人机工程学驾驶室座椅设计

合集下载

基于人机工程学的汽车座椅设计研究

基于人机工程学的汽车座椅设计研究

基于人机工程学的汽车座椅设计研究【摘要】本文探讨了基于人机工程学的汽车座椅设计研究。

在介绍了研究背景和研究目的。

正文部分分析了人机工程学在汽车座椅设计中的应用,以及人体工程学在汽车座椅设计中的重要性。

同时讨论了汽车座椅设计中的关键因素和现有问题,并提出了改进建议。

结论部分强调了基于人机工程学的汽车座椅设计的重要性,并探讨了未来发展方向。

本文旨在引起人们对汽车座椅设计的重视,以提高驾驶者的舒适感和安全性。

通过结合人机工程学原理,可以为汽车座椅设计带来更好的体验和效果。

【关键词】人机工程学、汽车座椅设计、人体工程学、关键因素、问题、建议、重要性、发展方向、总结。

1. 引言1.1 研究背景汽车座椅作为汽车的重要部件之一,在人类日常生活中扮演着至关重要的角色。

随着汽车行业的快速发展和人们对驾驶舒适性的不断追求,汽车座椅的设计变得越来越重要。

目前市场上的许多汽车座椅设计并没有充分考虑到人体工程学的原理,导致了许多用户在长时间驾驶过程中出现腰痛、脊柱不适等问题。

基于人机工程学的汽车座椅设计变得尤为重要。

人机工程学是一门研究人与工作环境之间相互适应关系的学科,其原理在汽车座椅设计中的应用,可以有效提高驾驶员和乘客的舒适性,减少驾驶过程中的疲劳感和身体不适症状。

通过深入研究人体工程学在汽车座椅设计中的重要性和关键因素,可以为汽车制造商提供更科学、更人性化的座椅设计方案,促进汽车产业的发展和用户体验的提升。

1.2 研究目的研究目的是为了探讨基于人机工程学的汽车座椅设计在提高驾驶员和乘客的舒适性、安全性和健康性方面的重要性,分析人体工程学在汽车座椅设计中的具体应用及其对座椅设计的影响。

通过研究不同人群的体型、姿势和习惯对座椅设计的影响,进一步优化汽车座椅的设计,提高座椅的适用性和舒适性。

本研究旨在深入了解现有汽车座椅设计存在的问题,并提出相应的改进建议,为汽车座椅设计提供更科学、更人性化的方向。

通过本研究,可以为汽车制造商和设计师提供宝贵的参考,推动汽车座椅设计领域的发展和进步,更好地满足消费者的需求和期待,提升汽车产品的竞争力和市场占有率。

基于人机工程学的工程机械座椅设计(全文)

基于人机工程学的工程机械座椅设计(全文)

基于人机工程学的工程机械座椅设计人机工程学是一门新兴的科学,它的进展起源要追朔到上个世纪五十年代,它跨越了不同的科学领域,结合了多种科学原理、数据和方法,它所研究的重点对象为怎样将工程机械的设计布置和人身尺寸、生理及心理特点有机结合的相关问题。

人机工程学的最大特点为,将人看做组成系统的一个元件,以人为主体,通过对人体进行详细分析,将人与机械进行优化协调,从而使整个工作系统得到完善。

人机工程学的研究成果对工程机械驾驶员座椅的设计和布置有着重要意义。

通过人机工程学的理念设计出的驾驶员座椅,充分根据人身尺寸、生理及心理特点,对人的使用及操作有一定的适用性,带给人一种舒适、安全的驾驶环境,让驾驶员与设备发挥有效的作用,使人机工程学的机械效率达到最高,这是现代人机工程学应主要研究的课题。

一、人机工程学对工程机械驾驶室的设计与布置(一)对驾驶室的座椅位置进行确定。

在人机工程中,驾驶员在工作中采纳的坐姿,人和机械的重要接口就是座椅。

因此,座椅的布置和设计对驾驶员座椅的舒适程度和驾驶室内相关的布置有直接影响。

对座椅进行合理的布置,优化人和座椅之间的联系,为驾驶员提供一种舒适、安全的工作环境有着深远影响。

在对驾驶室座椅的位置进行确定时,第一个要确定的是,驾驶座椅上人身躯干与大腿之间的连接点,它是驾驶室座椅的尺寸和舒适程度的基准点。

驾驶员通过自身条件将驾驶座椅调节到舒适的入座位置后,通过对座椅的前后调节,驾驶员自身坐姿角度的调整,使驾驶员在驾驶过程中不易产生疲劳,并且在操作过程中有利于满足操作的轻便型、视野的开阔性。

(二)驾驶员座椅和其他功能部件操纵元件设计关系。

工程机械中用于操作的机械功能部件操纵系统比较多,首先座椅的位置与脚部操作部件的关系,要易于脚操作,而且长期工作状态下脚部又不易疲劳。

汽车座椅位置和方向盘间的设计,要求两者之间的距离合适而且座椅对人体的肩部有支持,降低人体疲劳。

座椅和工程机械操作杆之间的设计,手柄的操作杆一般在座椅两侧的操纵箱上,座椅的设计要充分支撑手臂位置减少疲劳。

基于人机工程学的汽车驾驶座椅设计分析

基于人机工程学的汽车驾驶座椅设计分析

基于人机工程学的汽车驾驶座椅设计分析摘要:汽车驾驶座椅关系着人们开车时的个人感受,为了让汽车驾驶座椅质量得到保障,就要结合人机工程学原理,满足驾驶员的生理需求,以此来提高驾驶舒适度与安全性。

本文对汽车驾驶座椅设计进行分析,并对以人机工程学为核心的汽车驾驶座椅设计提出个人看法,希望为关注汽车驾驶座椅设计的人群带来参考。

关键词:人机工程学;汽车驾驶座椅;座椅设计;驾驶舒适性引言:汽车座椅是影响驾驶、乘坐舒适度的关键设施,舒适的驾驶座椅不仅能够降低驾驶员开车期间的疲劳程度,还能让驾驶员的各种操作变得更加顺滑。

在人机工程学设计中,可以针对驾驶员的生理舒适性来对座椅进行性调整。

因此,有必要对人机工程学背景下的驾驶座椅设计进行分析,以此来提高座椅设计质量。

一、人机工程学背景下驾驶员坐姿与座椅之间的关系驾驶员的坐姿与人们的生活息息相关,每个人的坐姿习惯都各有不同,结合坐姿来调整座椅,往往能够让驾驶员获得更好的驾驶体验,如果座椅无法匹配驾驶员的生理需求,驾驶员的身体肌肉就容易在过度紧张中影响到驾驶效果。

从坐姿角度出发,人体在坐着的时候,将会由脊椎、胯骨、腿脚来支撑身体,承受人体重量的主要关节是腰椎与胯骨。

在坐到椅上时,如果坐姿不良,就容易出现骨盆下陷的情况,长期的不端正坐姿将会导致腰酸背痛、驼背等情况。

人在坐姿情况下,脊椎期就像是杠杆,若头部前倾,骨头与韧带就将会生成向后的拉力,若力量超出了韧带的极限,就将会对人体背后的肌肉造成影响,肌肉在力的作用下,将会逐渐出现酸痛的情况。

二、舒适坐姿情况下的驾驶员生理特征在坐姿情况下,各节脊椎骨的受力情况将会呈现由上至下逐渐增加的情况,其中腰椎将会承受最大的身体重量,这是脊椎的人体生理形态。

而且因为腰椎需要进行弯腰、侧曲等动作,所以往往更加容易在压力下受损。

从侧面角度对脊柱进行观察,可以发现脊柱能够呈现出颈、胸、腰、骶四个部位弯曲,其中颈腰向前、胸骶向后。

人在坐姿情况下,此时大腿与上身的重量要通过座椅来进行承受,人体处于骨盆下的坐骨结节是主要受力部分,坐骨结节外面的皮肤将会让动脉血液供应得到保障。

汽车驾驶座椅的人机工程学设计

汽车驾驶座椅的人机工程学设计

汽车驾驶座椅的人机工程学设计摘要: 运用人机工程学原理,针对汽车驾驶座椅,从驾驶员生理特性与作业环境两个方面分析了影响驾驶舒适性及安全性的原因,在此基础上从坐姿舒适性,振动舒适性,操作舒适性, 安全性等四个方面论述了汽车驾驶座椅人机工程学设计,完成了对汽车驾驶座椅从分析—设计的系列开发过程。

关键词: 汽车驾驶座椅; 人机工程学; 驾驶舒适性:汽车中的座椅是影响驾驶与乘坐舒适程度的重要设施, 而驾驶员的座椅就更为重要。

舒适而操作方便的驾驶座椅, 可以减少驾驶员疲劳程度,降低故障的发生率汽车驾驶员座椅设计优劣与否直接关系到驾驶质量。

汽车驾驶座椅人机工程学设计目的,就是使设计出来的座椅能够满足人机工程学标准, 这样一来, 所谓汽车驾驶座椅人机工程学设计也就转化为针对驾驶员舒适性的设计。

当然对于座椅设计来讲, 对其安全性的设计也是不容忽视的。

从人机工程学原理出发考虑, 一个性能优良的驾驶座椅应当符合的基本要求如: 为驾驶员提供一个舒适而稳定的坐姿, 符合人体舒适坐姿的生理特性; 减轻传给驾驶员身体的机械振动和冲击负荷,满足振动舒适性评价标准的要求;将驾驶员置于良好视野的位置, 保证他能安全而有效地完成各项操纵作业;为驾驶员提供一个相对于各种操纵机构的合适位置, 使他能方便地进行操作; 考虑提高驾驶员的人身安全性,当发生翻车或撞车事故时,将驾驶员约束在驾驶座椅上且处于一定的容身空间以内。

1汽车驾驶座椅人机工程学设计汽车驾驶座椅的人机工程学分析, 安全舒适的汽车驾驶座椅的设计必须满足以下要求: 一是坐姿舒适性(静态舒适性) ; 二是振动舒适性(动态舒适性) ; 三是操作舒适性; 四是安全性(包括主动安全性及被动安全性两个方面) 。

上述要求具体到驾驶座椅的设计中满足驾驶员坐姿舒适性的座椅尺寸结构设计、满足驾驶员振动舒适性的座椅抗振减振设计、满足操作舒适性的座椅空、间位置设计以及满足驾驶员的安全性的汽车驾驶座椅主动安全性及被动安全性的设计。

人机工程学在汽车座椅设计中的应用

人机工程学在汽车座椅设计中的应用

人机工程学在汽车座椅设计中的应用新疆农业大学机械交通学院人机工程课程(设计)论文题目: 人机工程学在汽车座椅设计中的应用姓名与学号: 李振兴 083731432指导教师: 王晓暄年级与专业: 机制084所在学院: 机械交通学院课程评分:二零一一年十二月十二人机工程学在汽车座椅设计中的应用摘要:驾驶员驾驶姿势直接影响着驾驶员的舒适和健康,关系着是否能够安全、高效准确地驾驶。

同时它还决定着舒适程度,以及长期驾驶是否对驾驶员造成生理和心理上的有害的影响。

本文结合人机工程学的知识,从人的心理,生理特点出发并结合汽车振动特性,视野范围以及空间分布来分析人与座椅的相互关系和相互作用,从而得出能符合人机工程学标准的,并将舒适性、安全性都考虑到位的汽车座椅的设计。

关键词:人机工程学、座椅,舒适度、设计一个性能优良的汽车座椅主要取决于以下五个方面:?座椅与人体的人机界面能否为人提供舒适而稳定的坐姿。

?驾驶员(或乘坐)——座椅——车辆系统能否有效的隔离或衰减来自路面不平度的激励而产生的震动以及驾驶员或乘坐员所承受的全身震动负荷低于规定限值。

?驾驶员(或乘坐员)——座椅——驾驶室系统的几何位置关系能否为驾驶员提供良好的视野。

?能否为驾驶员提供一个相对于各种操纵机构的合适位置,使他能方便地进行操作。

?能否提高驾驶员的人身安全性,当发生翻车或撞车事故时,将驾驶员约束在驾驶座椅上面,下面就从这四个方面来分析人机工程学在汽车座椅设计上的运用。

1.坐姿舒适的生理特征坐姿是人体较自然的姿势,坐姿将以脚支撑全身的状况转变为以臀部支撑全身,有利于发挥脚的作用,特别是能够利用靠背来增大腿脚的蹬力这一特点,来控制操纵力较大的装置。

但如果坐姿不正确,座椅设计不合理,也会给身体带来严重损害。

1.1坐姿生理学1.1.1脊柱结构坐姿状态下,支撑身体的是脊柱、骨盆、腿和脚。

脊柱是人体的主要支柱,由24节椎骨以及5块骶骨和4块尾骨连接组成,如图1-1所示,其中椎骨自上而下又分为颈椎(共7节)、胸椎(共12节)、腰椎(共5节)三部分,每两节椎骨之间由软骨组织和韧带相联系,使人体得以进行屈伸、侧曲和扭转动作等有限度的活动。

人机工程学汽车驾驶员座椅2讲解

人机工程学汽车驾驶员座椅2讲解


0.587L6

0.176H 30
12.5t

Xh
Zc 638mm H 30 Zh
27
四:驾驶员室内操作手伸及最大空间界面的确定
ISO3958适用于以下尺寸轿车 (1)座椅背靠角在9°~33°-A40 (2)最后H点到锺点的垂直距离127~520-H30 (3)H点的水平调节范围130-TL23 (4)转向盘直径330~600-W9 (5)转向盘倾角10-70-A18 (6)转向盘中心到锺点距离66~152-L11 (7)转向盘中心到锺点的垂直距离530~838-H17
3)因为振动的传递与所采用的座垫材料有关,所以正确选 择弹性元件的材料是非常重要的。
座椅动态特性
频率比
/ 0 .......... ...(0 k m)
相对阻尼系数
/ 2 km
频率响应函数
H jz~q

1 2 j 1 2 2 j
振幅响应
1
二:眼椭圆在车身视图上的定位(绘制眼椭圆)
眼椭圆在车身视图上的定位
二:眼椭圆在车身视图上的定位(绘制眼椭圆)
(1)椭圆倾角计算:椭圆的三轴线相互垂直,轴线A
方向平行于汽车坐标轴方向
y
对于A类坐标可以调节的眼椭圆长轴A x与水平面的夹角应根据H点的
调节轨迹倾角A19计算:
18.6 - A19
z2 z2

x10

715 .9 0.968793
z 0.00228674
z2

x5 692 .6 0.981427 z 0.00226230 z 2
x2.5

687 .1 0.895336

基于人机工程学的抗疲劳汽车座椅设计

基于人机工程学的抗疲劳汽车座椅设计

基于人机工程学的抗疲劳汽车座椅设计摘要:汽车人机工程学设计的主要目的是保证驾驶员和乘客的安全。

汽车驾驶室座椅的人机工程学设计需要考虑驾驶人员的舒适性,提高驾驶途中的安全性能。

因此,有必要对汽车人机工程学设计进行优化,确定驾驶室座椅的位置,简化操作,提高驾驶的便利性。

汽车驾驶员座椅的人机工程学设计是一个复杂的过程,它将人性化的设计理念融入到设计过程中,进一步提高驾驶室座椅的舒适性,为驾驶员和乘客营造安全有效的驾驶环境。

关键词:人机工程学;抗疲劳;汽车座椅引言:不同的标准和法规对驾驶员的驾驶环境有不同的要求。

通过对采集到的关键数据进行统计分析,形成不同的人体特征点分布模式,为汽车驾驶室座椅的人机工程学设计提供重要的参考数据。

这些参考数据可以丰富汽车驾驶室座椅的人机工程学设计理论。

随着科学技术的发展,这种人机工程学设计将发挥越来越重要的作用。

本文对汽车驾驶室座椅的人机工程学设计进行了分析。

1.座椅参考点(SGRP)SAEJ1100中SGRP的定义是:对于一个特定的座椅,它上有一个独特的H 点,我们称之为座椅基准点,也就是我们所说的SGRP。

通过调节座椅位置,H点调节行程设计中有许多H点,但只有一个座椅基准点。

座椅基准点的位置一般都是由座椅制造商确定,考虑到座椅的所有调节形式-水平、垂直、倾斜等。

其意义在于:当驾驶员正常驾驶时,即当第95百分位人体模型坐在座椅上时,实际的H 点与座椅基准点位置重叠。

2.驾驶室座椅人机工程设计优化2.1 RAMSIS人体模型H点优化驾驶室座椅的人机工程学设计需要建立人体模型,这是人机工程学设计的基础。

独立测量尺寸和控制测量尺寸是RAMSIS人体模型的重要组成部分,控制测量尺寸包括腰围、坐姿高度和身高三个维度控制测量。

独立测量包括15项,包括臂长、胸宽、肩宽、头部厚度以及头部宽宽。

然而,人体模型中测量尺寸的控制对独立测量尺寸有一定的限制作用,人体模型的精确性对优化驾驶室座椅的人机工程学设计具有重要影响,并能在一定程度上提高驾驶员在行车途中的舒适性。

汽车座舱设计人机工程学的应用

汽车座舱设计人机工程学的应用

汽车座舱设计人机工程学的应用随着科技的进步和人们对舒适性的要求提高,汽车座舱设计在汽车工业中变得越来越重要。

一个好的座舱设计可以提升驾驶员的体验,增加驾驶的安全性和舒适性。

为了满足这一需求,人机工程学在汽车座舱设计中得到了广泛的应用。

一. 驾驶员座椅设计在汽车座舱设计中,驾驶员座椅是至关重要的组成部分。

人机工程学考虑了驾驶员的身体特点和行为习惯,以提供最佳的坐姿支撑和舒适性。

座椅的高度、角度、座垫的形状和硬度都需要根据驾驶员的身体特征进行调整,以减少驾驶过程中的疲劳和压力。

同时,座椅的可调节功能也可以满足不同驾驶员的需求,使得每个人都可以找到最适合自己的坐姿。

二. 控制台布局设计控制台是驾驶员和乘客与汽车各种功能的交互界面,人机工程学在控制台布局设计中发挥了重要作用。

科学合理的控制台布局可以提升驾驶员的操作效率和安全性。

例如,将常用的控制按钮和开关放置在驾驶员易于触及的位置,减少眼睛离开道路的时间,帮助驾驶员更加专注于驾驶。

此外,控制按钮的大小、颜色和标识符的清晰度也需要根据人眼的特点进行合理设计,以便驾驶员能够快速准确地识别和操作。

三. 仪表板设计仪表板在汽车座舱设计中起到了重要的信息传递和显示作用。

人机工程学在仪表板设计中考虑了驾驶员对信息的接受和理解能力,以及驾驶过程中对各种指示的需求。

仪表板的布局应该简洁明了,不同功能的指示灯和显示屏应该根据重要性和紧急性进行合理的排列。

此外,颜色和亮度的搭配也需要符合人眼的感知特点,以便驾驶员在各种光线条件下都能清晰地读取仪表板上的信息。

四. 控制手柄和按钮设计在汽车座舱设计中,控制手柄和按钮的设计也需要遵循人机工程学的原则。

手柄和按钮的形状、大小和摆放位置应该符合驾驶员的常规动作习惯,以便驾驶员能够迅速准确地控制汽车各种功能。

此外,手柄和按钮的力学特性也需要考虑,以保证驾驶员在操作时的舒适感和精确度。

五. 声音和声音控制设计汽车座舱设计中的声音设计也是人机工程学所关注的重要方面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人机工程学的车内座椅设计题目:基于人机工程学的车内座椅设计班级:09铁道车辆2班姓名:屈难平学号: 20097831基于人机工程学的驾驶室座椅设计摘要以人机工程学的理论为基础,介绍了座椅设计中座高、座宽、座深、座面倾角、靠背高度靠背倾角等座椅静态参数的选取原则,以某轻卡座椅为例,用Pro/E 建立座椅的模型,导入Man-neQuinPRO10。

2中进行人机分析,并结合实例对座椅的各静态参数进行选取。

关键词:人机工程学;轻卡座椅;舒适坐姿;建模分析人机工程学是一门边缘学科,主要研究工程技术如何与人体尺寸、生理及心理特征相适应。

在轻卡驾驶室座椅的设计中,主要研究如何使座椅符合人体尺寸的需求,给驾驶员带来舒适感,降低驾驶疲劳度,提高驾驶的安全性,同时也能大大防止驾驶员由于不正确的驾驶姿势而导致的脊椎变形,以及由此引发腰痛、腰肌劳损等职业病。

1.舒适坐姿的生理特征图1所示为人体在各种不同姿势下腰椎的弯曲形状。

曲线B表示人体松弛侧卧时,脊柱呈自然弯曲状态;曲线C是最接近人体脊柱自然弯曲状态的坐姿;曲线F是当人体的躯干与大腿的夹角呈90°时的情形,此时脊柱严重变形,椎间盘上的压力不能正常分布。

因此,欲使坐姿能形成接近正常的脊柱自然弯曲形态,躯干与大腿之间必须有大约135°的夹角,并且座椅的设计应使坐者的腰部有适当的支撑,以使腰曲呈弧形自然弯曲状态,腰背肌肉处于放松状态人坐着时,大腿和上身的质量必须由座椅来支承。

人体结构在骨盆下面有2块圆骨,称为坐骨结节,如图2所示。

这2块小面积能够支持大部分上身的质量。

覆盖在它们外面的皮肤能获得丰富的动脉血液供应,就像脚底一样。

而在臀部的边缘部分,血液循环则大不一样,这部分静脉较多(包含较少的氧)。

当人坐着的时候,覆盖着坐骨结节的皮肤能够更好地经受持久的压力。

因此,座面上的臀部压力分布在坐骨结节处最大,由此向外压力逐渐减小,直至与座面前缘接触的大腿下部,此处压力为最小。

座垫的柔软程度要适当,坐骨部分的座垫应当是支承性的,它要承受加在座位上的大约60%的质量,而其余部分则应当比它更柔软些,以便能够把质量分布在更大的面积上。

座椅靠背上的压力分布中,肩胛骨和腰椎骨2个部位应最高,此即靠背设计中所谓的“两点支承”准则。

在靠背的两点支承中,上支承点为肩胛骨提供凭靠,称为肩靠,其位置处于第5-6节胸椎的高度;下支承点为腰曲部分提供凭靠,称为腰靠,其位置处于第4-5节腰椎的高度。

图1 人体在各种不同状态下腰椎的弯曲形状图2 股骨正常位置腿的主动脉紧靠着大腿下表面和膝盖的后面,在这个部位上,任何持续的压力都会给人造成极端的不舒适和肿胀感觉,需要借助于适当减短座深、把座垫前缘修圆和采用较软的泡沫塑料座垫等措施来防止这种情况发生。

同时,还要使座面离地板的高度足够低,以便使脚能踩着地板,让人的这个重要部位感觉不到有任何压力。

坐骨下面的座面应当是近似水平的。

图2表示带有股骨的骨盆部位的前视图,从图中可看出股骨在股节中从连接骨盆的球孔向外伸去。

用平坦的座面,股骨的这一部分在坐骨平面之上,因此不承受过分的压迫。

但是,如果座面是斗形的(图3),则弯曲的座面会使股骨趋于向上转动(箭头所示)而受载,造成髋部肌肉承受反常的压迫,从而引起不舒适感。

故需注意避免采用斗形座面。

应当注意斗形的座面不论从什么观点看,都是不适用的,因为它不能适应人体大小的整个系列,它还把身体质量平均地分配在整个臀部,而不是让较多的质量集中在坐骨结节部位。

图3 斗形座位将股骨推向上方使股骨处于受载状态,舒适的坐姿,应保证腰曲弧处于正常自然状态,腰背肌肉处于松弛状态,从上体通向大腿的血管不受压迫,保持血液正常循环。

因此,最舒适的坐姿是臀部稍离靠背向前移,使上体略向后倾斜,体腿夹角保持在90°-115°。

小腿向前伸,大腿与小腿、小腿与脚面之间也有合适的夹角,如图4示,10°<θ1<20°;15°<θ2<35°;80°<θ3<90°;90°<θ4<115°;100°<θ5<120°;85°<θ6<95°。

针对具体情况,在舒适范围内选取合适的角度。

图4 舒适坐姿的关节角度2 轻卡座椅静态参数的选取1)座高。

座高指地面至座面上坐骨支承处的高度。

座椅高度应该使驾驶员大腿接近水平,小腿自然放置。

如果座面过高,就会导致小腿悬空,使大腿肌肉受椅面前缘压迫,腿部血液循环受阻,小腿麻木肿胀;座面过低会增加背部肌肉负荷。

所以座高的设计先要考虑较小身材的操作者。

2)座宽。

座宽应满足臀部就坐所需的尺度,使人能自如地调整坐姿,座宽取值时应适当大于臀宽。

通常以大身材女性的臀宽尺寸上限为设计依据,以满足能容纳身材粗壮者的需要。

由于驾驶室空间的限制,座宽尺寸不能太大,以免影响变速操纵杆、停车制动杆等的尺寸和操作。

3)座深。

座深是指椅面的前后距离。

正确的设计应使臀部、腰部都得到支持,座面前缘与小腿间应留有适当的距离,保证小腿可自由活动。

座深不宜太大,防止矮小身材的人坐上之后,座面前缘压迫膝窝处的压力敏感部位,迫使人前移,背部得不到靠背支持,产生极度不适。

如果要得到靠背的支持,则必须改变腰部正常曲线,也会产生不舒适。

为了满足大多数人的需求,座深应按较小百分位的群体设计。

这样,身材矮小的人能够坐着舒适,身体高大的人也只要小腿能得到稳定的支持,就不会在大腿部位引起压力疲劳。

4)座面倾角。

座面倾角是座面与水平面夹角。

座面后倾可以起到2个作用:一是由于人体重力作用,使坐者躯干后移,使背部抵靠靠背,以获得支持,从而使背肌得到放松,降低背部静压;二是防止坐者从座面前缘滑出座面,这对在常处于颠簸环境中的驾驶员尤为重要。

但如果座面过分后倾,在进行驾驶操作时,脊椎因身体前屈而会被拉直,破坏正常的腰椎曲线,形成一种费力的姿势,同时还会压迫腹部,长期驾驶会造成生理上的伤害。

因此倾角不能太大,一般为4°-8°。

5)靠背的高度。

靠背的功用是保持脊柱具有一种轻松的姿势。

由于每个人的脊柱长度不同,身材也不完全相同,每个人的脊柱曲度变化存在着一定的差异,使靠背高度与其形状之间出现了复杂的关系。

靠背按其高度不同可分为低靠背、中靠背、高靠背及全靠背4类。

低靠背为一点支承,只支承腰部;中靠背也是一点支承,支承在胸椎;高靠背为两点支承,靠背下部支承于腰椎、上部支承于肩脚骨上;全靠背为三点支承,除支承于腰椎及肩胛骨之外还设有头枕。

靠背的尺寸主要与腰部、肩部、头部的高度(决定靠背高)和宽度(决定靠背宽)有关,确定高度时还应计入座椅的有效厚度。

6)靠背倾角。

靠背倾角指坐面与靠背的夹角。

从保持正常自然形态的脊柱、增加舒适感角度看,靠背倾角取115°左右较为合适。

3 座椅Pro/E建模实例分析用Pro/E建立座椅的模型,然后导入ManneQuinPRO10.2中进行人机分析。

ManneQuinPRO10.2的主要功能是:能为产品作人性化设计和评估提供3D的人体模型,可以对此人体模型作多种姿势变换,进行全方位的模拟验证。

在进行分析之前,了解坐姿的人体尺寸是非常重要的。

坐姿人体尺寸包括11项,如图5所示,表1列出了我国成年人的人体坐姿尺寸。

图5 坐姿人体尺寸表1 坐姿人体尺寸下面结合实例对座椅的各静态参数进行分析:1)座高。

为了满足大身材驾驶员的需求,应该取P99男性的人体尺寸进行计算研究。

前面已经提过,驾驶员操纵脚踏板时,小腿与大腿间的舒适夹角应为110°-120°,以120°为优,如图6所示。

根据图5、表2可知AB代表坐深,P99男性的坐深AB为510 mm ;BC为小腿加足高加上鞋高修正量30mm,取P99男性的尺寸得出BC=463+30=493mm。

根据公式:AC2=AB2+BC2-2AB·BCcos120°,即AC2=5102+4932-2×510×493×cos120°=754 579,求得AC≈869 mm。

实例中的轻卡驾驶室中DC为840 mm。

根据勾股定理:AD2=AC2-CD2,即AD2=8692-8402=45 361。

求得AD≈214mm就是舒适的座椅高度。

实例的座椅的高度为200 mm,与214 mm的相差不大。

用Pro/E建立如图7所示的座椅三维模型,然后导入ManneQuin-PRO10。

2中,采用P99男性的人体3D模型进行分析,可得知当人坐在高度为214 mm座椅上时,大腿与小腿夹角是120°,所以本例的轻卡座椅的高度是合理的。

2)座宽。

根据P99的女性坐姿臀宽400 mm,再加上着装功能修正量13 mm,座椅的座宽应为413 mm较佳。

本例轻卡驾驶座椅的座宽尺寸为510 mm,大于413 mm。

建模分析如图8所示,座椅宽度大于P99的女性坐姿臀宽,因此,该轻卡的坐宽是较为合理的,能满足更大部分人群的使用。

3)座深。

根据P5的女性人体坐深401 mm,再加上着装修正量,座深应为415 mm左右。

本例轻卡座椅的座深为460 mm,建模分析如图9,看到小身材尺寸的女性的膝窝处的压力敏感部位受到座面前缘的压迫,所以建议缩小座深,改为415 mm左右。

图6 小腿与大腿夹角图7 座椅高度分析验证图8 座宽分析验证4)座面倾角。

由图9可知,该轻卡的座面倾角为5°。

汽车驾驶座椅座面倾角一般为7°-12°,为了避免驾驶员因颠簸而滑出座椅,建议将座面倾角改为15°左右。

图9 座深、座面倾角分析验证5)靠背高度。

本例的座椅是三点支承的全靠背座椅。

查询GB/T14774─93《工作座椅一般人类工效学要求》可知,腰靠距座面的高度取165-210mm,腰靠圆弧半径取为400-700 mm,推荐值为550 mm。

如图10所示,本例座椅的腰靠高度在170mm左右,其表面为接近于平面的大圆弧。

靠背高度为848 mm,表面弧度的设计与人体在正常状态下的脊椎弯曲吻合度较大,因此其设计是较为合理的。

6)靠背倾角。

本例的座椅靠背倾角调节范围是:向后8°,向前7°。

如图10所示,靠背倾角为100°,向前调节后可达到93°,向后调节可达到107°,即本例的座椅靠背倾角范围是93°-107°。

查询GB/T14774─93《工作座椅一般人类工效学要求》可知,靠背倾角取95°~115°。

所以靠背倾角的度数也在合理的参数范围之内。

相关文档
最新文档