5.5基本不等式1(1) 课件(人教A版选修4-5)

合集下载

高中数学·选修4-5(人教版)第一讲几何平均不等式及绝对值三角不等式PPT课件

高中数学·选修4-5(人教版)第一讲几何平均不等式及绝对值三角不等式PPT课件

9
3 .
归纳升华
1.利用三个正数的算术—几何平均不等式常处理下
面两个类型的最值: (1)求函数 y=ax2+bx的最小值,其中 ax2>0,bx>0.

y

ax2

b x

ax2

b 2x

b 2x

3
3
ax2·2bx·2bx

3 2
3 2ab2.当且仅当 ax2=2bx,即 x= 3 2ba时,等号成立.
(1)如果 a,b,c∈R,那么a+3b+c≥3 abc.(
)
(2)如果 a,b,c∈R+,那么a+3b+c≥3 abc,当且仅
当 a=b 或 b=c 时,等号成立.( )
(3)如果 a,b,c∈R+,那么 abc≤a+3b+c3,当且 仅当 a=b=c 时,等号成立.( )
(4)如果 a1,a2,a3,…,an 都是实数.那么 a1+a2
n
+…+an≥n· a1a2…an.( )
解析:(1)根据定理 3,只有在 a,b,c 都是正数才成
立.其他情况不一定成立,如 a=1,b=-1,c=-3,
a+b+c
3
3
3 =-1, abc= 3,故(1)不正确.
(2)由定理 3,知等号成立的条件是 a=b=c.故(2)不正
确.
(3)由定理 3 知(3)正确. (4)必须 a1,a2,…,an 都是正数,命题才成立. 答案:(1)× (2)× (3)√ (4)×
第一讲 不等式和绝对值不等式
1.1 不等式 1.1.3 三个正数的算术—
几何平均不等式
[知识提炼·梳理] 1.三个正数的算术—几何平均不等式 (1)如果 a1,a2,a3∈R+,则a1+a32+a3叫做这 3 个正 数的算术平均数,3 a1a2a3叫做这三个正数的几何平均数.

1.1.1 不等式的基本性质 课件(人教A选修4-5)

1.1.1 不等式的基本性质 课件(人教A选修4-5)

返回
求代数式的取值范围是不等式性质应用的一个 重要方面,严格依据不等式的性质和运算法则进行 运算,是解答此类问题的基础,在使用不等式的性
质中,如果是由两个变量的范围求其差的范围,一
定不能直接作差,而要转化为同向不等式后作和.
返回
α+β α-β π π π π 5.“已知- ≤α≤ ,- ≤β≤ ”,求 , 的取值 2 2 2 2 2 2 范围.
返回
(5)如果a>b>0,那么an > bn(n∈N,n≥2).
> n b(n∈N,n≥2). (6)如果a>b>0,那么 a 3.对上述不等式的理解
n
使用不等式的性质时,一定要清楚它们成立的前提条
件,不可强化或弱化它们成立的条件,盲目套用,例如: (1)等式两边同乘以一个数仍为等式,但不等式两边同 乘以同一个数c(或代数式)结果有三种:①c>0时得 同向不 等式;②c=0时得 等式 ;③c<0时得 异向 不等式.
返回
返回
1.不等式的基本性质
返回
1.实数大小的比较
(1)数轴上的点与实数一一对应,可以利用数轴上点的 左右位置关系来规定实数的 大小 .在数轴上,右边的数总 比左边的数 大 . (2)如果a-b>0,则 a>b ;如果a-b=0,则 a=b ;
如果a-b<0,则 a<b .
(3)比较两个实数a与b的大小,归结为判断它们的 差a -b的符号 ;比较两个代数式的大小,实际上是比较它们 的值的大小,而这又归结为判断它们的 差的符号 .
π π 解:∵- ≤α≤ , 2 2 π π - ≤β≤ , 2 2 π α+β π ∴-π≤α+β≤π.∴- ≤ ≤ . 2 2 2 π π π π 又∵- ≤α≤ ,- ≤-β≤ , 2 2 2 2 π α-β π ∴-π≤α-β≤π.∴- ≤ ≤ . 2 2 2 α+β α-β π π ∴ 、 的取值范围均为[- , ]. 2 2 2 2

5.5基本不等式1(1) 课件(人教A版选修4-5)

5.5基本不等式1(1) 课件(人教A版选修4-5)

24 2. 巳知x 0, 则6x 的最小值是____, x 此时x=_____.
3. 巳知x, y都是正数, x y 求证: 2. y x
4.证明
(1)lg x logx 10 2 ( x 1) 证:∵ x 1 于是 ∴ lg x 0
logx 10 0
lg x logx 10 2 lg x lg x 10 2
2、用极值定理求最值的三个必要条
件:一“正”、二“定”、三“相等”
a+b 由公式a +b 2ab, 2 可得以下结论:
2 2
ab
a b (1) 2( a、b同号); b a a b (2) 2( a、b异号)。 b a
练习2
1.巳知x>0,y>0且xy=100,则x+y的最小 值 是 _______,此时x=___,y= _____
sin x 2 (0 x ) 3 求y 2 sin x 的最小值。
注意:利用算术平均数和集合平均 数定理时一定要注意定理的条件: 一正;二定;三相等.有一个条件达不 到就不能取得最值.
练习4
求f(x)=2+log2x+5/log2x的最值.
例5.
1、已知 求
a, b, x, y R 且
1 2 a 2
a
思考 1
当a 0, b 0, 在a b 2ab中
2 2
以 a, b分别代替a,b能得到什么结果?
a b 2 ab
基本不等式
定理2(均值定理)
如果 a , b 是正数,那么
ab
(当且仅当 a b 时取“ = ”号).
ab 2

5.5基本不等式1(1) 课件(人教A版选修4-5)

5.5基本不等式1(1) 课件(人教A版选修4-5)


ab
中的“ = ”号成立.
这句话的含义是:
当 ab 当
ab ab a b 2
ab ab 2
思考 3
ab a b 2ab 和 2
2 2
ab
成立的条件相同吗?
2 2
如:1) (5) 2 (1) (5)成立, ( (1) (5) 而 (1) (5) 不成立。
1 例3. 若X>-1,则x为何值时 x x 1
有最小值,最小值为几?
解:∵
x 1

x 1 0
1 0 x 1
1 1 1 1 2 ( x 1) 1 2 1 1 ∴x = x 1 x 1 x 1 x 1
1 1 当且仅当 x 1 x x 1 即 x 0 时 x 1 有最小值1
(2)已知
a, b, c, d
都是正数,求证
(ab cd )(ac bd ) 4abcd
证明:由 a, b, c, d 都是正数,得
ac bd ab cd ac bd 0 ab cd 0 2 2 (ab cd )(ac bd ) abcd 4
即(ab cd )(ac bd ) 4abcd
练习1
1. 巳知a 0, b 0, 1 1 求证 : ( a b)( ) 4. a b
2. 巳知a, b, c均为正数,求证: (a+b)(b+c)(c+a) 8abc
例2
求证:(1)在所有周长相同的矩形 中,正方形的面积最大;(2)在所有面 积相同的矩形中,正方形的周长最短。
sin x 2 (0 x ) 3 求y 2 sin x 的最小值。

5.3证明不等式的基本方法(1) 课件(人教A版选修4-5)

5.3证明不等式的基本方法(1) 课件(人教A版选修4-5)
2 2
2
ab b ) 0
2
即: 5 b 5 a 2 b 3 a 3 b 2 a 本题变形的方法— 因式分解法
例4
比较a
a
b 和 a
b
b
b 的
a
例5.甲、乙两人同时同地沿同一线路走到同一地点。甲有一半 时间以速度m行走,另一半时间以速度n行走;乙有一半路程以 速度m行走,另一半路程以速度n行走。如果m≠n,问甲、乙 两人谁先到达指定地点。
例2.已知 a , b , m 都是正数,并且 a b , 求证
证明:
a m b m a b

b ( a m ) a (b m ) b (b m )
a m b m

a b
m (b a ) b (b m )
∵ a , b , m 都是正数, 并且 a b ,
ab>0a>b,ab<0a<b,ab=0a=b

比较法是证明不等式的一种最基本、
最重要的一种方法,用比较法证明不等 式的步骤是: • 作差—变形—判断符号—下结论。 • 作商—变形—与1比较大小---下结论。 • 要灵活掌握配方法和通分法对差式进行 恒等变形。
6.3 不等式的证明(1)--比较法 例1.求证: 3 3 x x
b ) b (a
2 3 3
(a
2
b )( a
b ) ( a b )( a b ) ( a
ab b )
2
都是正数, ∴ a b 0 , a 2 a b b 2 0 ∵ a,b 又∵ a b , ( a b ) 0
( a b )( a b ) ( a

高中数学新人教A版选修4-5课件:第一讲不等式和绝对值不等式1.1.2基本不等式

高中数学新人教A版选修4-5课件:第一讲不等式和绝对值不等式1.1.2基本不等式
1
年销售收入为 150% 32 3- t+1 + 3 + 2t.
首 页
探究一
探究二
J 基础知识 Z 重点难点
ICHU ZHISHI
探究三
由题意,生产 x 万件化妆品正好销完,
由年利润=年销售收入-年生产成本-促销费,
-t2 +98t+35
得年利润 y=
(t≥0).
2(t+1)
-t2 +98t+35
1 2x+y 2
1
(x,y∈R+)中,用的是不等式链中的
其变形去解题,如 xy= ×(2x)y≤
2
2
2
2
1 (2x+y)
1
a+b 2
(x,y∈R+)也可以,这两种解法比较,
.但是 xy= ×(2x)y≤ ×
ab≤
2
2
2
2
可以发现,求得的最值不一样,这说明选择不同的重要不等式的变形形式,求
得的值或范围是不同的,所以我们在选择重要不等式的变形形式时,要使
论有关的不等关系,得出有关理论参数的值.
(4)作出问题结论:根据③中得到的理论参数的值,结合题目要求得出问
题的结论.
J 基础知识 Z 重点难点
首 页
ICHU ZHISHI
HONGDIAN NANDIAN
1
1.下列各式中,最小值等于 2 的是(
x
A.
y
y
+
x
B.
1
C.tanθ+θ
2
3
S 随堂练习
1
的最大值,转化为求 (2x)y 的最大值,即

5.5基本不等式1(1) 课件(人教A版选修4-5)

5.5基本不等式1(1) 课件(人教A版选修4-5)


ab
中的“ = ”号成立.
这句话的含义是:
当 ab 当
ab ab a b 2
ab ab 2
思考 3
ab a b 2ab 和 2
2 2
ab
成立的条件相同吗?
2 2
如:1) (5) 2 (1) (5)成立, ( (1) (5) 而 (1) (5) 不成立。
2

x y 2 P
∵上式当 x y 时取“=”
x ∴当
1 2 xy ∵上式当 x y 时取“=” ∴当 x y 时, 有最大值 4 S
S 2当 x y S (定值)时, xy 2
y 时, x y 有最小值2 P
1 2 ∴ xy S 4
注意:
1、最值的含义(“≥”取最小 值,“≤”取最大值)

b2 (2)已知:a, b R , 且a 2 1, 求a 1 b 2 的最大值. 2 1 1 (3)设 为锐角,求(sin )(cos )的最小值. sin cos
作业
课本作业;P10
5、6
即(ab cd )(ac bd ) 4abcd
练习1
1. 巳知a 0, b 0, 1 1 求证 : ( a b)( ) 4. a b
2. 巳知a, b, c均为正数,求证: (a+b)(b+c)(c+a) 8abc
例2
求证:(1)在所有周长相同的矩形 中,正方形的面积最大;(2)在所有面 积相同的矩形中,正方形的周长最短。
sin x 2 (0 x ) 3 求y 2 sin x 的最小值。
注意:利用算术平均数和集合平均 数定理时一定要注意定理的条件: 一正;二定;三相等.有一个条件达不 到就不能取得最值.

5.5.1利用平均不等式求最大(小)值 课件(人教A版选修4-5)

5.5.1利用平均不等式求最大(小)值 课件(人教A版选修4-5)

1 例2 求函数f ( x ) x (1 3 x ) , x [0, ] 的最大值. 3
2
1. 若n个正数的和是一个常数,那么当且 仅当这n个正数相等时,它们的积有最大值.
简称:和定积最大 2. 高次函数造和定
3 36 3 2 2 1.函数y 2 x ( x 0)的最小值为 ____ . x 16 2 2.函数y 4 x 2 的最小值是 ____ 8 2 ( x 1) 1 3 3.若a , b R 且a b, 则a 最小值为 __ (a - b)b 4 2 4.函数y x (2 x )(0 x 2)的最大值是 ( D) 32 16 A、0 B、1 C、 27 D、27
9 9 1 y 4 x 2 2 4 x 2 12 x x x
1. 若n个正数的积是一个常数,那么当且仅 当这n个正数相等时,它们的和有最小值. 简称:积定和最小
2. 应用定理时需注意 “一正二定三相等” 这三个条件缺一不可;不可直接利用定理时, 要善于转化; 分式函数造积定的策略:均分.
9 例1 求函数 y 4 x 2 ( x 0) 的最小值. x 9 解:由 x 0 知 x 0, 2 0 ,则 x
9 9 9 3 3 2x 2x y 4x 2 2x 2x 2 3 3 36 2 x x x 9 9 由2 x 2 及x 0, 得x 3 x 2
当x
3
9 3 时, ymin 3 36 . 2
9 例1 求函数 y 4 x 2 ( x 0) 的最小值. x
下面解法是否正确?为什么?
9 解法1:由 x 0 知 x 0, 2 0 ,则 x
9 9 9 y 4 x 2 x 3x 2 33 x 3x 2 9 x x x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 例3. 若X>-1,则x为何值时 x x 1
有最小值,最小值为几?
解:∵
x 1

x 1 0
1 0 x 1
1 1 1 1 2 ( x 1) 1 2 1 1 ∴x = x 1 x 1 x 1 x 1
1 1 当且仅当 x 1 x x 1 即 x 0 时 x 1 有最小值1
练习3
1 1、求函数y= x的最小值( x 3); x-3 2 x 8 2、求函数y= 的值域. x 1 4 3、求证 a 7(其中a 3) a 3
已知0<x<1,求x(1-x)的最大 值.
例4
12 1 若x 0, 求f ( x) 3x的最小值; x 12 (2)若x 0, f ( x) 3 x的最大值。 x
概念
ab 2
为a、b
• 的算术平均数, ab 称为a、b的几何平均数。
均值定理可以描述为:
两个正数的算术平均数不小于(即大于或等于) 它们的几何平均数
均值定理的 几何意义
C
ab ab 2 2
OC CD
ab 2
ab ab

ab
A
a
.o
D
D
B
半径不小于半弦
E
思考 2
当且仅当
a b时
ab 2

ab
中的“ = ”号成立.
这句话的含义是:
当 ab 当
ab ab a b 2
ab ab 2
思考 3
ab a b ?
2 2
如:1) (5) 2 (1) (5)成立, ( (1) (5) 而 (1) (5) 不成立。
a b c ab bc ca
2 2 2
1 a b c 2ab 2bc 2ca
2 2 2
3ab 3bc 3ca
1 ab bc ca 3
注意:本题条件a,b,c为实数
练习5
1 9 (1)已知:x, y R , 且 1, 求x y的最小值. x y
2、用极值定理求最值的三个必要条
件:一“正”、二“定”、三“相等”
a+b 由公式a +b 2ab, 2 可得以下结论:
2 2
ab
a b (1) 2( a、b同号); b a a b (2) 2( a、b异号)。 b a
练习2
1.巳知x>0,y>0且xy=100,则x+y的最小 值 是 _______,此时x=___,y= _____
≤ (2) x log x 10 ? 2 (0 x 1) lg __ 解:∵ 0 x 1
lg x 0 logx 10 0
于是 ( lg x) ( logx 10) 2 从而 lg x logx 10 2
1 5、求函数y x 的值域. x 解: 1 1 (1)当x 0时, x 2 x 2 x x 1 (2)当x 0时, x, R , x 1 1 x 2 ( x) ( ) 2 x x 1 x 2 y (,2] [2,). x
24 2. 巳知x 0, 则6x 的最小值是____, x 此时x=_____.
3. 巳知x, y都是正数, x y 求证: 2. y x
4.证明
(1)lg x logx 10 2 ( x 1) 证:∵ x 1 于是 ∴ lg x 0
logx 10 0
lg x logx 10 2 lg x lg x 10 2
2
a,b R a b 2ab 成立的条件_______
2 2
ab 2
a,b R ab 成立的条件______
典例探讨
例1 求证:
(1)a b c ab bc ac
2 2 2
变式: 求证:2a +2b +2c 2ab 2bc 2ca
2 2 2
1 2 a 2
a
思考 1
当a 0, b 0, 在a b 2ab中
2 2
以 a, b分别代替a,b能得到什么结果?
a b 2 ab
基本不等式
定理2(均值定理)
如果 a , b 是正数,那么
ab
(当且仅当 a b 时取“ = ”号).
ab 2
• 如果a、b都是正数,我们就称
sin x 2 (0 x ) 3 求y 2 sin x 的最小值。
注意:利用算术平均数和集合平均 数定理时一定要注意定理的条件: 一正;二定;三相等.有一个条件达不 到就不能取得最值.
练习4
求f(x)=2+log2x+5/log2x的最值.
例5.
1、已知 求
a, b, x, y R 且
2

x y 2 P
∵上式当 x y 时取“=”
x ∴当
1 2 xy ∵上式当 x y 时取“=” ∴当 x y 时, 有最大值 4 S
S 2当 x y S (定值)时, xy 2
y 时, x y 有最小值2 P
1 2 ∴ xy S 4
注意:
1、最值的含义(“≥”取最小 值,“≤”取最大值)
变形.
已知
x, y 都是正数,求证:
1 如果积
xy
是定值 P, 那么当 x y 时,和 x y
有最小值 2 P 2 如果和 x y 是定值
S , 那么当 x y 时,积
xy
1 2 S 有最大值 4 证:∵ x, y R ∴ x y xy
x 1当 xy P (定值)时, y P 2
的最小值

x y
a b 1, x y
a b ay xb x 解: y ( x y) 1 ( x y)( ) a b x y x y
ay xb 2 ab2 ( a b) x y
ay xb 当且仅当 x y

x a 时 y b
2
x y取最小值( a b )
2、已知 : a b c 1
1 求证: ab bc ca 3
证明:
a 2 b 2 c 2 2ab 2bc 2ca
a b c 1 2 (a b c)
1 2 2 a b 2ab 2 2 b c 2bc c 2 a 2 2ca
(2)已知
a, b, c, d
都是正数,求证
(ab cd )(ac bd ) 4abcd
证明:由 a, b, c, d 都是正数,得
ac bd ab cd ac bd 0 ab cd 0 2 2 (ab cd )(ac bd ) abcd 4
ab ab 2
重要不等式
a, b R ,那么 2 2 a b 2ab (当且仅当 a b 时取“=”
定理1:如果 号).
我们可以用比较法证明.
探究
• 你能从几何的角度解释定理1吗? • 几何解释1-课本第五页.
几 何 解 释 2
a 2 b2
b
a
动画
几何解释3
a
b
1 2 b 2

b2 (2)已知:a, b R , 且a 2 1, 求a 1 b 2 的最大值. 2 1 1 (3)设 为锐角,求(sin )(cos )的最小值. sin cos
作业
课本作业;P10
5、6
即(ab cd )(ac bd ) 4abcd
练习1
1. 巳知a 0, b 0, 1 1 求证 : ( a b)( ) 4. a b
2. 巳知a, b, c均为正数,求证: (a+b)(b+c)(c+a) 8abc
例2
求证:(1)在所有周长相同的矩形 中,正方形的面积最大;(2)在所有面 积相同的矩形中,正方形的周长最短。
相关文档
最新文档