高中数学必修一集合知识点总结大全(优选.)

合集下载

高中数学必修一集合知识点总结大全

高中数学必修一集合知识点总结大全

高中数学 必修1知识点集合123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。

、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。

、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。

真子集:若且(即至少存在但),则是的真子集。

集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂=⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃=⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩第一章 集合与函数概念【1.1、1】集合得含义与表示(1)集合得概念把某些特定得对象集在一起就叫做集合。

通用版高中数学必修一集合知识点总结归纳完整版

通用版高中数学必修一集合知识点总结归纳完整版

(每日一练)通用版高中数学必修一集合知识点总结归纳完整版单选题1、设集合U={1,2,3,4,5,6},A={1,3,6},B={2,3,4},则A∩(∁U B)=()A.{3}B.{1,6}C.{5,6}D.{1,3}答案:B解析:根据交集、补集的定义可求A∩(∁U B).由题设可得∁U B={1,5,6},故A∩(∁U B)={1,6},故选:B.2、已知集合M={1,3},N={1−a,3},若M∪N={1,2,3},则a的值是()A.-2B.-1C.0D.1答案:B解析:根据集合N和并集,分别讨论a的值,再验证即可.因为M∪N={1,2,3},若1−a=1⇒a=0,经验证不满足题意;若1−a=2⇒a=−1,经验证满足题意.所以a=−1.故选:B.3、已知集合M={−3,−2,−1,0,1,2,3},非空集合P满足:(1)P⊆M;(2)若x∈P,则−x∈P,则集合P的个数是()A.7B.8C.15D.16答案:C解析:根据题意把M中元素按相反数分成4组,这4组元素中一定是一组元素全属于P或全不属于P,由此结合集合的子集的性质可得P的个数.满足条件的集合P应同时含有−3,3或−2,2或−1,1或0,又因为集合P非空,所以集合P的个数为24−1=15个,故选:C.解答题4、已知集合A={x∣x<2},B={x∣x2−4x+3<0}.(1)求集合B;(2)求(∁R A)∩B.答案:(1){x∣1<x<3};(2){x∣2≤x<3}.解析:(1)解一元二次不等式可化简集合B;(2)根据补集和交集的概念运算可得结果.(1)因为B={x∣(x−1)(x−3)<0},所以B={x∣1<x<3}.(2)因为∁R A={x∣x≥2},所以(∁R A)∩B={x∣2≤x<3}.5、已知集合A={x|(x−a)(x+a+1)≤0},B={x|x≤3或x≥6}.(1)当a=4时,求A∪B;(2)当a>0时,若“x∈A”是“x∈B”的充分条件,求a的取值范围.答案:(1)A∪B={x|x≤4或x≥6};(2)(0,3].解析:(1)当a=4时,解出集合A,计算A∪B;(2)由集合法判断充要条件,转化为A⊆B,进行计算.解:(1)当a=4时,由不等式(x−4)(x+5)≤0,得−5≤x≤4,故A={x|−5≤x≤4},又B={x|x≤3或x≥6},所以A∪B={x|x≤4或x≥6}.(2)若“x∈A”是“x∈B”的充分条件,等价于A⊆B,因为a>0,由不等式(x−a)(x+a+1)≤0,得A={x|−a−1≤x≤a},又B={x|x≤3或x≥6},要使A⊆B,则a≤3或−a−1≥6,综合可得a的取值范围为(0,3].小提示:结论点睛:有关充要条件类问题的判断,一般可根据如下规则判断:(1)若p是q的必要不充分条件,则q对应集合是p对应集合的真子集;(2)若p是q的充分不必要条件,则p对应集合是q对应集合的真子集;(3)若p是q的充分必要条件,则p对应集合与q对应集合相等;(4)若p是q的既不充分又不必要条件,q对应集合与p对应集合互不包含.。

高中数学必修一集合知识点总结复习整理

高中数学必修一集合知识点总结复习整理

高中数学必修1知识点集合123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。

、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。

、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。

真子集:若且(即至少存在但),则是的真子集。

集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂=⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃=⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩第一章集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念把某些特定的对象集在一起就叫做集合.(2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一.(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{x |x 具有的性质},其中x 为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等名称记号意义性质示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于B (1)A ⊆A(2)A ∅⊆(3)若B A ⊆且B C ⊆,则A C⊆(4)若B A ⊆且B A ⊆,则A B =A(B)或B A 真子集A ≠⊂B(或B ≠⊃A)B A ⊆,且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集)(2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂B A 集合相等A B =A 中的任一元素都属于B,B 中的任一元素都属于A(1)A ⊆B (2)B ⊆AA(B)(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集名称记号意义性质示意图交集A B {|,x x A ∈且}x B ∈(1)A A A= (2)A ∅=∅ (3)A B A⊆ A B B⊆ 并集A B {|,x x A ∈或}x B ∈(1)A A A= (2)A A ∅= (3)A B A⊇ A B B⊇ 补集{|,}x x U x A ∈∉且⑴(⑵⑶⑷⑸A⑼集合的运算律:交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A ==分配律:)()()();()()(C A B A C B A C A B A C B A ==0-1律:,,,A A A U A A U A UΦ=ΦΦ=== 等幂律:.,A A A A A A == 求补律:A∩A∪=U反演律:(A∩B)=(A)∪(B)(A∪B)=(A)∩(B)一、选择题:本大题共12小题,每小题5分,共60分。

高中数学全部知识点整理_超经典[1]

高中数学全部知识点整理_超经典[1]

高中高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R2.关于“属于”的概念如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 a∉A3.集合的分类:(1).有限集含有有限个元素的集合(2).无限集含有无限个元素的集合(3).空集不含任何元素的集合例:{x|x2=-5}=Φ二、集合间的基本关系1.“包含”关系—子集注意:BA⊆有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A2.“相等”关系:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B①任何一个集合是它本身的子集。

即A⊆A②如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)③如果 A⊆B, B⊆C ,那么 A⊆C ④如果A⊆B 同时 B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

三、集合的运算1.交集: 记作A∩B(读作"A交B"),即A∩B={x|x∈A,且x∈B}.2.并集: 记作A∪B(读作"A并B"),即A∪B={x|x∈A,或x∈B}.3.交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A ,A∪φ= A ,A∪B = B∪A.4.全集与补集(1)补集:设S是一个集合,A是S的一个子集(即SA⊆),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作: C S A即 C S A ={x | x∈S且 x∉A}(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。

高中高一数学必修1集合学习知识点总结复习学习资料

高中高一数学必修1集合学习知识点总结复习学习资料

高一数学必修 1 集合知识点复习资料高一数学必修一集合知识点复习资料一. 知识归纳:1.集合的有关概念。

1)集合( 集) :某些指定的对象集在一起就成为一个集合 ( 集). 其中每一个对象叫元素注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

②集合中的元素具有确定性(a?A 和 a?A,二者必居其一 ) 、互异性(假设 a?A,b?A,那么 a≠b) 和无序性 ({a,b} 与{b,a} 表示同一个集合 ) 。

③集合具有两方面的意义,即:但凡符合条件的对象都是它的元素;只要是它的元素就必须符号条件2)集合的表示方法:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。

4)常用数集: N,Z,Q,R,N*2.子集、交集、并集、补集、空集、全集等概念。

1)子集:假设对 x∈A都有 x∈B,那么 AB(或 AB);2)真子集: AB且存在 x0∈B但 x0A; 记为 AB(或,且 )3)交集: A∩B={x|x ∈A且 x∈B}4)并集: A∪B={x|x ∈A或 x∈B}5)补集: CUA={x|xA但 x∈U}注意:①?A,假设 A≠?,那么 ?A;②假设,, ;③假设且, A=B(等集 )3.弄清集合与元素、集合与集合的关系,掌握有关的和符号,特要注意以下的符号: (1) 与、 ?的区 ;(2) 与的区 ;(3) 与的区。

4.有关子集的几个等价关系①A∩B=AAB;②A∪B=BAB;③ABCuACuB;④A∩CuB=空集 CuAB;⑤CuA∪B=IAB。

5.交、并集运算的性①A∩A=A,A∩?=?,A∩B=B∩A; ②A∪A=A,A∪?=A,A∪B=B∪A;③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;6.有限子集的个数:集合 A 的元素个数是 n, A有 2n 个子集,2n-1 个非空子集, 2n-2 个非空真子集。

高中数学必修一章知识点总结第一章 集合与函数概念

高中数学必修一章知识点总结第一章 集合与函数概念

高中数学必修一章知识点总结第一章 集合与函数概念一、集合相关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:⑴、元素的确定性; ⑵、元素的互异性; ⑶、元素的无序性说明:①、对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

②、任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

③、集合中的元素是平等的,没有先后顺序,所以判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

④、集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{ … }⑴、用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}常用数集及其记法:非负整数集(即自然数集):N ;正整数集:*N 或+N ; 整数集:Z ;有理数集:Q ;实数集:R;⑵、集合的表示方法:列举法 描述法 韦恩图示法 区间法Ⅰ、列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

例{太平洋,大西洋,印度洋,北冰洋} Ⅱ、描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

用确定的条件表示某些对象是否属于这个集合的方法。

①、语言描述法:例:{不是直角三角形的三角形}、{我校的篮球队员}②、数学式子描述法:例:不等式x-3>2的解集是}23|{>-∈x R x 或}23|{>-x xⅢ、韦恩图示法:用平面上封闭曲线的内部代表集合的方法。

Ⅳ、区间法:用来表示诸如定义域、值域、方程或不等式的解集的方法。

4、元素与集合的关系:集合的元素通常用小写的拉丁字母表示,如:a 是集合A 的元素,就说a 属于集合A 记作A a ∈ ,相反,a 不属于集合A 记作 A a ∉。

5、集合的分类:⑴、按元素的属性分类①、数集 元素是数的集合②、点集 元素是点的集合③、序数对 元素是有序实数对的集合⑵、按集合中元素的个数分类①、有限集 含有有限个元素的集合②、无限集 含有无限个元素的集合③、空集 不含任何元素的集合 例:}5|{2-=x x 二、集合间的基本关系1、“包含”关系—子集结论:对于两个集合A 、B ,如果集合A 中的任何一个元素都是集合B 的元素,我们就说集合A 是集合B 的子集,即B A ⊆。

高中数学必修一集合知识点总结

高中数学必修一集合知识点总结

必修一第一章 集合与函数概念一、集合知识点1:集合的含义1》元素的含义:我们把研究对象称为元素,把一些元素组成的总体叫做集合 2》集合的表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C …表示, 而元素用小写的拉丁字母a,b,c …表示。

列举法:A={a,b,c}3》集合相等:构成两个集合的元素完全一样。

知识点2:集合元素的特征以及集合与元素之间的关系 1》集合的元素特征:①确定性:给定一个集合,一个元素在不在这个集合中就确定了。

②互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。

.如:方程(x-2)(x-1)2=0的解集表示为{1,-2},而不是{1,1,-2}③无序性:即集合中的元素无顺序,可以任意排列、调换。

2》元素与集合的关系有“属于∈”及“不属于∉两种) ①若a 是集合A 中的元素,则称a 属于集合A a ∈A ; ②若a 不是集合A 的元素,则称a 不属于集合A ,记作a ∉A 。

注意:常见数集 ①非负整数集(或自然数集),记作N ; ②正整数集,记作N *或N +; ③整数集,记作Z ; ④有理数集,记作Q ; ⑤实数集,记作R ;典例分析题型1:判断是否形成集合例1:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数; (2)我国的小河流; (3)非负奇数; (4)方程x 2+1=0的解; (5)某校2011级新生; (6)血压很高的人; 题型2:集合中元素的互异性的考察 例1:由实数-a, a,a,a2, -5a5为元素组成的集合中,最多有_______个元素,分别为__________。

题型3:集合与元素之间关系的考察 例1:用“∈”或“∉”符号填空:(1)8 N ; (2)0 N ; (3)-3 Z ; (4;(5)设A 为所有亚洲国家组成的集合,则中国 A ,美国 A ,印度 A ,英国 A 。

题型4:根据元素互异性确定参数的值: 例1:已知A={ 33,)1(,222+++-a a a a },若1∈A ,则实数a 的值为_________.知识点3:集合的表示方法【1】列举法:把集合中的元素一一列举出来, 并用花括号“{}”括起来表示集合的方法叫列举法。

高一数学必修1复习各章知识点总结(人教)集合

高一数学必修1复习各章知识点总结(人教)集合

高一数学必修1各章知识点总结第一章 集合概念一、集合有关概念 1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性,如:世界上最高的山(2)元素的互异性,如:由HAPPY 的字母组成的集合{H,A,P,Y} (3)元素的无序性, 如:{a ,b ,c }和{a ,c ,b }是表示同一个集合 3.集合的表示:{ … } 如:{太平洋,大西洋,印度洋,北冰洋} (1)用大写字母表示集合:A ={1,2,3,4,5} (2)集合的表示方法:列举法与描述法 (3)元素与集合的关系:,a A b A ∈∉ ◆注意:常用数集及其记法: 非负整数集(即自然数集):N ;正整数集:N*或 N + ; 整数集:Z ;有理数集:Q ;实数集:R (1)列举法:{a ,b ,c ……},元素有限个(2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

如:{x ∈R| x -3>2},{x | x -3>2}(3)语言描述法,如:不是直角三角形的三角形组成的集合 (4)Venn 图:4.集合的分类:(1)有限集:含有有限个元素的集合 (2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合,记为Φ。

如:{x |x 2= -5} 二、集合间的基本关系 1.“包含”关系—子集注意:B A ⊆有两种可能(1)A 是B 的一部分;(2)A 与B 是同一集合。

反之: 集合A 不包含于集合B ,或集合B 不包含集合A ,记作A ⊆/B 或B ⊇/A 2.“相等”关系:A=B实例:设A={x |x 2-1=0},B={-1,1},“元素相同则两集合相等” 即:① 任何一个集合是它本身的子集,A ⊆A②真子集:如果A ⊆B ,且A ≠ B 那就说集合A 是集合B 的真子集,记作A B(或B A)或者说,如果A ⊆B ,且存在元素x B ∈,且x A ∉ ③如果A ⊆B ,B ⊆C ,那么A ⊆C ④如果A ⊆B 同时 B ⊆A 那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集, 空集是任何非空集合的真子集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改高中数学 必修1知识点集合123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。

、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。

、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。

真子集:若且(即至少存在但),则是的真子集。

集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A B x x A x B A A A A A A B B A A B A A B B A B A B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩第一章 集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念把某些特定的对象集在一起就叫做集合.(2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等集合 相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B(2)B ⊆AA(B)(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集名称 记号意义性质示意图交集A B{|,x x A ∈且}x B ∈(1)AA A =(2)A ∅=∅(3)A B A ⊆A B B ⊆BA并集A B{|,x x A ∈或}x B ∈(1)A A A = (2)AA ∅= (3)AB A ⊇AB B ⊇BA补集{|,}x x U x A ∈∉且⑴ (⑵⑶ ⑷⑸⑼ 集合的运算律:交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A == 分配律:)()()();()()(C A B A C B A C A B A C B A ==0-1律:,,,A A A U A A U A U Φ=ΦΦ===等幂律:.,A A A A A A == 求补律:A ∩ A ∪=U反演律:(A ∩B)=(A)∪(B) (A ∪B)=(A)∩(B)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1 下列各项中,不可以组成集合的是( )A 所有的正数B 等于2的数C 接近于0的数D 不等于0的偶数2 下列四个集合中,是空集的是( )A }33|{=+x xB },,|),{(22R y x x y y x ∈-=C }0|{2≤x x D },01|{2R x x x x ∈=+-3 下列表示图形中的阴影部分的是( )A ()()AC B C B ()()AB A CC ()()AB BCD ()AB C4 下面有四个命题:(1)集合N 中最小的数是1; (2)若a -不属于N ,则a 属于N ; (3)若,,N b N a ∈∈则b a +的最小值为2;(4)x x 212=+的解可表示为{}1,1; 其中正确命题的个数为( )A 0个B 1个C 2个D 3个5 若集合{},,M a b c =中的元素是△ABC 的三边长,则△ABC 一定不是( ) A 锐角三角形 B 直角三角形C 钝角三角形D 等腰三角形6 若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( )A 3个B 5个C 7个D 8个7 下列命题正确的有( ) (1)很小的实数可以构成集合;(2)集合{}1|2-=x y y 与集合(){}1|,2-=x y y x 是同一个集合;(3)3611,,,,0.5242-这些数组成的集合有5个元素; (4)集合(){}R y x xy y x ∈≤,,0|,是指第二和第四象限内的点集A 0个B 1个C 2个D 3个8 若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( )A 1B 1-C 1或1-D 1或1-或09 若集合{}{}22(,)0,(,)0,,M x y x y N x y x y x R y R =+==+=∈∈,则有( )A MN M = B MN N = C MN M = D MN =∅10 方程组⎩⎨⎧=-=+9122y x y x 的解集是( )A ()5,4B ()4,5-C (){}4,5-D (){}4,5-11 下列式子中,正确的是( )A R R ∈+B {}Z x x x Z∈≤⊇-,0|C 空集是任何集合的真子集D {}φφ∈12 下列表述中错误的是( )A 若AB A B A =⊆ 则, B 若B A B B A ⊆=,则C )(B A A)(B A D ()()()B C A C B A C U U U =第II 卷(共90分)13 用适当的集合符号填空(每小空1分)(1){}()(){}1|,____2,1,2|______3+=≤x y y x x x (2){}32|_______52+≤+x x , (3){}31|,_______|0x x x R x x x x ⎧⎫=∈-=⎨⎬⎩⎭14 设{}{}34|,|,<>=≤≤==x x x A C b x a x A R U U 或则___________,__________==b a15. 某班有学生55人,其中体育爱好者43人,音乐爱好者34人,还有4人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为 人16. 若{}{}21,4,,1,A x B x ==且A B B =,则x三、解答题:本大题共6分,共74分。

17.(本大题12分)设{}{}(){}2,|,,,y x ax b A x y x a M a b M =++====求18. 本大题满分12分设集合{}1,2,3,...,10,A =求集合A 的所有非空子集元素和的和19.(本大题满分12分)集合{}22|190A x x ax a =-+-=,{}2|560B x x x =-+=,{}2|280C x x x =+-= 满足,AB φ≠,,AC φ=求实数a 的值20. 本大题满分12分全集{}321,3,32S x x x =++,{}1,21A x =-,如果{},0=A C S 则这样的实数x 是否存在?若存在,求出x ;若不存在,请说明理由21.(本大题满分12分)设222{40},{2(1)10}A x x x B x x a x a =+==+++-=,其中x R ∈, 如果A B B =,求实数a 的取值范围22.(本大题满分14分)已知集合{}|2A x x a =-≤≤,{}|23,B y y x x A ==+∈,{}2|,C z z x x A ==∈,,求a的取值范围且C B高一数学试题参考答案选择题 每小题5分 共60分 错选、空题均不得分1-5C D A A D 6-10C A D A D 11D 12C1 C 元素的确定性;2 D 选项A 所代表的集合是{}0并非空集,选项B 所代表的集合是{}(0,0)并非空集,选项C 所代表的集合是{}0并非空集, 选项D 中的方程210x x -+=无实数根;3 A 阴影部分完全覆盖了C 部分,这样就要求交集运算的两边都含有C 部分;4 A (1)最小的数应该是0,(2)反例:0.5N -∉,但0.5N ∉(3)当0,1,1a b a b ==+=,(4)元素的互异性5 D 元素的互异性a b c ≠≠;6 C {}0,1,3A =,真子集有3217-=7 A (1)错的原因是元素不确定,(2)前者是数集,而后者是点集,种类不同, (3)361,0.5242=-=,有重复的元素,应该是3个元素,(4)本集合还包括坐标轴 8 D 当0m =时,,B φ=满足AB A =,即0m =;当0m ≠时,1,B m ⎧⎫=⎨⎬⎩⎭而A B A =,∴11111m m=-=-或,或;∴1,10m =-或; 9 A {}N =(0,0),N M ⊆;10 D 1594x y x x y y +==⎧⎧⎨⎨-==-⎩⎩得,该方程组有一组解(5,4)-,解集为{}(5,4)-; 11 D 选项A 应改为R R +⊆,选项B 应改为""⊆,选项C 可加上“非空”,或去掉“真”,选项D 中的{}φ里面的确有个元素“φ”,而并非空集; 12 C 当A B =时,A B A A B ==第II 卷填空题 (与答案不符的回答 皆判为错包括缺少单位判零分)13 每小空1分 (1),,(2),(3)∈∈∈⊆(12≤,1,2x y ==满足1y x =+,(2 1.4 2.2 3.6=+=,2 3.7=,或27+=+2(27+=+(3)左边{}1,1=-,右边{}1,0,1=- 14 4,3==b a {}{}()|34|U U A C C A x x x a x b ==≤≤=≤≤ 15 26 全班分4类人:设既爱好体育又爱好音乐的人数为x 人;仅爱好体育的人数为43x -人;仅爱好音乐的人数为34x -人;既不爱好体育又不爱好音乐的人数为4 ∴4334455x x x -+-++=,∴26x = 16 2,2,0-或 由A B B B A =⊆得,则224x x x ==或,且x ≠二.问答题 要求:只写出结果,且结果正确,得................6.分;只写出结果且结果不对,.............0.分;有解答过......程,但是结果不对,.........7.分;写出关键解答过程且结果正确得................12..或.14..分。

相关文档
最新文档