初中数学《因式分解法》教案教学设计
初中数学因式分解教案5篇

初中数学因式分解教案5篇初中数学因式分解教案篇1知识点:因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。
教学目标:理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。
考查重难点与常见题型:考查因式分解能力,在中考试题中,因式分解出现的频率很高。
重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。
习题类型以填空题为多,也有选择题和解答题。
教学过程:因式分解知识点多项式的因式分解,就是把一个多项式化为几个整式的积。
分解因式要进行到每一个因式都不能再分解为止。
分解因式的常用方法有:(1)提公因式法如多项式其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式。
(2)运用公式法,即用写出结果。
(3)十字相乘法对于二次项系数为l的二次三项式寻找满足ab=q,a+b=p的a,b,如有,则对于一般的二次三项式寻找满足a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行。
分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号。
(5)求根公式法:如果有两个根X1,X2,那么1、教学实例:学案示例2、课堂练习:学案作业3、课堂:4、板书:5、课堂作业:学案作业6、教学反思:初中数学因式分解教案篇2教学目标1、知识与技能会应用平方差公式进行因式分解,发展学生推理能力。
2、过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性。
3、情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值。
重、难点与关键1、重点:利用平方差公式分解因式。
初中数学因式分解教案

初中数学因式分解教案一、教学目标:1. 知识与技能:学生能够理解因式分解的概念,掌握提公因式法、公式法等基本的因式分解方法,并能够运用这些方法解决实际问题。
2. 过程与方法:通过观察、分析、归纳等数学活动,培养学生的逻辑思维能力和数学表达能力,提高学生解决数学问题的能力。
3. 情感态度价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学的价值和魅力。
二、教学重难点:1. 教学重点:掌握因式分解的基本方法,能够运用提公因式法、公式法等进行因式分解。
2. 教学难点:如何正确找出多项式各项的公因式,以及如何确定提公因式后的另外一个因式。
三、教学过程:1. 引入新课:通过复习多项式乘法,引导学生思考:如何将一个多项式化为几个整式的积的形式?从而引出因式分解的概念。
2. 探索新知:(1) 提公因式法:引导学生观察两个多项式的乘积,找出它们之间的公因式,并将公因式提出来。
例如,分解因式:x^2 - 4x + 4,我们可以先提出公因式x,得到x(x - 4),然后再利用平方差公式进行进一步分解。
(2) 公式法:引导学生掌握平方差公式和完全平方公式,并能够运用这两个公式进行因式分解。
例如,分解因式:x^2 - 9,我们可以利用平方差公式a^2 - b^2 = (a + b)(a - b)进行分解,得到(x + 3)(x - 3)。
3. 巩固练习:提供一些练习题,让学生运用所学的因式分解方法进行解答,巩固所学知识。
4. 课堂小结:总结本节课所学的因式分解方法,强调提公因式法和公式法在因式分解中的应用,以及正确找出多项式各项的公因式和确定提公因式后的另外一个因式的方法。
四、课后作业:1. 完成教材后的相关练习题。
2. 总结因式分解的方法和技巧,写一篇关于因式分解的心得体会。
通过以上教学设计,希望能够帮助学生掌握因式分解的基本方法,提高学生解决数学问题的能力,激发学生学习数学的兴趣。
因式分解优秀教案

因式分解优秀教案因式分解优秀教案(精选5篇)作为一无名无私奉献的教育工作者,可能需要进行教案编写工作,编写教案有利于我们科学、合理地支配课堂时间。
那么优秀的教案是什么样的呢?以下是店铺为大家整理的因式分解优秀教案(精选5篇),欢迎阅读,希望大家能够喜欢。
因式分解优秀教案篇1教学目标:1、进一步巩固因式分解的概念;2、巩固因式分解常用的三种方法3、选择恰当的方法进行因式分解4、应用因式分解来解决一些实际问题5、体验应用知识解决问题的乐趣教学重点:灵活运用因式分解解决问题教学难点:灵活运用恰当的因式分解的方法,拓展练习2、3教学过程:一、创设情景:若a=101,b=99,求a2-b2的值利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。
二、知识回顾1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式.判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)(1).x2-4y2=(x+2y)(x-2y) 因式分解 (2).2x(x-3y)=2x2-6xy 整式乘法(3).(5a-1)2=25a2-10a+1 整式乘法 (4).x2+4x+4=(x+2)2 因式分解(5).(a-3)(a+3)=a2-9 整式乘法 (6).m2-4=(m+4)(m-4) 因式分解(7).2πR+2πr=2π(R+r) 因式分解2、.规律总结(教师讲解): 分解因式与整式乘法是互逆过程.分解因式要注意以下几点: (1).分解的对象必须是多项式.(2).分解的结果一定是几个整式的乘积的形式. (3).要分解到不能分解为止.3、因式分解的方法提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1) 公因式的概念;公因式的求法公式法: 平方差公式:a2-b2=(a+b)(a-b) 完全平方公式:a2+2ab+b2=(a+b)24、强化训练试一试把下列各式因式分解:(1).1-x2=(1+x)(1-x) (2).4a2+4a+1=(2a+1)2(3).4x2-8x=4x(x-2) (4).2x2y-6xy2 =2xy(x-3y)三、例题讲解例1、分解因式(1)-x3y3+x2y+xy (2)6(x-2)+2x(2-x)(3) (4)y2+y+例2、分解因式1、a3-ab2=2、(a-b)(x-y)-(b-a)(x+y)=3、(a+b) 2+2(a+b)-15=4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=例3、分解因式1、72-2(13x-7) 22、8a2b2-2a4b-8b3三、知识应用1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)3、解方程:(1)x2=5x (2) (x-2)2=(2x+1)24、.若x=-3,求20x2-60x的值.5、1993-199能被200整除吗?还能被哪些整数整除?四、拓展应用1.计算:7652×17-2352×17 解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)2、20042+2004被2005整除吗?3、若n是整数,证明(2n+1)2-(2n-1)2是8的倍数.五、课堂小结:今天你对因式分解又有哪些新的认识?因式分解优秀教案篇2教学目标:1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式综合应用;能利用平方差公式法解决实际问题。
《21.2.3 因式分解法》学历案-初中数学人教版12九年级上册

《因式分解法》学历案(第一课时)一、学习主题本课学习主题为“因式分解法”,是初中数学中代数运算的重要一环。
通过本课的学习,学生将掌握因式分解的基本概念、方法和技巧,为后续学习解一元二次方程、分式等知识打下基础。
二、学习目标1. 理解因式分解的概念,能正确表述因式分解的意义。
2. 掌握因式分解的基本方法,如提公因式法、平方差公式法等。
3. 学会运用因式分解法解决简单的数学问题,如计算代数式的值、解一元二次方程等。
4. 培养学生的数学思维能力和解题技巧,提高学生的代数运算能力。
三、评价任务1. 通过课堂互动,评价学生对因式分解概念的掌握情况。
2. 通过练习题,评价学生对因式分解基本方法的运用能力。
3. 通过学生的作业和课堂表现,评价学生的学习态度和解题思路。
四、学习过程1. 导入新课:通过回顾之前学习的整式运算知识,引出因式分解的概念,让学生明确本课的学习目标。
2. 新课讲解:首先,讲解因式分解的概念和意义,让学生明确因式分解是将一个多项式写成几个整式的乘积的形式。
然后,介绍因式分解的基本方法,如提公因式法、平方差公式法等,并配合具体的例子进行讲解。
3. 课堂练习:让学生完成一些因式分解的练习题,教师巡视指导,及时解答学生的疑问。
4. 归纳总结:总结因式分解的方法和技巧,强调解题时的注意事项,让学生形成系统的知识体系。
5. 布置作业:布置一些因式分解的练习题,让学生回家后继续巩固练习。
五、检测与作业1. 检测:通过课堂小测验或课后作业,检测学生对因式分解基本方法的掌握情况。
2. 作业:布置适量的因式分解练习题,包括填空题、选择题和解答题等,让学生在家中继续巩固练习。
3. 反馈:及时批改作业,了解学生的学习情况,对出现的问题进行针对性的讲解和辅导。
六、学后反思1. 教师反思:教师应对本课的教学过程进行反思,总结教学中的优点和不足,为今后的教学提供借鉴和改进的方向。
2. 学生反思:学生应反思自己的学习过程和方法,总结自己在因式分解方面的不足和需要改进的地方,以便更好地进行后续学习。
《因式分解》教学设计范文(精选10篇)

《因式分解》教学设计范文(精选10篇)《因式分解》教学设计 1教学目标认知目标:(1)理解因式分解的概念和意义(2)认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
能力目标:由学生自行探求解题途径,培养学生观察、分析、判断能力和创新能力,发展学生智能,深化学生逆向思维能力和综合运用能力。
情感目标:培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。
目标制定的思想1.目标具体化、明确化,从学生实际出发,具有针对性和可行性,同时便于上课操作,便于检测和及时反馈。
2.课堂教学体现能力立意。
3.寓德育教学方法1采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习积极性。
2把因式分解概念及其与整式乘法的关系作为主线,训练学生思维,以设疑——感知——概括——运用为教学程序,充分遵循学生的认知规律,使学生能顺利地掌握重点,突破难点,提高能力。
3在课堂教学中,引导学生体会知识的发生发展过程,坚持启发式,鼓励学生充分地动脑、动口、动手,积极参与到教学中来,充分体现了学生的主动性原则。
4在充分尊重教材的前提下,融教材练习、想一想于教学过程中,增设了由浅入深、各不相同却又紧密相关的训练题目,为学生顺利掌握因式分解概念及其与整式乘法关系创造了有利条件。
教学过程安排一、提出问题,创设情境问题:看谁算得快?(1)若a=101,b=99,则a2-b2=(a+b)(a-b)=(101+99)(101-99)=400(2)若a=99,b=-1,则a2-2ab+b2=(a-b) 2=(99+1)2 =10000(3)若x=-3,则20x2+60x=20x(x+3)=20x(-3)(-3+3)=0二、观察分析,探究新知(1)请每题想得最快的同学谈思路,得出最佳解题方法(2)观察:a2-b2=(a+b)(a-b) ①的左边是一个什么式子?右边又是什么形式? a2-2ab+b2 =(a-b) 2 ②20x2+60x=20x(x+3) ③(3)类比小学学过的因数分解概念,(例42=2某3某7 ④)得出因式分解概念。
初中数学教学课例《因式分解(提公因式法)》课程思政核心素养教学设计及总结反思

的巩固对因式分解,特别是提公因式法理解并学会应
用。
课例研究综
在整个教学教程中,学生均处于主导地位,教师只
述
是从旁引,学生对于由自己推导出性质定理感到非常兴
奋。尽管新旧两种教法的对比上,新课程的教学不一定 马上显露出强劲的优势,甚至可能因为强化练习较少, 在短时间内,学生的成绩比不上传统教法的学生成绩, 但从长远目标看来,这种对数学本质的训练会有效地提 高学生的数学素养,培养出学生对数学本质的理解,而 不仅仅是停留在对数学的机械模仿记忆的层面上。总 之,教学的着眼点,不是熟练技能,而是发展思维,使 学生在学习的情感态度与价值观上发生深刻的变化.再 教设计:在探索及运用提公因式法进行分解因式时,应 该让学生多练习一些有关幂的运算中应用提公因式法 (因式分解)的题目,更加容易加深学生的理解,以及 拓展应用提公因式法进行因式分解。
初中数学教学课例《因式分解(提公因式法)》教学设计及 总结反思
学科
初中数学
教学课例名
《因式分解(提公因式法)》
称
本节课选自人教版数学八年级上册第十五章第四
节第一个内容。因式分解是进行代数恒等变形的重要手
段之一,它在以后的代数学习中有着重要的应用,因此
学好因式分解对于代数知识的后继学习具有相当重要 教材分析
第一组式子的观察得出第二组式子的结果,然后通过对 这两组式子的结果的比较,使学生对因式分解有一个初 步的意识,由整式乘法的逆运算逐步过渡到因式分解, 发展学生的逆向思维能力。
活动 4:归纳、得出新知 比较以下两种运算的联系与区别: (1)a(a+1)(a-1)=a3-a(2)a3-a=a(a+1)(a-1) 在第三环节的运算中还有其它类似的例子吗?除 此之外,你还能找到类似的例子吗? 结论:把一个多项式化成几个整式的积的形式,这 种变形叫做把这个多项式因式分解。其中,把多项式中 各项的公因式提取出来做为积的一个因式,多项式各项 剩下部分做为积的另一个因式这种因式分解的方法叫 做提公因式法。 辨一辨:下列变形是因式分解吗?为什么? (1)a+b=b+a(2)4x2y–8xy2+1=4xy(x–y)+1 (3)a(a–b)=a2–ab(4)a2–2ab+b2=(a–b)2 学生讨论、发言对因式分解,特别是提公因式法的 认识、理解、看法,并总结出因式分解、提公因式法的 定义。通过学生的讨论,使学生更清楚以下事实:(1) 分解因式与整式的乘法是一种互逆关系;(2)分解因 式的结果要以积的形式表示;(3)每个因来的多项式的次
初中数学人教版九年级上册:因式分解法 教案

21.2.3因式分解法【教学目标】知识技能1.了解因式分解的概念2.会利用因式分解法解某些简单数字系数的一元二次方程情感态度1.学会和他人合作,并能与他人交流思维的过程和结果2.积极探索不同的解法,并和同伴交流,勇于发表自己的观点,从交流中发现最优方法,在学习活动中获得成功的体验,建立学好数学的自信心重点难点重点应用因式分解法解一元二次方程难点将方程化为一般形式后,对方程左侧二次三项式进行因式分解活动1复习引入问题(学生活动)解下列方程.(1)220x x (用配方法),(2)2360x x (用公式法).(3)要使一块矩形场地的长比宽多3m ,并且面积为228m ,场地的长和宽应各是多少?(4)如何设未知数并根据题目的等量关系列出方程?(5)所列方程和以前我们学习的方程2692x x 有何联系和区别?(6)你能由方程2692x x 的解法联想到怎样解方程23280x x 吗?活动2实验发现思考:(1)210x x (),(2)320x x ().问题:(1)你能观察出这两题的特点吗?(2)你知道方程的解吗?说说你的理由.因式分解的理论依据是:两个因式的积等于零,那么这两个因式的值就至少有一个等于零。
即:若ab=0,则a=0或b=0.由上述过程我们知道:当方程的一边能够分解成两个一次因式的乘积而另一边等于0时,即可解之。
这种方法叫做因式分解法.(3)因式分解法解一元二次方程的步骤:①移项,使方程的右边为零;②将方程的分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解都是原方程的解.活动3用因式分解法解决问题教材第14页例3.补充例题解方程(1)238x x ,(2)24312x x ().分析:(1)移项提取公因式x ;(2)等号右侧移项到左侧得312x -,提取因式-3,即34x -(),再提取公因式x-4,便可达到分解因式的目的,一边为两个一次因式的乘积,另一边为0的形式.解:(1)移项,得2380x x ,因式分解,得380x x (),于是,得0380x x ,或,12803x x,(2)移项,得243120x x (),24340x x ()()因式分解,得4430x x ()()整理,得470x x ()()于是,得4070x x 或1247x x ,活动5课堂小结小结:(1)用因式分解法,即用提取公因式法、平方差公式、完全平方公式等解一元二次方程.(2)三种方法(配方法、公式法、因式分解法)的联系与区别:联系:①降次,它们的解题的基本思想是:将二次方程化为一次方程,即降次。
人教版初中九年级上册数学《因式分解法》教案

21.2.3 因式分解法【知识与技能】1.会用因式分解法(提公因式法、运用公式)解一元二次方程.2.能根据方程的具体特征,灵活选择方程的解法,体会解决问题方法的多样性.【过程与方法】在经历探索用因式分解法解一元二次方程及依据方程特征选择恰当方法解一元二次方程的过程中,进一步锻炼学生的观察能力,分析能力和解决问题能力.【情感态度】通过因式分解法解一元二次方程的探究活动,培养学生勇于探索的良好习惯,感受数学的严谨性及教学方法的多样性.【教学重点】会用因式分解法解一元二次方程.【教学难点】理解并应用因式分解法解一元二次方程.一、情境导入,初步认识问题根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么经过x s物体离地面的高度(单位:m)为10x-4.9x2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01s)想一想你能根据题意列出方程吗?你能想出解此方程的简捷方法吗?【教学说明】让学生通过具体问题寻求解决问题的方法,激发学生求知欲望,引入新课.二、思考探究,获取新知学生通过讨论,交流得出方程为10x-4.9x2=0.在学生用配方法或公式法求出上述方程的解后,教师引导学生尝试找出其简捷解法为:x(10-4.9x)=0. ∴x=0或10-4.9x=0, ∴x1=0,x2=10049≈2.04.从而可知物体被抛出约2.04s后落回到地面.想一想以上解方程的方法是如何使二次方程降为一次方程的?通过学生的讨论、交流可归纳为:当方程的一边为0,而另一边可以分解成两个一次因式的乘积时,利用a·b=0,则a=0或b=0,把一元二次方程变为两个一元一次方程,从而求出方程的解.这种解法称为因式分解法.【教学说明】让学生自主探索,进行归纳总结,既锻炼学生的分析问题,解决问题能力,又能培养总结化归能力,并从中体验转化、降次的思想方法.三、典例精析,掌握新知例1 解下列方程:(1)x(x-2)+x-2=0; (2)5x2-2x-14=x2-2x+34.解:(1)因式分解,得(x-2)(x+1)=0.故有x-2=0或x+1=0.∴x1=2,x2=-1;(2)原方程整理为4x2-1=0.因式分解,得(2x+1)(2x-1)=0.∴2x+1=0或2x-1=0.∴x1=-12,x2=12.想一想以上两个方程可以用配方法或公式法来解决吗?如果可以,请比较它们与因式分解法的优缺点.例2 用适当的方法解下列方程:(1)3x2+x-1=0; (2)2(2x-3)2=12;(3)(3x-2)2=4(3-x)2; (4)(x-1)(x+2)=-2.分析:根据方程的结构特征,灵活选择恰当的方法来求解.【教学说明】以上两例均应先让学生自主完成,最后共同评析,达到深化理解本节知识的目的.教学时,可选派学生代表上黑板完成.对于学生的解法只要合理就应给予肯定,若有更简捷解法时再予以说明.思考请你谈谈解一元二次方程的几种方法的特点,与同伴交流.【归纳结论】1.配方法要先配方,再降次;公式法可直接套用公式;因式分解法要先使方程的一边为0,而另一边能用提公因式法或公式法分解因式,从而将一元二次方程化为两个一次因式的积为0,达到降次目的,从而解出方程;2.配方法、公式法适用于所有一元二次方程,而因式分解法则只适用于某些一元二次方程,不是所有的一元二次方程都适用因式分解法来求解.四、运用新知,深化理解1.用因式分解法解方程,下列方程中正确的是()A.(2x-2)(3x-4)=0,∴2x-2=0或3x-4=0B.(x+3)(x-1)=1,∴x+3=0或x-1=1C.(x+2)(x-3)=6,∴x+2=3或x-3=2D.x(x+2)=0,∴x+2=02.当x= 时,代数式x2-3x的值是-2.3.已知y=x2+x-6,当x= 时,y的值等于0.当x= 时,y的值等于24.(注:4~5题为教材第14页练习)4.解下列方程:(1)x2+x=0; (2)x2-23x=0;(3)3x2-6x=-3; (4)4x2-121=0;(5)3x(2x+1)=4x+2; (6)(x-4)2=(5-2x)2.5.如图,把小圆形场地的半径增加5m得到大圆形场地,场地面积扩大了一倍.求小圆形场地的半径.【教学说明】针对所设置的作业,可因不同的学生分层次布置作业,让每个学生都能参与数学的学习,激发学习热情.【答案】1.A 2.1或2 3.2或-35或-6 4~5略.五、师生互动,课堂小结1.用因式分解法解一元二次方程有哪些优缺点?需注意哪些细节问题?2.通过本节课的学习,你还有哪些收获和体会?【教学说明】设计两个问题引导学生回顾本课知识的学习过程,反思学习过程中的疑惑,查漏补缺,完善认知.1.布置作业:从教材“习题21.2”中选取.2.完成创优作业中本课时练习的“课时作业”部分.1.本节课围绕利用因式分解法解一元二次方程这一重点内容,教师通过问题情境以及学生的合作交流,使学生的问题凸现出来,让学生迅速掌握解题技能,并探讨出解题的一般步骤,使学生知道因式分解法是一元二次方程解法中应用较为广泛的简便方法,提高解题速度.2.学生已经学过多项式的因式分解,所以对本课内容并不陌生,通过本课学习,让学生更能领会因式分解在数学领域的广泛应用.3.本节课有大量的基础计算问题,也有符合不同学生层次的问题,力争让所有学生学有所得,提高课堂效率.4.解一元二次方程是本章教学的重中之重,如何正确选择用不同方法解一元二次方程是关键,本节课中的计算题有一题多解问题,体现了选择“最优化”解方程方法的问题.良好的学习态度能够更好的提高学习能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学《因式分解法》教案教学设计
初中数学《因式分解法》教案教学设计
掌握用因式分解法解一元二次方程.
通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.
重点
用因式分解法解一元二次方程.
难点
让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.
一、复习引入
(学生活动)解下列方程:
(1)2x2+x=0(用配方法)
(2)3x2+6x=0(用公式法)
老师点评:
(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.
(2)直接用公式求解.
二、探索新知
(学生活动)请同学们口答下面各题.
(老师提问)
(1)上面两个方程中有没有常数项?
(2)等式左边的各项有没有共同因式?
(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解.
因此,上面两个方程都可以写成:
(1)x(2x+1)=0
(2)3x(x+2)=0因为两个因式乘积要等于0,至少其中一个因式要等于0,
也就是
(1)x=0或2x+1=0,所以x1=0,x2=-12.
(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的)
因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.
例1
解方程:
(1)10x-4.9x2=0
(2)x(x-2)+x-2=0
(3)5x2-2x-14=x2-2x+34
(3)(x-1)2=(3-2x)2
思考:使用因式分解法解一元二次方程的条件是什么?
解:略
(方程一边为0,另一边可分解为两个一次因式乘积.)
练习:
下面一元二次方程解法中,正确的是()
A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7
B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35
C.(x+2)2+4x=0,∴x1=2,x2=-2
D.D.x2=x,两边同除以x,得x=1
三、巩固练习
教材第14页
练习1,2.
四、课堂小结本节课要掌握:
(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.
(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.
五、作业布置
教材第17页
习题6,8,10,11。