任何元素,而{0}中有一个元素,显然{0}∅≠,又∅是任何非空集合的真子集,故有∅{0}.,所以④正确,①②③不正确.故答案为:④点睛:本题考查集合间的基本关系,考查对概念的理解,属于基础题.5.已知{}0,2,M b =,{}20,2,N b =,且M N ,则实数b 的值为____________.答案:1解析:根据集合相等以及集合元素的互异性可求得实数b 的值.详解:{}0,2,M b =,{}20,2,N b =且M N ,则202b b b b ⎧=⎪≠⎨⎪≠⎩,解得1b =. 故答案为:1.点睛:本题考查利用集合相等求参数,同时要注意集合的元素应满足互异性,考查计算能力,属于基础题.三、解答题1.设全集U =R ,集合{}5|4A x x =-<<,集合{6B x x =<-或}1x >,集合{}|0C x x m =-<,求实数m 的取值范围,使其同时满足下列两个条件.①()C A B ⊇⋂;②()()U U C A B ⊇.答案:{}|4m m ≥解析:求出A B 和()()U U A B ⋂,求出集合C ,由包含关系得m 的不等关系.详解:解:因为{}5|4A x x =-<<,{|6B x x =<-或1}x >,所以{}|14A B x x =<<.又{|5U A x x =≤-或4}x ≥,{}61|U B x x =-≤≤,所以()(){}65|U U A B x x =-≤≤-.而{}|C x x m =<,因为当()C A B ⊇⋂时,4m ≥,当()()U U C A B ⊇时,5m >-,所以4m ≥.即实数m 的取值范围为{}|4m m ≥.点睛:本题考查集合的综合运算,考查集合的包含关系,掌握包含关系是解题关键.2.已知M=x| -2≤x≤5}, N=x| a+1≤x≤2a -1}.(1)若M ⊆N ,求实数a 的取值范围;(2)若M ⊇N ,求实数a 的取值范围.答案:(1)空集;(2){}3a a ≤.解析:(1)根据子集的性质进行求解即可;(2)根据子集的性质,结合N =∅和N ≠∅两种情况分类讨论进行求解即可.详解:(1)由M N ⊆得:12321531212a a a a a a a +≤-≤-⎧⎧⎪⎪⇒-≥≥⎨⎨⎪⎪+≤-≥⎩⎩无解; 故实数a 的取值范围为空集;(2)由M N ⊇得:当N =∅时,即1212a a a +>-⇒<;当N ≠∅时,12121232153a a a a a a a +≤-≥⎧⎧⎪⎪+≥-⇒≥-⎨⎨⎪⎪-≤≤⎩⎩, 故23a ≤≤;综上实数a 的取值范围为{}3a a ≤.3.设f (x )是定义在R 上的函数,且对任意实数x ,有f (x ﹣2)=x 2﹣3x+3. (Ⅰ)求函数f (x )的解析式;(Ⅱ)若x|f (x ﹣2)=﹣(a+2)x+3﹣b}=a},求a 和b 的值.答案:(Ⅰ)f (x )=x 2+x+1;(Ⅱ)解析:(Ⅰ)采用换元法,令x ﹣2=t ,即可求得解析式;(Ⅱ)先将表达式化简,再结合x|f (x ﹣2)=﹣(a+2)x+3﹣b}=a}可得,解方程可求a 和b 的值详解:(Ⅰ)依题意,令x ﹣2=t ,则x =t+2,∴f (t )=(t+2)2﹣3(t+2)+3=t 2+t+1, ∴f (x )=x 2+x+1;(Ⅱ)依题意,方程x 2﹣3x+3=﹣(a+2)x+3﹣b 有唯一解a ,即方程x 2+(a ﹣1)x+b =0有唯一解a , ∴,解得.点睛:本题考查换元法求解析式,根据集合相等求解参数,一元二次方程有唯一解的等价条件的转化,属于中档题4.已知集合{}25A x x =-≤≤,集合{}121B x p x p =+≤≤-,若A B B =,求实数p 的取值范围.答案:3p ≤解析:根据题意,由集合的性质,可得若满足A B B =,则B A ⊆,进而分:①121p p +>-,②121p p +=-,③121p p +<-,三种情况讨论,讨论时,先求出p 的取值范围,进而可得B ,讨论集合B 与A 的关系可得这种情况下p 的取值范围,对三种情况下求得的p 的范围求并集可得答案.详解:解:根据题意,若A B B =,则B A ⊆;分情况讨论:①当121p p +>-时,即2p <时,B =∅,此时B A ⊆,则A B B =,则2p <时,符合题意;②当121p p +=-时,即2p =时,{}{}333B x x =≤≤=,此时B A ⊆,则A B B =,则2p =时,符合题意;③当121p p +<-时,即2p >时,{}121B x p x p =+≤≤-,若B A ⊆,则有21512p p -≤⎧⎨+≥-⎩,解可得33p -≤≤, 又由2p >,则当23p <≤时,符合题意;综上所述,满足A B B =成立的p 的取值范围为3p ≤.点睛:本题考查根据集合的包含关系求参数的取值范围,易错点为遗漏B =∅的情况,考查了分类讨论的思想,属于中档题.5.已知全集U=R ,集合A=x∣-2≤x≤3},B=x∣2a<x<a+3},且U B A ⊆,求实数a 的取值集合.答案:a∣a≤-5或a≥32}解析:首先求出集合A 的补集,再根据U B A ⊆,对集合B 是否为空集分类讨论,得到不等式组,解得即可;详解:解:因为{}|23A x x =-≤≤,所以U {|2A x x =<-或3}x >因为U B A ⊆,当B =∅时23a a ≥+解得3a ≥;当B ≠∅时,由U B A ⊆所以23,23,a a a <+⎧⎨≥⎩或2332a a a <+⎧⎨+≤⎩- 解得332a ≤<或5a ≤-.所以实数a 的取值集合为{|5a a -≤或3}2a ≥.点睛:本题考查集合的包含关系求参数的取值范围,一般需对集合是否为空集分类讨论,属于基础题.。

高中数学必修一集合专题练习(知识点+练习题)

高中数学必修一集合专题练习(知识点+练习题)

必修一第一章:集合专题一、集合概念1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。

集合三要素:确定性、互异性、无序性。

2、 只要构成两个集合的元素是一样的,就称这两个集合相等。

3、 常见集合:正整数集合:*N 或+N ,整数集合:Z ,有理数集合:Q ,实数集合:R .4、集合的表示方法:列举法、描述法.二、集合间的基本关系1、 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。

记作B A ⊆.2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B.3、 把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集.4、 若集合A 中含有n 个元素,则集合A 有n 2个子集,21n -个真子集.三、集合间的基本运算1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A .2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A .3、全集、补集?{|,}U C A x x U x U =∈∉且集合专题训练1. 设集合A ={1,2,3},B ={2,3,4},则A ∪B =( )A. {1,2,3,4}B. {1,2,3}C. {2,3,4}D. {1,3,4} 2. 设集合A ={x|x 2−4x +3<0},B ={x|2x −3>0},则A ∩B =( ) A. (−3,−32) B. (−3,32) C. (1,32) D. (32,3)3. 设集合A ={1,2,4},B ={x|x 2−4x +m =0},若A ∩B ={1},则B =( )A. {1,−3}B. {1,0}C. {1,3}D. {1,5}4. 已知集合A ={1,2,3,4},B ={y|y =3x −2,x ∈A},则A ∩B =( )A. {1}B. {4}C. {1,3}D. {1,4}5. 已知集合A ={1,2,3,4},B ={2,4,6,8},则A ∩B 中元素的个数为( )A. 1B. 2C. 3D. 46. 已知集合A ={x|1<2x <8},集合B ={x|0<log 2x <1},则A ∩B =( )A. {x|1<x <3}B. {x|1<x <2}C. {x|2<x <3}D. {x|0<x <2}7. 集合A ={0,1,2}的真子集的个数是______ .8. 已知集合,,A ∪B =A ,则实数p 的取值范围是______.9. 若集合A ={x|ax 2+3x +2=0}中至多有一个元素,则a 的取值范围是_____________10. 如图,若集合A ={1,2,3,4,5},B ={2,4,6,8,10},则图中阴影部分表示的集合为______.11.已知全集U =R ,集合A ={x|x 2−4x ≤0},B ={x|m ≤x ≤m +2}.(1)若m =3,求∁U B 和A ∪B ;(2)若B ⊆A ,求实数m 的取值范围;(3)若Φ=⋂B A ,求实数m 的取值范围.。

高中数学必修一知识点总结完整版

高中数学必修一知识点总结完整版

高中数学必修一知识点总结完整版高中数学必修一是整个高中数学学习的基础,涵盖了集合、函数的概念与性质、基本初等函数等重要内容。

以下是对这些知识点的详细总结。

一、集合1、集合的概念集合是由某些确定的对象所组成的整体。

这些对象称为集合的元素。

2、集合的表示方法(1)列举法:将集合中的元素一一列举出来,用花括号括起来。

(2)描述法:用确定的条件表示某些对象是否属于这个集合。

3、集合间的关系(1)子集:如果集合 A 中的所有元素都属于集合 B,那么称 A 是B 的子集,记作 A⊆B。

(2)真子集:如果 A 是 B 的子集,且 B 中至少有一个元素不属于A,那么称 A 是 B 的真子集,记作 A⊂B。

(3)集合相等:如果 A⊆B 且 B⊆A,则 A = B。

4、集合的运算(1)交集:由属于集合 A 且属于集合 B 的所有元素组成的集合,记作A∩B。

(2)并集:由属于集合 A 或属于集合 B 的所有元素组成的集合,记作 A∪B。

(3)补集:设 U 是一个全集,A 是 U 的子集,由 U 中不属于 A 的所有元素组成的集合称为 A 在 U 中的补集,记作∁UA。

二、函数的概念1、函数的定义设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数,记作 y =f(x),x∈A。

2、函数的三要素(1)定义域:函数中自变量 x 的取值范围。

(2)值域:函数值的集合。

(3)对应关系:函数的表达式或法则。

3、函数的表示方法(1)解析法:用数学表达式表示两个变量之间的对应关系。

(2)图象法:用图象表示函数关系。

(3)列表法:列出表格来表示两个变量之间的对应关系。

三、函数的基本性质1、单调性(1)增函数:设函数 f(x)的定义域为 I,如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x1,x2,当 x1 < x2 时,都有 f(x1) < f(x2),那么就说函数 f(x)在区间 D 上是增函数。

高中数学必修一1.2 集合间的基本关系复习专练(人教A版,含解析)(96)

高中数学必修一1.2 集合间的基本关系复习专练(人教A版,含解析)(96)

1.2 集合间的基本关系一、单选题1.已知集合A =40,?1x xx Z x ⎧⎫-<∈⎨⎬-⎩⎭,B =m ,2,8},若A B =B ,则m =( ) A .1B .2C .3D .5答案:C解析:先求出集合A, 由A B =B ,即A B ⊆,即可求出参数m 的值.详解: 由401x x -<-,得14x << 所以集合A ={}40,2,31x x x Z x ⎧⎫-<∈=⎨⎬-⎩⎭由A B =B ,即A B ⊆,又B =m ,2,8},所以3m =故选:C点睛:本题考查分式不等式的求解,根据集合间的关系求参数的值,属于基础题.2.已知集合A =x x 是三角形},B =x x 是等腰三角形},C =x x 是等腰直角三角形},D x x 是等边三角形},则A .AB ⊆B .C B ⊆ C .D C ⊆D .A D ⊆答案:B解析:根据各集合中三角形的特征可判断它们之间的相互关系.详解:∵等腰直角三角形必为等腰三角形,∴C B ⊆.故选B.点睛:本题考查集合间的包含关系,弄清楚集合中元素的属性是关键,此类问题是基础题.3.集合{}52,Z M x x k k ==-∈,{}|53,P x x n n Z ==+∈,{}103,Z S x x m m ==+∈之间的关系是A .S P MB .S P MC .S P MD .P M S答案:C 解析:先算出集合S ,用列举法表示各集合后可得各集合之间的关系.详解:∵{|52,},{|53,}Mx x k k P x x n n Z Z ,{|103,}S x x m m Z ,∴{,7,2,3,8,13,18,}M,{,7,2,3,8,13,18,}P , {,7,3,13,23,}S ,故S P M , 故选C.点睛:集合的表示方法有列举法和描述法,当用描述法表示的集合时,如果集合中的元素不太明晰,可用列举法表示集合,从而明确集合中的元素.4.已知集合{}1,2A =,()(){}|10,B x x x a a R =--=∈.若A B =,则a 的值为( )A .2B .1C .-1D .-2答案:A解析:由题意可知集合{}1,2B =,解出集合B 即可求出a 的值.详解:因为A B =,所以集合B 为双元素集,即()(){}{}{}|10,1,1,2B x x x a a R a =--=∈==所以2a =.故选:A.5.集合{|1}P x y x ==-,集合{|1}Q y y x ==-,则P 与Q 的关系是A .P =QB .P QC .P QD .P∩Q=Æ 答案:C详解:试题分析:∵,{}{}|1|0Q y y x y y ==-=≥,所以P Q . 考点:集合之间的基本关系与运算.6.已知集合{}21P x x =≤,{}M a =,若P M M =,则实数a 的取值范围是A .(],1-∞-B .[]1,1-C .[)1,∞D .(][),11,-∞-⋃∞详解:分析:化简集合,由P M M ⋂=,可得M P ⊆,由此列不等式求得实数a 的取值范围. 详解:集合{}{}[]2|10|111,1P x x x x =-≤=-≤≤=-,{},M a =P M M ⋂=,[],1,1M P a ∴⊆∴∈-,故选B.点睛:本题主要考查集合中参数的取值范围问题,两个集合的交集的定义,判断M P ⊆是解题的关键,属于简单题.7.下列各式:①{}{}a a ⊆②∅ 0③{}00⊆④{1,3} {3,4},其中正确的有( )A .②B .①②C .①②③D .①③④答案:B解析:根据集合间的包含关系求解即可.详解:任何集合是它本身的子集,则①正确;空集是任何非空集合的真子集,则②正确; 0表示元素,应为{}00∈,则③错误; 1{}3,4∉,∴{}1,3不是{}3,4的真子集,∴④错误;∴正确的为①②.故选:B点睛:本题主要考查了集合间的包含关系,属于基础题.8.已知{}24410M x x x =-+=,{}1P x ax ==,若P M ⊆,则a 的取值集合为( )A .{}2B .{}0C .{}0,4D .{}0,2答案:D解析:先求解集合,M N ,再根据集合之间的关系,确定参数的值.详解:因为24410x x -+=,解得12x =,故集合12M ⎧⎫=⎨⎬⎩⎭.当0a =时,1ax =没有实数根,故P =∅,满足P M ⊆;当0a ≠时,1ax =,解得1x a =,故集合1P a ⎧⎫=⎨⎬⎩⎭,若满足P M ⊆,则112a =,解得2a =.综上所述,{}0,2a ∈.点睛:本题考查由集合之间的关系,求参数值的问题,属基础题.9.已知集合{0}M x Rx =∈∣,N M ⊆,则在下列集合中符合条件的集合N 可能是( ) A .{0,1}B .{}21x x =∣C .{}20x x >∣D .R答案:A解析:根据集合间的包含关系进行判断即可.详解:因为N M ⊆,所以集合N 是集合M 的子集对A 项,{0,1}{0}x Rx ⊆∈∣,故A 正确; 对B 项,{}21{1,1}N xx ===-∣,由于1{0}x R x -∉∈∣,则{}21x x =∣不是{0}x R x ∈∣的子集,故B 错误;对C 项,由于{}210,1{0}xx x R x -∈>-∉∈∣∣,则{}20x x >∣不是{0}x R x ∈∣的子集,故C 错误; 对D 项,由于1,1{0}R x Rx -∈-∉∈∣,则R 不是{0}x R x ∈∣的子集,故D 错误; 故选:A点睛:本题主要考查了集合之间关系的判断,属于基础题.10.{}1,2,3,4,5A =,(){},,,B x y x A y A x y A =∈∈-∈,则B 的非空子集的个数为( )A .10B .9C .1024D .1023答案:D解析:利用列举法表示集合B ,确定集合B 的元素个数,然后利用非空子集个数公式可得出集合B 的非空子集个数.详解:由题意可得()()()()()()()()()(){}2,1,3,1,4,1,5,1,3,2,4,2,5,2,4,3,5,3,5,4B =,集合B 中共10个元素,因此,集合B 的非空子集的个数为10211023-=.故选D.点睛:本题考查集合非空子集个数的计算,解题的关键就是确定集合元素的个数,考查计算能力,属于基础题.二、填空题1.已知集合11{012}33,,,,A =-,集合A 的所有非空子集依次记为:1231,,,A A A ,设1231,,,m m m 分別是上述每一个子集内所有元素的乘积,(如果A 的子集中只有一个元素,规定其积等于该元素本身),那么1231m m m +++=_________.答案:133 解析:根据集合A 的子集的元素中是否含0分类,再写出所有不含0元素的子集的元素积,然后计算求解.详解:i A 中,含有元素0的集合中所有元素的积等于0,不含有元素0的非空子集有15个, 123111111111()12()()1()2121233333333m m m +++=-++++-⋅+-⋅+-⋅+⋅+⋅+⋅ 1111111113()1()2()1212()12333333333+-⋅⋅+-⋅⋅+-⋅⋅+⋅⋅+-⋅⋅⋅= 故答案是:1332.设集合{}3|7M x x -=≤<,{}|20N x x k =+≤,若MN ≠∅,则k 的取值范围是________.答案:{}6|k k ≤解析:求出集合N 中x 的取值范围,根据MN ≠∅,即可求出k 的取值范围 详解:因为{}||202k N x x k x x ⎧⎫=+≤=≤-⎨⎬⎩⎭,且MN ≠∅,所以362k k -≥-⇒≤.所以k 的取值范围是{}6|k k ≤故答案为:{}6|k k ≤ 3.集合A ,B 的并集A∪B={1,2},当且仅当A≠B 时,(A ,B )与(B ,A )视为不同的对,则这样的(A ,B )对的个数有__________.答案:8解析:根据条件列举,即得结果.详解:由题意得满足题意的(A ,B )为:A=φ,B ={1,2};A={1},B ={2};A={1},B ={1,2};A={2},B ={1};A={2},B ={1,2};A={1,2},B =φ;A={1,2},B ={1};A={1,2},B ={2};共8个.点睛:本题考查集合子集与并集,考查基本分析求解能力.4.含有三个实数的集合既可表示成,,1b a a ⎧⎫⎨⎬⎩⎭,又可表示成a 2,a+b ,0},则a 2013+b 2014=_____.答案:﹣1解析:根据集合相等,则元素完全相同,分析参数,列出等式,即可求得结果. 详解: 因为,,1b a a ⎧⎫⎨⎬⎩⎭=a 2,a+b ,0}, 显然0a ≠,故0b a=,则0b =;此时两集合分别是{}{}2,1,0,,,0a a a , 则21a =,解得1a =或1-.当1a =时,不满足互异性,故舍去;当1a =-时,满足题意.故答案为:1-.点睛:本题考查利用集合相等求参数值,属简单题,注意本题的细节讨论.5.用适当的符号填空:∅ _____ 0; 0 _____ ∅; ∅______ {}∅; 0______{}∅答案:∉ ∈或 ≠ 解析:根据集合与集合关系、元素与集合关系直接判断填空. 详解:∅0; 0 ∉∅; ∅{}∈∅或∅{}∅; 0{}∅故答案为:,∉,∈或,≠点睛: 本题考查判断集合与集合关系、元素与集合关系,考查基本分析判断能力,属基础题.三、解答题1.设{1,2,3,4}A =,{1,2}B =,试求集合C ,使得C A ,且B C ⊆.答案:{1,2}C =,或{1,2,3},或{1,2,4}.解析:突破口在于理解C A ,且B C ⊆.由B C ⊆,可得C 中至少有元素1,2,再由C A 即可得解.详解:解:∵{1,2,3,4}A =,{1,2}B =,B C ⊆,∴C 中至少有元素1,2.又∵C A ,∴{1,2}C =,或{1,2,3},或{1,2,4}.点睛:本题主要考查子集、真子集的概念及运算,本题解题的关键是看清题目中出现的三个集合之间的关系,属于基础题.2.设集合{}1,2,A a =,{}21,B a a =-,若B A ⊆,求实数a 的值.答案:1-或0解析:依题意22a a -=或a ,再分类讨论得解.详解:依题意22a a -=或a ,当22a a -=时,解得1a =-或2;当2a a a -=时,解得0a =或2,当2a =时,集合A 与集合元素的互异性相矛盾,所以舍去.1a ∴=-或0.点睛:本题主要考查根据集合的关系求参数,意在考查学生对这些知识的理解掌握水平.3.已知集合,,且,求实数的范围答案:解析:集合B 的真子集有,,,按照,,分三种情况分类讨论. 详解: 因为且的真子集有,,, 所以,,, 当时,无实根,所以,解得;当时, 有两个相等的实根1, 所以且,解得; 当时, 有两个相等的实根4, 所以,此方程组无解.综上所述: 实数的范围是.点睛:本题考查了集合之间的关系,分类讨论思想,着重考查了分类讨论思想,分类讨论时,要做到不重不漏,本题容易遗漏空集情况,属于中档题.4.已知集合,集合. (1)若,求实数的取值范围; (2)是否存在实数,使?若存在,求出的值;若不存在,说明理由.答案:见解析解析:(1)因为,所以集合可以分为或两种情况来讨论: 当时,; 当时,得.综上,实数的取值范围是.(2)若存在实数,使,则必有,无解. 故不存在实数,使. 5.已知集合{}13A x x =<<,集合{}21B x m x m =-<<.(1)若1m =-,求A B ;(2)若A B ⊆,求实数m 的取值范围.答案:(1){}|12x x <<(2)(,2]-∞-解析:试题分析:(1)利用数轴求两个集合的交集;(2)由A B⊆知21,13,mm≤⎧⎨-≥⎩从而得到实数m的取值范围.试题解析:(1)A B=;(2)由A B⊆知21,13,mm≤⎧⎨-≥⎩,解得2m≤-,即实数m的取值范围为(],2-∞-.。

高中数学必修一练习题(一)集合(详细答案)

高中数学必修一练习题(一)集合(详细答案)

高中数学必修一复习练习(一)班号姓名集合的含义与表示1.下面的结论正确的是( )A .a∈Q ,则a∈NB .a∈Z,则a∈NC.x2 -1=0 的解集是{ -1,1} D .以上结论均不正确2.下列说法正确的是( )A .某班中年龄较小的同学能够形成一个集合B .由1,2,3 和9,1,4组成的集合不相等C.不超过20 的非负数组成一个集合D .方程x2-4=0 和方程|x-1|=1 的解构成了一个四元集3.用列举法表示{( x,y)|x∈N+,y∈N+,x+y=4} 应为( )A .{(1 ,3),(3,1)}B .{(2 ,2)}C.{(1 ,3),(3,1),(2,2)} D .{(4 ,0),(0,4)}4. 下列命题:(1) 方程x-2+|y+2|=0 的解集为{2 ,-2} ;(2) 集合{ y|y=x2-1,x∈R} 与{ y|y=x-1,x∈R} 的公共元素所组成的集合是{0 ,1} ;(3) 集合{ x|x-1<0} 与集合{ x|x>a,a∈R} 没有公共元素.其中正确的个数为( )A .0B .1 C.2 D.35. 对于集合A={ 2,4,6,8},若a∈A,则8-a∈A,则a 的取值构成的集合是.6.定义集合A*B={ x|x=a-b,a∈A,b∈B} ,若A={1 ,2} ,B={0 ,2} ,则A* B 中所有元素之和为.7.若集合A={ -1,2} ,集合B={ x|x2+ax+b=0} ,且A=B,则求实数a,b 的值.8.已知集合A={ a-3,2a-1,a2+1} ,a∈R .(1) 若-3∈A,求实数 a 的值;(2) 当a 为何值时,集合 A 的表示不正确.集合间的基本关系1.下列关系中正确的个数为( )①0∈{0} ;②? {0} ;③{(0 ,1)} ? {(0 ,1)} ;④{( a,b)} ={( b,a)} .A .1B .2 C.3 D .42.已知集合A={ x|-1<x<2} ,B={ x|0<x<1} ,则( )A .A>B B .A B C.B A D.A? B3.已知{1 ,2} ? M {1 ,2,3,4} ,则符合条件的集合M 的个数是( )A .3 B.4 C.6 D .84.集合M={1 ,2,a,a2-3a-1} ,N={ -1,3} ,若3∈M 且N M,则 a 的取值为( )A .-1B .4 C.-1 或-4 D.- 4 或15. 集合 A 中有m 个元素,若在 A 中增加一个元素,则它的子集增加的个数是.6.已知M={ y|y=x2-2x-1,x∈R} ,N={ x|-2≤x≤4} ,则集合M 与N 之间的关系是.7.若集合M={ x|x2+x-6=0} ,N={ x|(x-2)( x-a)=0} ,且N? M,求实数 a 的值.8.设集合A={ x|a-2<x<a+2} ,B={ x|-2<x<3} ,(1) 若A B,求实数 a 的取值范围;(2)是否存在实数 a 使B? A?并集与交集1.A∩B=A,B∪C=C,则A,C 之间的关系必有( )A .A? CB .C? A C.A=CD .以上都不对2.A={0 ,2,a} ,B={1 ,a2} ,A∪B={0 ,1,2,4,16} ,则 a 的值为( )A .0B .1 C.2 D .43.已知全集U =R ,集合M={ x|-2≤x-1≤2}和N={ x|x=2k-1,k∈N*} 的关系的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有( )A .2 个B .3 个C.1 个 D .无穷多个4.设集合M={ x|-3≤x<7} ,N={ x|2x+k≤0} ,若M∩N≠?,则k 的取值范围是( )A .k≤3B .k≥-3 C.k>6 D.k≤65.已知集合M={ x|-3<x≤5} ,N={ x|-5< x<-2 或x>5} ,则M∪N=,M∩N=.6.已知集合A={( x,y)|y=x2,x∈R} ,B={( x,y)|y=x,x∈R } ,则A∩B 中的元素个数为.7.已知集合A={ x|x2+px+q=0} ,B={ x|x2-px-2q=0} ,且A∩B={ -1} ,求A∪B.8.已知A={ x|x<-2 或x>3} ,B={ x|4x+m<0 ,m∈R} ,当A∩B=B 时,求m 的取值范围.集合的补集运算1.已知全集U ={1 ,2,3,4,5,6,7,8} ,M={1 ,3,5,7} ,N={5 ,6,7} ,则?U (M∪N)=( )A .{5 ,7}B .{2 ,4} C.{2 ,4,8} D.{1 ,3,5,6,7}2.已知全集U ={2 ,3,5} ,集合A={2 ,|a-5|} ,若?U A={3} ,则 a 的值为( )A .0B .10 C.0 或10 D .0 或-103.已知全集U =R ,集合A={ x|-2≤x≤3} ,B={ x|x<-1 或x>4} ,那么集合A∩(?U B)等于( )A .{ x|-2≤x<4} B.{ x|x≤3 或x≥4}C.{ x|-2≤x<-1} D.{ x|-1≤x≤3}4.如图所示,U 是全集,A,B 是U 的子集,则阴影部分所表示的集合是( )A .A∩B B .A∪B C.B∩(?U A) D .A∩(?U B)5.已知全集S=R,A={ x|x≤1} ,B={ x|0≤x≤5} ,则(?S A)∩B=.6.定义集合A*B={ x|x∈A,且x?B} ,若A={1 ,2,3,4,5} ,B={2 ,4,5} ,则A* B 的子集的个数是.5} ,7.已知全集U =R ,A={ x|-4≤x≤2} ,B={ x|-1< x≤3} ,P={ x|x≤0 或x≥2(1) 求A∩B;(2)求(?U B)∪P;(3)求(A∩B)∩(?U P).8.已知集合A={ x|2a-2<x<a} ,B={ x|1<x<2} ,且 A ?R B,求a 的取值范围.参考答案集合的含义与表示1.选 C 对于 A ,a 属于有理数,则 a 属于自然数,显然是错误的,对于B,a 属于整数,则a 属于自然数当然也是错的,对于 C 的解集用列举法可用它来表示.故 C 正确.2.选 C A 项中元素不确定; B 项中两个集合元素相同,因集合中的元素具有无序性,所以两个集合相等; D 项中两个方程的解分别是±2,0,2,由互异性知,可构成一个三元集.3.选 C x=1 时,y=3;x=2 时,y=2;x=3 时,y=1.4.选 A (1)?x-2=0,?x=2,故解集为{(2 ,-2)} ,而不是{2 ,-2} ;|y+2|=0 y=-2.(2) 集合{ y|y=x2-1,x∈R} 表示使y=x2-1 有意义的因变量y 的范围,而y=x2-1≥-1,故{ y|y=x2-1,x∈R} ={ y|y≥-1} .同理集合{ y|y=x-1,x∈R} =R .结合数轴(图1)知,两个集合的公共元素所组成的集合为{ y|y≥-1} ;(3) 集合{ x|x-1<0} 表示不等式x-1<0 的解集,即{ x|x<1} .而{ x|x>a,a∈R } 就是x>a 的解集.结合图2,当a≥1时两个集合没有公共元素;当a<1 时,两个集合有公共元素,形成的集合为{ x|a<x<1} .5.解析:当a=2 时,8-a=6∈A ;a=4 时,8-a=4∈A ;a=6 时,8-a=2∈A;a=8 时,8-a=0? A.∴所求集合为{2 ,4,6} .答案:{2 ,4,6}6.解析:A*B ={1 ,-1,2,0} ,∴A*B 中所有元素之和为1-1+2+0=2. 答案:27.解:由题意知-1,2 是方程2+ax+b=0 的两个根,由根与系数的关系可知有1-a+b=0,4+2a+b=0,故有a=-1,b=-2.8.解:(1)由题意知, A 中的任意一个元素都有等于- 3 的可能,所以需要讨论.当a-3=-3 时,a=0,集合A={ -3,-1,1} ,满足题意;当2a-1=-3 时,a=-1,集合A={ -4,-3,2} ,满足题意;x当a2+1=-3 时,a 无解.综上所述,a=0 或a=-1.(2)若元素不互异,则集合 A 的表示不正确若a-3=2a-1,则a=-2;若a-3=a2+1,则方程无解;若2a-1=a2+1,则方程无解.综上所述,a=-2.集合间的基本关系1.选 C ①、②、③均正确;④不正确.a≠b时,(a,b)与( b,a)是不同的元素.2. C3.选 A 符合条件的集合M 有{1 ,2} ,{1 ,2,3} ,{1 ,2,4} 共3 个.4.选 B (1) 若a=3,则a2-3a-1=-1,即M={1 ,2,3,-1} ,显然N? M ,不合题意.(2)若a2-3a-1=3,即a=4 或a=-1(舍去),当a=4 时,M={1 ,2,4,3} ,满足要求.5.解析:由2m+1-2m=2·2m-2m=2m. 答案:2m6.解析:∵y=(x -1)2-2≥-2,∴M ={y|y ≥-2} ,∴N M. 答案:N M7.解:由x2+x-6=0,得x=2 或x=-3. 因此,M ={2 ,-3} .若a=2,则N={2} ,此时N? M;若a=-3,则N={2 ,-3} ,此时N=M;若a≠2且a≠-3,则N={2 ,a} ,此时N 不是M 的子集,故所求实数 a 的值为 2 或-3.8.解:(1)借助数轴可得, a 应满足的条件为a-2 >-2,或a+2 ≤3,a-2 ≥-2,a+2 < 3,解得0≤a ≤1.(2)同理可得 a 应满足的条件为a-2 ≤-2,a+2 ≥3,得a 无解,所以不存在实数 a 使B? A.并集与交集1.选 A A ∩B= A ? A ? B ,B ∪ C = C? B ? C ,∴ A ? C.2.选 D ∵ A = {0 , 2, a} , B = {1 ,a 2} , A ∪ B ={0 ,1, 2, 4, 16} ,则a =4,∴ a = 4. a 2= 16. 3.选 A M = {x| - 1≤ x ≤ ,3} N = {x|x = 2k -1, k ∈N*} ,∴ M ∩N ={1 , 3} .4.选 D 因为 N = {x|2x + k ≤ 0=} {x|x ≤- k } ,且 M ∩ N ≠? ,所以- k≥- 3? k ≤6. 2 25.解析:借助数轴可知: M ∪N = {x|x> - 5} ,M ∩N = { x |- 3<x<- 2} .答案: { x|x>-5}{ x|- 3<x<-2}6.解析:由 y = x2, 得 y = x , x = 0, 或 y = 0x = 1, y =1.答案: 27.解:因为 A ∩B= { - 1} ,所以- 1∈A 且- 1∈ B ,将 x =- 1 分别代入两个方程,得1-p + q = 01+p - 2q =0,解得 p = 3. 所以 A ={ x|x 2+3x + 2=0} ={ - 1,- 2} , q = 2B = { x|x 2- 3x - 4=0} ={ - 1, 4} ,所以 A ∪ B = { -1,- 2, 4} .m8. 解:由题知, B = {x|x< - 4,m ∈ R} ,因为 A ∩B= B ,所以 A ? B ,所以由数轴 (如图 )可得- m42,所以 m ≥8,即 m 的取值范围是 m ≥ 8.集合的补集运算≤-21.选 C M ∪ N = {1 ,3, 5, 6, 7} .∴ ?U (M ∪ N) = {2 ,4, 8} .2.选 C 由?U A = {3} ,知 3? A , 3∈ U. ∴ |a - 5|= 5,∴ a =0 或 a = 10.3.选 D 由题意可得, ?U B = {x| - 1≤x ≤ 4},A ={ x|- 2≤x ≤ 3,}所以 A ∩(? U B)= { x|- 1≤x ≤3} .端点处的取舍易出错.4.选 C 阴影部分表示集合 B 与集合 A 的补集的交集.因此,阴影部分所表示的集合为B ∩(? U A).5.解析:由已知可得 ?S A = { x|x>1} ,∴ (?S A) ∩B = { x|x>1} ∩{x|0 ≤x ≤ 5=} { x|1<x ≤ 5.}答案: { x|1<x ≤5}6.解析:由题意知 A*B = {1 , 3} .则 A*B 的子集有 22= 4 个.答案: 47.解:借助数轴,如图.(1) A ∩B = { x|- 1< x ≤2} ,5(2) ∵ ?U B = { x|x ≤- 1 或 x>3} , ∴ (?U B)∪P = { x|x ≤0 或 x ≥ } .5 (3) ?U P = { x|0<x<2} . (A ∩B) ∩?(U P)= { x|- 1<x ≤ 2} ∩x {|0< x < 5} = { x|0<x ≤2} .8.解: ?R B = {x|x ≤或1 x ≥ 2} ?≠,∵ A ?R B ,∴分 A =? 和 A ≠? 两种情况讨论.(1)若 A = ?,此时有 2a - 2≥a , ∴ a ≥2.2(2)若A≠?,则有2a-2<a或a≤12a-2<a2a-2≥2. ∴a≤1.综上所述,a≤1 或a≥2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2子集、全集、补集 一、课本扫描 二、基本概念 1、子集的概念对于两个集合A 与B(1)如果集合A 中的任何一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或说集合B 包含集合A ,记作A B ⊆或B A ⊇,这时,集合A 叫做集合B 的子集。

(2)如果A B A B ⊆≠且,我们就说集合A 是集合B 的真子集,记作A ⊄B 。

(3)如果A B ⊆同时B A ⊆,那么A B =。

子集的概念是由讨论集合与集合间的关系引出的,两个集合A 与B 之间的关系如下:A B A B B A A B A B A BA B ⎧=⇔⊆⊆⎧⊆⎨⎪≠⇔⊄⎨⎩⎪⎩且 其中记号AB (或B A )表示集合A 不包含于集合B (或者集合B 不包含集合A )。

2、子集具有以下性质: ①A A ⊆,即任何一个集合都是它本身的子集。

②如果,A B B A ⊆⊆,那么A B =。

③如果,A B B C ⊆⊆,那么A C ⊆。

④如果,AB BC ,那么AC 。

⑤空集是任何集合的子集,是任何非空集合的真子集。

3、关于有限集合子集个数的讨论。

①n 个元素的集合有2n个子集。

②n 个元素的集合有21n -个真子集。

③n 个元素的集合有21n-个非空子集。

④n 个元素的集合有22n-个非空真子集。

4、全集与补集设S 是一个集合,A 是S 的一个子集,由S 中所有不属于集合A 的元素组成的集合,叫做S 中的子集A 的补集,记作s C A 用数学式子表示为:{}S C A x x S x A =∈∉且。

如果集合S 含有我们所要研究的各个集合的全部元素,我们称集合S 为全集,记作U 。

5、全集与补集的性质 (1)()U U C C A A =,(2),U A U C A U ⊆⊆,(3),U U C U C U=∅∅=6、关于全集与补集的理解(1)全集具有相对性,是相对于我们所研究的问题而言的一个概念。

如:小学数学研究的问题常在有理数集内,则有理数集是全集。

初中代数研究的问题常在实数集内,则实数集就是全集。

补集是以全集为前提加以定义的,因此它们是相互依存不可分离的两个概念。

如:{}{}{}1,2,3,4,1,2U A B ===,则{}{}2,3,4,1,3,4U U C A C B ==。

(2)用数学的三种语言互泽表示全集与补集:三、基本题型例1、判断下列关系是否正确 (1){}{}a a ⊆;(2){}{}1,2,33,2,1=;(3){}0∅⊄;(4){}00∈;(5){}0∅∈;(6){}0∅=;(7){}0,1,2∅⊄;(8){}{}15x x ⊄≤ 解:(1)任何一个集合是它本身的子集,因此,{}{}a a ⊆正确;(2)两个集合中的元素相同,故用“=”号正确; (3)空集是任何非空集合的真子集,正确; (4){}0中只有一个元素0,{}00∈正确;(5)∅与{}0是两个集合,不能用∈连接;(6)∅中没有任何元素,而{}0中有一个元素,二者不相等;(7)空集是任何非空集合的真子集,正确; (8){}{}{}15,15,15x x x x <∴∈≤∴⊄≤正确。

由以上分析可知:(1)(2)(3)(4)(7)(8)正确,(5)(6)错误。

例2、已知集合M 满足{}{}1,21,2,3,4,5M ⊆⊆,则这样的集合M 有多少个?分析:由已知集合M 中至少含有1,2两个元素,至多含有1,2,3,4,5五个元素,故满足条件的集合M 的个数是{}3,4,5的子集个数。

解:因集合{}3,4,5的子集有∅,{}{}{}{}{}{}{}3,4,5,3,4,3,5,4,5,3,4,5共8个,故满足条件的集合M 共有8个。

评注:本题易丢掉∅或{}3,4,5两个集合,若集合P 中有m 个元素,集合Q 中有n 个元素,且Q P ⊆,则满足P Z Q ⊆⊆的集合Z 共有n m Z -个。

例3、设{}{}2230,10A x xx B x ax =--==-=,若B A ⊆,求实数a 。

分析:B A ⊆,即B 是A 的子集,表明集合B 的元素都是A 的元素。

解:{}{}22303,1A x xx =--==-,∵B A ⊆,∴方程10ax -=无解或其解为3或1-。

0a ∴=或11a =-或31=a ,0a ∴=或13a =或1a =-。

评注:因为A 是二元素集,而B 的元素最多一个,所以由B A ⊆可知,B 是A 的真子集,所以B 有三种可能,在做题过程中很容易丢掉B =∅的情况。

例4、已知{}{}22,,,2,2,Ma b N a b ==,且M N =,求,a b 的值。

分析:由M N =可知,两个集合中的元素应该完全相同,由此,可用集合中元素的性质解题。

解:根据集合中元素的无序性,有:222,,;2.a a a b b b b a =⎧⎧=⎨⎨==⎩⎩或 解方程组得1,0,0,40;1;1.2a a ab b b ⎧=⎪==⎧⎧⎪⎨⎨⎨==⎩⎩⎪=⎪⎩或或 再根据集合中元素的互异性,得01a b =⎧⎨=⎩或1412a b ⎧=⎪⎪⎨⎪=⎪⎩。

评注:集合中元素的互异性在解决此类问题时至关重要,要引起足够的重视。

例5、设集合)(Φ≠U U 以及集合,,M N P ,且()U U U M C N C C P ==,则M与P 的关系是 。

分析:本题主要考查全集与补集的概念,可选用适当的方法解题。

解法1:利用补集的性质,()U U U M C N C C P P ===,故M P =。

解法2:由图2-1可知。

图2-1评注:对于较抽象的集合之间的关系,一般用韦恩图比较简单,可达到变抽象为直观的目的。

例6、已知全集{}22,0,3Ua =-,子集{}22,2P a a =--,且{}1U C P =-,求a 。

分析:要注意到(),U C P U PU ⊄⊄。

解:由补集定义知:2231,20a a a ⎧-=-⎪⎨--=⎪⎩解得:2a =。

四、A 级训练 1、列举集合{}1,2,3的所有子集:2、集合{}0与空集∅的关系为:3、若{}1,0,1,,1a c b ⎧⎫=-⎨⎬⎩⎭,则a = ,b = ,c = 。

4、下列集合中,只有一个子集的集合是( )A 、{}20A x x =≤B 、{}30B x x =≤C 、{}20C x x=< D 、{}30D x x =<5、已知全集{}1,2,0U=,且{}2U C Q =,则集合Q 的真子集共有 个。

6、已知全集;,U M N 是U 的非空子集,若U C M N ⊇,则有( )A 、U MC N ⊆ B 、U M C N ⊄ C 、U U C M C N =D 、M N =五、发散思维 例1、已知{}1228,A x x m n m n Z ==+∈、,{}4,B x x k k Z ==∈,求证A B =。

证明:(1)任取x A ∈,则12284(37)x m n m n =+=+,由m n Z∈、知37m n Z +∈,x B ∴∈,即A B ⊆。

(2)任取x B ∈,则412(2)28x k k k ==-+,由k Z ∈知2,k Z x A -∈∴∈,即B A ⊆。

由(1)(2)可知A B =。

例2、已知集合{}{}22340,(1)(34)0,A x x x B x x x x A P B =-+==++-=⊄⊆,求满足条件的集合P 。

解:对于方程22340,91670,340xx x x -+=∆=-=-<∴-+=无实根,A ∴=∅。

2(1)(34)0,1,1,4x x x x ++-=∴=--,即{}4,1,1B =--。

A PB ⊄⊆,∴集合P 为{}{}{}{}{}{}{}4,1,1,4,1,4,1,1,1,4,1,1--------。

例3、已知集合{}{}1,2,40A x x x B x x p =<->=+<或,当A B ⊇时,求p 的范围。

解:40,,44p p x p x B x x ⎧⎫+<∴<-∴=<-⎨⎬⎩⎭,A B⊇,∴由图2-2得1,44pp -≤-∴≥。

图2-2评注:在本书内容中,常使用数轴,韦恩图这两类图形,在与不等式有关问题中,必须画出数轴,有利于快速解题。

例4、已知全集{}{}321,3,32,1,21Sx x x A x =++=-,如果{}0S C A =,则这样的实数x 是否存在?若存在,求出x ;若不存在,说明理由。

解:{}0,0S C A S=∴∈且0A ∉。

32320x x x ∴++=,则2(32)0x x x ++=,即(1)(2)0,0x x x x ++=∴=,或1x =-,或2x =-。

当0x=时,211x -=,则A 中有重复元素,故0x ≠;当1x =-时,{}213,1,3x A S -==⊄;当2x =-时,{}215,1,5x A S -==⊄,故2x ≠-。

由以上可知,所求的实数x 存在,此时,1x =-。

六、B 级训练 1、{}{}{}22221,21,210A x y x xB y y x xC x x x ==-+==-+=-+=,{}{}{}222210,(,)21,(,)210,D x x x E x y y x x F x y xx y R=-+<==-+=-+=∈,则下列结论正确的是( ) A 、A B C D ⊆⊆⊆ B 、D C B A ⊄⊄⊄C 、E F =D 、A BE ==2、设U 是全集,N U ⊄且M N ⊆,则下列各式成立的是( )A 、U U C M C N ⊇B 、UC M N ⊆ C 、U U C M C N ⊆D 、U C N M ⊆3、设{}{},,4,3U UR A x a x b C A x x x ==≤≤=><或,则a = ,b = 。

4、若集合{}{}210,1,2A x x ax B =++==,且A B ⊄,则实数a 的取值范围是 。

七、综合应用与提高 例1、(1)设{}{}28150,10A x xx B x ax =-+==-=,若B A ⊆,求实数a 组成的集合。

(2)设{}{}25121A x x B x m x m =-≤≤=+≤≤-,若B A ⊆,求实数m 的取值范围。

分析:以上两题,虽然一个是等式,一个是不等式,但殊途同归,解题方法一样,由于B 可能为空集,且B =∅时,仍然有B A ⊆成立,因此,都要分B =∅,B ≠∅两种情况讨论。

解:(1)28150,3x x x -+=∴=,或5x =,{}3,5,A B A ∴=⊆,∴①B =∅时,0a =。

②B ≠∅时,由B A ⊆知,3B ∈或5B ∈。

相关文档
最新文档