NTC温度传感器检验规程

NTC温度传感器检验规程
NTC温度传感器检验规程

温度传感器的选用

温度传感器的选用 摘要:在各种各样的测量技术中,温度的测量可能是最为常见的一种,因为许多的应用领域,掌握温度的确切数值,了解温度与实际状态之间的差异等,都具有极为重要的意义。就以测量为例,在力的测量,压力,流量,位置及电平高低等测量的过程中,为了提高测量精度,通常都会要求对温度进行监视。可以说,各种的物理量都是温度的函数,要得到精确的测定结果,必须针对温度的变化,作出精确的校正。 关键字:温度传感器热电偶热电阻集成电路 引言: 工业上常用的温度传感器有四类:即热电偶、热电阻RTD、热敏电阻及集成电路温 度传感器;每一类温度传感器有自己独特的温度测量围,有自己适用的温度环境;没有一种温度传感器可以通用于所有的用途:热电偶的可测温度围最宽,而热电阻的测量线性度最优,热敏电阻的测量精度最高。 1、热电偶 热电偶由二根不同的金属线材,将它们一端焊接在一起构成;参考端温度(也称冷补偿端)用来消除铁-铜相联及康铜-铜联接端所贡献的误差;而两种不同金属的焊接端放置于需 要测量温度的目标上。 两种材料这样联接后会在未焊接的一端产生一个电压,电压数值是所有联接端温度的函数,热电偶无需电压或电流激励。实际应用时,如果试图提供电压或电流激励反而会将误差 引进系统。 鉴于热电偶的电压产生于两种不同线材的开路端,其与外界的接口似乎可通过直接测量两导线之间的电压实现;如果热电偶的的两端头不是联接至另外金属,通常是铜,那末事情 真会简单至此。 但热电偶需与另外一种金属联接这一事实,实际上又建立了新的一对热电偶,在系统中引入了极大的误差,消除此误差的唯一办法是检测参考端的温度,以硬件或硬件-软件相结 合的方式将这一联接所贡献的误差减掉,纯硬件消除技术由于线性化校正的因素,比软件-硬件相结合技术受限制更大。一般情况下,参考端温度的精确检测用热电阻RTD,热敏电 阻或是集成电路温度传感器进行。原则上说,热电偶可由任意的两种不同金属构建而成,但在实践中,构成热电偶的两种金属组合已经标准化,因为标准组合的线性度及所产生的电压与温度的关系更趋理想。 表3与图2是常用的热电偶E,J,T,K,N,S,B R的特性。

NTC热敏电阻温度传感器

APPLICATIONS Temperature test in all kinds of air-condition,refrigerator,water boiler,microwave oven. PART NUMBERING FEATURES High precision and high stability Quick temperature response Resistant to heat shock Moisture resistant Excellent quality and high stability Guang Dong Fenghua Advanced Technology (Holding)Co.,LTD.code NTC NTC temperature sensors code 25 Rated zero-power resistance R unit: The first two are significant figure of resistance and the third one expresses number of following zeros 25 FH -CWF XXX X XXXX X X /XXXX X % Tolerance of R % 25 B B value Code B %Tolerance of B value % B B value Temperature Code Length of the sensor unit:mm Termination shape code NTC NTC THERMISTOR TEMPERATURE SENSORS

热电阻温度传感器规范

热电阻温度传感器总规范SJ 20722-1998 中华人民共和国电子行业军用标准 热电阻温度传感器总规范SJ 20722-1998 General specification for temperature transducers for thermal resistance 1范围 1.1主题内容 本规范规定了军用温度传感器的通用要求、质量保证规定、试验方法和包装、贮存、运输要求。 1.2适用范围 本规范适用于热电阻温度传感器(以下简称传感器),其它温度传感器亦可参照采用。 1.3分类 按金属热电阻的种类划分如下: a.铂电阻; b.铜电阻; c.镍电阻; d.合金电阻; e.其它。 2引用文件 GB 191一90 包装储运图示标志 GB 7665—87传感器通用术语 GB 7666—87传感器命名方法及代号 GJB 145A一93封存包装通则 GJB 150.1—86军用设备环境试验方法总则 GJB 150.3—86军用设备环境试验方法高温试验 GJB 150.4—86军用设备环境试验方法低温试验 GJB 150.5—86军用设备环境试验方法温度冲击试验 GJB 150.9- 86军用设备环境试验方法湿热试验 GJB 150.10-86军用设备环境试验方法霉菌试验 GJB 150.11—86军用设备环境试验方法盐雾试验 GJB 150.16—86军用设备环境试验方法振动试验

GJB 150.18—86军用设备环境试验方法冲击试验 GJB 150.20—86军用设备环境试验方法飞机炮振试验 GJB 179A—96计数抽样检查程序及表 GJB 2712—96测量设备的质量保证要求计量确认体系 JJG 1007—87温度计量名词术语 3要求 3.1详细规范 传感器的个性要求应符合本规范和相应详细规范的规定。如果本规范的要求和详细规范的要求相抵触,应以详细规范为准。 3.2合格鉴定 按本规范提交的传感器应是经鉴定合格或定婆}批准的产品。 3.3材料 应使用能使传感器满足本规范性能要求的材料,并在详细规范中规定要求。 3.3.1金属 传感器所用的金属材料应能耐腐蚀。 3.3.2非金属 各种非金属材料在本规范规定的环境条件下使用时,不应危害人员的健康。 3.4设计和结构 传感器的设计、结构和物理尺寸应符合规定(见3.1)。 3.5测温范围 传感器的测温范围应符合规定(见3.1)。 3.6允差(或准确度) 当按4.6.2规定进行试验时,传感器的允差(或准确度)应符合规定(见3.1)。 3.7绝缘电组 当按4.6.3规定进行试验时,传感器在正常环境条件下,各引出端与壳体或保护装置之间的绝缘电阻应不小于20MΩ(1OOV DC)。 3.8热响应时间(适用时) 当按4.6.4规定进行试验时,传感器的热响应时间应符合规定(见3.1)。 3.9自热(适用时) 当按4.6.5规定进行试验时,传感器产生不超过0.30℃自热温升的最大耗散功率值应符合规定(见3.1)。 3.10高温 当按4.6.6规定进行试验后,传感器的外观应无可见损伤,传感器允差(或准确度)应符合规定(见3.1)。3.11低温

温度传感器技术条件

NTC热敏电阻温度传感器 Q/HKT01-2001 1.范围 本标准规定了NTC热敏电阻温度传感器的分类,技术要求,试验方法,检验规则及标志,包裹,运输与贮存。 2.引用标准 下列标准包含的条文,通过在本标准中引用成为标准的条文。在本标准出版时,所示版本均为有效。所有标准都会被修订。使用标准的各方应探讨,使用下列标准的最新标准的可能性。 GB/T2423.1-1989 电工电子产品基本环境及试验规程,试验A:低温试验方法;GB/T2423.2-1989 电工电子产品基本环境及试验规程,试验B:高温试验方法;GB/T2423.3-1989 电工电子产品基本环境及试验规程,试验Ca:恒定湿热试验方法; GB/T2423.8-1995 电工电子产品环境.第二部分,试验方法,试验Ed:自由落体;GB/T2423.10-1995 电工电子产品基本环境,第二部分,试验方法:试验Fc和导则,振动(正弦); GB/T2423.17-1993电工电子产品基本环境及试验规程,试验Ka:盐雾试验方法;GB/T2423.22-1987电工电子产品基本环境及试验规程,试验N:温度变化试验方法; GB/T2423.29-1982电工电子产品基本环境及试验规程,第二部分,试验I:引出端及整体安装件强度; GB/6663-1986直热式负温度系数热敏电阻器总规范; GB/6664-1986直热式负温度系数热敏电阻器空白详细规范,评定水平; GB/2828-1987逐批检查计数抽样程序及抽样表(适用于连续批的检查); GB/2819-1987周期检查计数抽样程序及抽样表(适用于生产过程稳定性的检查)。 3.型号及含义 K □□□□□□□□□□ ①②③④⑤⑥⑦ ①公司标志; ②NTC热敏电阻类型: C:片式工作温度:-30℃~ +90℃; H:玻封二极管型工作温度: -30℃~ +200℃;

选择ntc温度传感器的注意事项

ntc温度传感器是温度测量仪表的核心部分,品种繁多。我们在选购ntc温度传感器的时候需要通过多个方面来考虑,如果选购的ntc温度传感器不合适在使用的时候很容易造成一定的损坏。那么我们具体要怎样选用呢?下面就让艾驰商城小编对选择ntc温度传感器的注意事项来一一为大家做介绍吧。 一是要根据应用的工作温度范围不同来选材.ntc温度传感器作为测温用的敏感元器件。根据其工作温度范围的不同来选择不同的材质至关重要。传感器一般由感温头(金属外壳或塑胶外壳),线材,端子及连接器,环氧树脂或其他填充材料等组成。要根据不同的工作环境温度来选择不同的材质。如:工作温度在105度以内的,我们会选用耐温105度pvc线,工作温度到125度的,我们会选用耐温125度左右的辐照线,温度高达200度时,我们会选用铁氟龙线或硅胶线。 二是要根据工作场合所要求测温的精度来选型。精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以。决定ntc温度传感器精度的有两个因素:一是热敏电阻本身的误差。热敏电阻的阻值误差,b值误差越小,测量精度越高。二是传感器的感温头与测温对象的接触方式。直接接触的比间接接触的测量精度要高。另因ntc热敏电阻的r-t曲线是非线性的。它不可能保证在很宽的工作温度范围内的精度都是一样的。因此,要想得到较高的测量精度。选定工作场合的中心工作温度点(一般中心工作温度点精度最高,根据r-t曲线的离散性,离中心工作温点越远的温度点,精度误差会逐渐加大)。如:用于测人体体温的传感器,一般会选择37度左右作为中心工作温度点。 三是要根据所使用的工作场合所要求的灵敏度来选型。不同的应用场合要求ntc温度传感器的响应速度快慢不一。而不同的材料有不同的导热系数。. 影响ntc温度传感器响应速度的有几个因素:,一是热敏电阻芯片的热时间常数。热时间常数小的,响应速度快。二是感温头外壳材质的导热系数,。导热系数高的材料热传导性能优良。三是感温头尺寸的大小,感温头尺寸小的,热传导时间会相应短,反应速度会快一点。四是感温头内部填充的导热胶。感温头内填充了导热系数高的导热硅脂的会比没填充\填充了导热系数低的导热硅脂反应速度快。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.360docs.net/doc/019032869.html,/

温度传感器的连接与信号获取

情景五 温度传感器的连接与信号获取 任务1:炉温检测 5.1.1任务目标 使学生了解炉温检测器件、测温范围和测温电路。 5.1.2任务内容 针对炉温检测要求,确定温度传感器。分析制定安装位置、实施效果检测方案,成本分析。学生现场安装、连接和调测传感器电路。 5.1.3知识点 热电偶传感器是一种自发电式传感器,测量时不需要外加电源,直接将被测量转换成电势输出。使用十分方便,常被用作测量炉子、管道内的气体或液体的温度及固体的表面温度。它的测温范围很广,常用的热电偶测温范围为-50℃~+1600℃,某些特殊热电偶最低可测-270℃,最高可达+2800℃。 它具有结构简单、制造方便、测量范围广、精度高、惯性小和输出信号便于远传等许多优点。 一、热电偶的外形结构、种类和特性 (一)常用热电偶的外形 各种普通装配型热电偶的外形如下图所示。 各种普通装配型热电偶 接线盒 引出线套管 不锈钢保护套管 热电偶工作端 固定螺纹

各种铠装型热电偶的外形如下图所示。 各种防爆型热电偶的外形如图所示。 (二)热电偶的结构 接线盒固定装置 B -B 金属导管绝缘材料 A 放大 A B B 各种防爆型热电偶 (a ) (b ) 热电偶的结构 (a )普通热电偶;(b )铠装热电偶 各种铠装型热电偶

(三)热电偶的分类 1.热电偶的结构分类: (1)普通热电偶: 普通热电偶一般由热电极、绝缘套管、保护套管和接线盒等几部分组成。常用于测量气体、蒸气和各种液体等介质的温度。 (2)铠装热电偶: 铠装热电偶又称缆式热电偶,此种热电偶是将热电极、绝缘材料连同保护管一起拉制成型,经焊接密封和装配等工艺制成的坚实的组合体。可做得很细、很长,可弯曲,外径小到1~3mm。主要特点是测量端热容量小、动态响应快、绕性好、强度高。 2.热电偶的种类: (1)标准型热电偶: 标准型热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶。标准热电偶有配套显示仪表可供选用。 国际电工委员会(IEC)向世界各国推荐了8种热电偶作为标准型热电偶。表2-1是它们的基本特性。热电偶名称的含义如下: 标准型热电偶及基本特性

NTC温度传感器及其他温度传感器的测量

NTC温度传感器及其他温度传感器的测量 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC的温度等等,下面介绍几种常用的温度传感器。 温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。 热敏电阻器 用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。 表1是一个典型的NTC热敏电阻器性能参数。 ? 这些数据是对热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为14.050KΩ。 ? 图1是热敏电阻的温度曲线,可以看到电阻/温度曲线是非线性的。 虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下: ? 这里T指开氏绝对温度,A、B、C、D是常数,根据热敏电阻的特性而各有不同,这些参数由热敏电阻的制造商提供。 热敏电阻一般有一个误差范围,用来规定样品之间的一致性。根据使用的材料不同,误差值通常在1%至10%之间。有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏电阻比普通的精度要高很多,也要贵得多。 图2是利用热敏电阻测量温度的典型电路。电阻R1将热敏电阻的电压拉升到参

全面了解数字温度传感器规范

全面了解数字温度传感器规范 为了实现最佳性能并确保系统稳健性,就必须要进行系统监控测量。其中一个必需的典型测量项目就是环境温度。使用简单的数字温度传感器进行该测量将为系统设计人员提供如下保证:组件正常工作,系统处于其性能或校准限值范围内,不会使用户遇到危险。 测量结束后,通常由系统中的微控制器对环境温度进行相应调整。系统监控微控制器可以改变风扇速度、关闭非必要系统进程或使系统智能进入省电模式。系统设计人员需全面正确地了解数字温度传感器规范以设计系统,并就测量结果采取最佳措施。另外,全面了解传感器规范将确保在选择数字温度传感器器件时,可做到权衡得当。 当选择数字温度传感器(也称作串行输出温度传感器)时,应考虑的主要规范包括精度、分辨率、功耗、接口和封装。 精度 数字温度传感器精度表示传感器读数和系统实际温度 之间的误差。在产品说明书中,精度指标和温度范围相对应。通常针对不同温度范围,有数个最高精度指标。对于25~

+100℃温度范围来说,±2℃精度是很常见的。Analog Device 公司的ADT75、Maxim公司的DS75、National公司的LM75以及TI的TMP75均具有这种精度节点。但是,还有更高精度的器件。例如,TI的TMP275在120~100℃温度范围内的精度为±0.5℃。 虽然温度精度指标是非常重要的,然而对系统监控应用来说,它并非一定是最为关键的因素。这些应用更重视检测温度变化,而不是确定温度绝对值。 分辨率 数字温度传感器分辨率是描述传感器可检测温度变化细微程度的指标。集成于封装芯片的温度传感器本身就是一种模拟传感器。因此所有数字温度传感器均有一个模数转换器(ADC)。ADC分辨率将决定器件的总体分辨率,分辨率越高,可检测到的温度变化就越细微。 在产品说明书中,分辨率是采用位数和摄氏温度值来表示的。当采用位数来考虑分辨率时,必须多加注意,因为该值可能包括符号位,也可能不包括符号位。此外,该器件的内部电路可能以不同于传感器总体温度范围的值,来确定内部ADC的满量程范围。以摄氏度来表示的分辨率是一种更直接分辨率值,采用该数值可进行设计分析。

各种温度传感器分类及其原理.

各种温度传感器分类及其原理

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化,在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1.热电偶的工作原理 当有两种不同的导体和半导体A和B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端或冷端,则回路中就有电流产生,如图2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向, 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势:热电偶测量的热电势是二者的合成。当回路断开时,在断开处a,b 之间便有一电动势差△ V,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由A流向B时,称A为正极,B 为负极。实验表明,当△ V很小时,△ V与厶T成正比关系。定义△ V对厶T 的微分热电势为热电势率,又称塞贝克系数。

线性ntc温度传感器的工作原理及应用

线性ntc温度传感器的工作原理及应用 线性温度传感器是线性化输出负温度系数(简称ntc)热敏元件,它实际上是一种线性温度-电压转换元件,就是说通以工作电流(100ua)条件下,元件电压值随温度呈线性变化,实现了非电量到电量线性转换。 线性ntc温度传感器的主要特点就是工作温度范围内温度-电压关系为一直线,这二次开发测温、控温电路设计,将无须线性化处理,就可以完成测温或控温电路设计,简化仪表设计和调试。 延长线选用应遵循的原则: 一般-200~+20℃、-50~+100℃宜选用普通双胶线;100~200℃范围内应选用高温线。基准电压的含义: 基准电压是指传感器置于0℃温场(冰水混合物),通以工作电流(100μa)条件下,传感器上电压值。实际上就是0点电压。其表示符号为v(0),该值出厂时标定,传感器温度系数s相同,则知道基准电压值v(0),即可求知任何温度点上传感器电压值,而不必对传感器进行分度。其计算公式为: v(t)=v(0)+s×t 示例:如基准电压v(0)=700mv;温度系数s=-2mv/℃,则50℃时,传感器输出电压v (50)=700—2×50=600(mv)。这一点正是线性温度传感器优于其它温度传感器可贵之处。 线性ntc温度传感器测温范围规定: 就总而言,测温范围可-200~+200℃之间,但考虑实际需要,一般无须如此宽温度范围,规定三个不同区段,以适应不同封装设计,同时延长线选用上亦有所不同。而温度补偿专用线性热敏元件,则只设定工作温度范围为-40℃~+80℃。完全可以满足一般电路温度补偿之用。 温度系数s的含义: 温度系数s是指规定工作条件下,传感器输出电压值变化与温度变化比值,即温度每变化

常用温度传感器的对比分析及选择

常用温度传感器的对比分析及选择 大致的要点: 1.温度传感器概述:应用领域,重要性; 2.四种主要的温度传感器类型的横向比较 3.热电偶传感器 4.热电阻传感器 5.热敏电阻传感器 6.集成电路温度传感器以及典型产品举例 7.温度传感器的正确选择及应用 在各种各样的测量技术中,温度的测量可能是最为常见的一种,因为任何的应用领域,掌握温度的确切数值,了解温度与实际状态之间的差异等,都具有极为重要的意义。就以测量为例,在力的测量,压力,流量,位置及电平高低等测量的过程中,为了提高测量精度,通常都会要求对温度进行监视,如压力或力的测量,往往是使用惠斯登电阻电桥,但组成电桥的电阻随温度变化引起的误差,往往会大大超过待测力引起的电阻值变化,如不对温度进行监控并据此校正测量结果,则测量完全不可能进行或者毫无效果。其他参数测量也有类似问题,可以说,各种的物理量都是温度的函数,要得到精确的测定结果,必须针对温度的变化,作出精确的校正。本文就是帮助读者针对特定的用途,选择最为合适的温度传感器,并进行精确的温度测量。 工业上常用的温度传感器有四类:即热电偶、热电阻RTD、热敏电阻及集成电路温度传感器;每一类温度传感器有自己独特的温度测量范围,有自己适用的温度环境;没有一种温度传感器可以通用于所有的用途:热电偶的可测温度范围最宽,而热电阻的测量线性度最优,热敏电阻的测量精度最高。表1是四类传感器的各自独特的性能特性及相互比较。表2是四类传感器的典型应用领域。

热电偶--通用而经济 热电偶由二根不同的金属线材,将它们一端焊接在一起构成,如图1所示;参考端温度(也称冷补偿端)用来消除铁-铜相联及康铜-铜联接端所贡献的误差;而两种不同金属的焊接端放置于需要测量温度的目标上。 两种材料这样联接后会在未焊接的一端产生一个电压,电压数值是所有联接端温度的函数,热电偶无需电压或电流激励。实际应用时,如果试图提供电压或电流激励反而会将误差引进系统。 鉴于热电偶的电压产生于两种不同线材的开路端,其与外界的接口似乎可通过直接测量两导线之间的电压实现;如果热电偶的的两端头不是联接至另外金属,通常是铜,那末事情真会简单至此。 但热电偶需与另外一种金属联接这一事实,实际上又建立了新的一对热电偶,在系统中引入了极大的误差,消除此误差的唯一办法是检测参考端的温度(参见图1),以硬件或硬件-软件相结合的方式将这一联接所贡献的误差减掉,纯硬件消除技术由于线性化校正的因素,比软件-硬件相结合技术受限制更大。一般情况下,参考端温度的精确检测用热电阻RTD,热敏电阻或是集成电路温度传感器进行。原则上说,热电偶可由任意的两种不同金属构建而成,但在实践中,构成热电偶的两种金属组合已经标准化,因为标准组合的线性度及所产生的电压与温度的关系更趋理想。 表3与图2是常用的热电偶E,J,T,K,N,S,B R的特性。

NTC热敏电阻、温度传感器产品选型方法与应用.

NTC热敏电阻/温度传感器产品选型方法与应用 NTC是Negative Temperature Coefficient的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以过渡金属氧化物为主要原材料,采用先进陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在100~1000000欧姆,温度系数-2%~-6.5%。禾用这些特性,NTC热敏电阻器/温度传感器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 其阻值随温度变化的特性下: [A]、非线性的温度特性[B]、丫轴为对数坐标时非常接近实际的温度特性正:面方下以虑考要需器感传度/温阻电敏热CTN型选确 、首先明确产品应用功能: 1. 温度测量

2. 温度补偿 3. 浪涌电流抑制 点击了解更多:温度测量、控制用NTC 热敏电阻器/温度传感器―― 工作原理和应用电路温度补偿NTC 热敏电阻器/温度传感器―― 工作原理和应用电路浪涌电流抑制NTC 热敏电阻器/温度传感器―― 工作原理和应用电路 二.按产品应用场合分类: 1. 汽车:VT 系列——汽车温度传感器用热敏电阻 DTV 系列——汽车温度传感器用NTC 热敏芯片 VTS 系列——交通工具温度传感器/温度开关 2. 医疗:MT 系列——医疗设备温度传感器用NTC 热敏电阻 DTM 系列——医疗温度传感器用NTC 热敏芯片 IT 系列——电子温度计NTC 温度传感器 3. 家电:TS 系列——NTC 温度传感器 BT系列一一绝缘引线型NTC温度传感器 4. 通讯:CT 系列——片式负温度系数热敏电阻 AT系列一一非绝缘引线插件NTC热敏电阻 5. 计算机及办公自动化设备: OT 系列——办公自动化NTC 热敏电阻/温度传感器 GT系列一一玻璃封装NTC热敏电阻

温度传感器标准

文件编号 发文日期ROSH.温度传感器标准 页数:共6页 版本:A版 零件名称:ROHS.温度传感器 零件描述:温度传感器系列

供应商库存是否能消耗修改人修改时间执行时间 更改页序号更改内容

目录 序号页 1 使用范围 3 2 引用标准 3 3 技术要求 3 3.1 外形尺寸 3 3.2 材料结构 3 3.3 工作特性 3 3. 4 命名规则 3.5 电气参数 4 检验与测试4-5 5 包装及其他要求 5 6 附录 6

1 适用范围 本标准规定了ROHS.R(25℃)=50K Ω±1%, B25℃/50℃=3950系列温度传感器外形、材质、机械参数、电气参数、检验与测试、包装、贮存等要求。 2 引用标准 研发电路设计需要。 3 技术要求 3.1 温度传感器外形结构尺寸 单位:mm 3.2 材料结构尺寸 物料编码 A B C D XH 端子颜色 30±3mm 25 mm 435±5 mm 525±10 mm 白色 30±3mm 25 mm 1110±10 mm 1200±10 mm 红色 30±3mm 25 mm 435±5 mm 525±10 mm 红色 30±3mm 25 mm 660±10 mm 750±10 mm 红色 30±3 mm 25 mm 935±10 mm 1025±10 mm 白色 序号 名称 材质/规格 备注 1 负温度系数热敏电阻 R25=50K ,B3950 误差精度:±1% 2 金属外壳 ф5×25mm 铜镀镍 一端封闭,一端用黑色环氧树脂密封 3 导线 24AWG 铁氟龙线(黑色) 耐温:200℃ 4 白色黄蜡管 ф2. 5 —— 5 黑色热缩套管 ф3*30mm 6 端子 XH-2P —— 3.3 工作特性 3.4 命名规则 例如:英 文标号的简写 +长度和插头型号及颜色+零功率电 阻+B 值+长度 温度传感器(ROHS) TS-XH (白-2P)-503-3950-525MM 3.5电气参数 测试项目 参数要求 测试条件 零功率电阻 R(25℃) = 50K Ω±1% 1、 测试温度要求25℃±0.1%,测 试仪表精度≤±0.2%; 2、 质量特性:B 级; 3、 抽样水平:20个; B 值 B25/50 = 3950±1% 1、 测试温度要求25℃±0.1%, 50℃±0.1%,测试仪表精度 ≤±0.2%; 2、 B=Ln(R25/R50)/(1/273.15+50 项目 技术要求 工作温度 -20℃ - +150℃ 最大功率 5mW (MAX ) 耗散系数 δmax :2.5mW/℃ 时间常数 τmax :10S

NTC温度传感器资料

NTC温度传感器 1.什么是线性NTC温度传感器? 线性温度传感器就是线性化输出的负温度系数(简称NTC)热敏元件,它实际上是一种线性温度-电压转换元件,就是说在通过工作电流(100uA)的条件下,元件的电压值随温度呈线性变化,从而实现了非电量到电量的线性转换。 2.线性NTC温度传感器的主要特点是什么? 这种温度传感器其主要特点就是在工作温度范围内温度-电压关系为一直线,这对于二次开发测温、控温电路的设计,将无须线性化处理,就可以完成测温或控温电路的设计,从而简化仪表的设计和调试。 3.线性NTC温度传感器的测温范围是如何规定的? 就总的而言,测温范围可在-200~+200℃之间,但考虑实际的需要,一般无须如此宽的温度范围,因而规定三个不同的区段,以适应不同封装设计,同时在延长线的选用上亦有所不同。而对于温度补偿专用的线性热敏元件,则只设定工作温度范围为-40℃~+80℃。完全可以满足一般电路的温度补偿之用。 4.延长线的选用应遵循什么原则? 一般的在-200~+20℃、-50~+100℃宜选用普通双胶线;在100~200℃范围内应选用高温线。 5.基准电压的含义是什么? 基准电压是指传感器置于0℃的温场(冰水混合物),在通以工作电流(100μA)的条件下,传感器上的电压值。实际上就是0点电压。其表示符号为V(0),该值出厂时标定,由于传感器的温度系数S相同,则只要知道基准电压值V(0),即可求知任何温度点上的传感器电压值,而不必对传感器进行分度。其计算公式为: V(T)=V(0)+S×T 示例:如基准电压V(0)=700mV;温度系数S=-2mV/℃,则在50℃时,传感器的输出电压V(50)=700—2×50=600(mV)。这一点正是线性温度传感器优于其它温度传感器的可贵之处。 6.温度系数S的含义是什么?

温度传感器

5.1 基准温度 5.1.1 由于温度传感器对温度变化很敏感,所以在试验过程中的测量计算涉及到基准温度。除非详细规范中另有规定,基准温度为25℃。 5.1.2 对要求严格的温度控制的所有试验,应把温度传感器浸入保持在基准温度下的均匀搅拌的非导电、无腐蚀性的液体槽中进行。 5.1.3 进行测应保持在测量温度直到温度平衡为止。 5.1.4 当测量不是在规定温度下进行时,其量前,热敏电阻器结果必须校正到规定温度。测量时的环境温度应在试验报告中说明。 5.1.5 测量时,应不使温度传感器受到通风、日光辐射或可能产生误差的其它影响。 5.2 外观检查? 5.2.1 外观及标志 用目测法检查外观、形状、结构、封装应符合要求。标志应清晰完整。 5.2.2 外形和尺寸 ——图纸应给出温度传感器的外形图,以便于识别和区分不同的温度传感器。 ——影响互换性和安装的尺寸及公差应在图纸中标明。全部尺寸应以毫米为单位进行标注。 5.2.3 可见损伤 可见损伤定义为,对于预期的用途来说,降低了温度传感器的使用性的损伤。 5.3 性能试验 5.3.1 B值及额定零功率电阻 按5.4.3要求测量B值规定的温度点的零功率电阻,经计算B值,测量结果应符合表1要求。 5.3.2 电阻温度特性? 按5.4.3要求,根据温度传感器的不同用途,选取-10℃、0℃、7℃、10℃、25℃、32℃、85℃,测量零功率电阻,测量结果应符合经规定程序批准的技术文件。 5.3.3 零功率电阻的测量 零功率电阻值应在基准温度±0.05℃下测量。当测量不是在基准温度下进行时,则按下式换算成基准温度下的值: R T0=R T e B(1/T0-1/T) 式中:R T0---在基准温度T0时温度传感器的零功率电阻值,欧姆; R T---在测量温度T时温度传感器的零功率电阻值,欧姆; T0---基准温度,K; T---测量温度,K;

温度传感器工作原理与类型

温度传感器工作原理与类型 前言:温度传感器热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 一、温度传感器热电偶的应用原理 温度传感器热电偶是工业上最常用的温度检测元件之一。其优点是: ①测量精度高。因温度传感器热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的温度传感器热电偶从-50~+1600℃均可边续测量,某些特殊温度传感器热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。温度传感器热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.温度传感器热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。温度传感器热电偶就是利用这一效应来工作的。 2.温度传感器热电偶的种类及结构形成 (1)温度传感器热电偶的种类 常用温度传感器热电偶可分为标准温度传感器热电偶和非标准温度传感器热电偶两大类。所谓标准温度传感器热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的温度传感器热电偶,它有与其配套的显示仪表可供选用。非标准化温度传感器热电偶在使用范围或数量级上均不及标准化温度传感器热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化温度传感器热电偶我国从1988年1月1日起,温度传感器热电偶

NTC温度传感器的选型指导

NTC温度传感器选型指导 随着智能家居和物联网的不断发展,温度的监测与控制显得至关重要..其中,NTC温度传感器因其可靠性高,反应速度快,样式多样化,性价比高,得到大量的普及推广和应用. NTC温度传感器应用领域广阔,应用环境也各有不同,因此,在设计选型时要遵循以下几个原则: 一是:根据应用的工作温度范围不同来选材..NTC温度传感器作为测温用的敏感元器件.根据其工作温度范围的不同来选择不同的材质至关重要.传感器一般由感温头(金属外壳或塑胶外壳),线材,端子及连接器,环氧树脂或其他填充材料等组成.要根据不同的工作环境温度来选择不同的材质.如:工作温度在105度以内的,我们会选用耐温105度PVC线,工作温度到125度的,我们会选用耐温125度左右的辐照线,温度高达200度时,我们会选用铁氟龙线或硅胶线. 二是要根据工作场合所要求测温的精度来选型.精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以.决定NTC温度传感器精度的有两个因素:一是热敏电阻本身的误差.热敏电阻的阻值误差,B值误差越小,测量精度越高.二是传感器的感温头与测温对象的接触方式.直接接触的比间接接触的测量精度要高.另因NTC热敏电阻的R-T曲线是非线性的.它不可能保证在很宽的工作温度范围内的精度都是一样的.因此,要想得到较高的测量精度.选定工作场合的中心工作温度点(一般中心工作温度点精度最高,根据R-T曲线的离散性,离中心工作温点越远的温度点,精度误差会逐渐加大).如:用于测人体体温的传感器,一般会选择37度左右作为中心工作温度点. 三是:要根据所使用的工作场合所要求的灵敏度来选型.不同的应用场合要求NTC温度传感器的响应速度快慢不一.而不同的材料有不同的导热系数..影响NTC温度传感器响应速度的有几个因素:,一是热敏电阻芯片的热时间常数.热时间常数小的,响应速度快.二是感温头外壳材质的导热系数, .导热系数高的材料热传导性能优良.三是感温头尺寸的大小,感温头尺寸小的,热传导时间会相应短,反应速度会快一点.四是感温头内部填充的导热胶.感温头内填充了导热系数高的导热硅脂的会比没填充\填充了导热系数低的导热硅脂反应速度快. 四是要根据测量对象和测量环境的不同来选型.不同的工作环境,温湿度条件不同.不同的测量对象,也有不同的要求.(如水温的测量,人本体温的测量等),因此,这就需要NTC温度传感器要有良好的绝缘性.在选型时,在考虑工作环境温度范围时,同时要兼顾考虑到工作环境的湿度,有否接触到水或水蒸汽,有否接触到人体,有无耐压要求….不同的材料附着力,密封性及耐温特性都是不一样的.如: NTC 温度传感器最常见的填充材料-----环氧树脂,环氧树脂具有良好的密封性和附着力,,耐温可以高达150度..但它与金属壳的附着力相对塑料材质要弱.相对于与线材的附着力而言,环氧树脂与PVC线的结合致密性最好,辐照线次之,铁氟龙线最差.因此,在选材时,并不是耐温越高的材质越好,只要是满足于工作温度范围的材质,且与填充材料附着力好的材料才是最合适的. 五是NTC温度传感器的稳定性.传感器使用一段时间后,其性能保持不变化的能力称为稳定性。影响传感器长期稳定性的因素除NTC热敏电阻芯片的稳定性,可靠性,传感器本身和结构,还有传感器的使用环境.要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。稳定性的确认从以下三个方面着手:一是,选用高可靠的热敏电阻芯片作为核心.二是选用合理的结构,要有较强的机械强度.三是针对不同的使用环境,选用不同的填充材质. Exsense 电子生产的NTC热敏电阻芯片采用先进的半导体工艺,在稳定性,可靠性方面采购了重大突破.具体表现在三个方面:一是可耐焊试验后阻值变化率控制在0.3%以内,二是冷热冲击后阻值变化率控制在0.3%以内.三是高温老化1000小时后阻值变化率控制在0.35以内.其传感器在结构选择上,根据客户要求设计.采用双重包封工艺,其绝缘性,灵敏度,精度,可靠性均都达到较高的水平. 以下是Exsense电子主推的几款NTC温度传感器(见下图)

温度传感器技术标准(模板)

合肥晶弘电器有限公司企业标准 XXXXXXXXXX 企业技术标准 温度传感器技术标准 编制: 审核: 标审: 会签: 批准: 20XX-X-XX发布 20XX-X-XX实施 XXXXXXXX有限公司发布

目次 前言 (2) 1 目的和范围 (3) 2 规范性引用文件 (3) 3 术语和定义 (3) 4 分类与命名 (4) 5 技术要求 (4) 6 试验方法 (5) 7 检验规则 (8) 8 标志、包装、运输、贮存 (9) 9特别声明 (9) 9 附录A(规范性目录)温度传感器电阻-温度特性 (10) 10附录B(规范性目录)首样品检测报告单模板 (12)

前言 XXXX有限公司技术标准是公司研究院科研管理部发布的标准,作为公司内部使用的技术法规性文件。 本标准与上一版相比的主要变化如下: 1.增加煮沸试验 2.修改首样件封样单模板 3.删除耐焊接热、可焊性试验。 本标准由合肥晶弘电器有限公司提出。 本标准由合肥晶弘电器有限公司研究院科研管理部归口。 本标准由合肥晶弘电器有限公司性能开发部起草。 本标准主要起草人:许明。 本标准于2011年08月首次发布,2011年12月第一次修订,2012.4月第二次修订,2013.3月第三次修订,本次修订为第三次修订。

1 目的和范围 本标准主要规定了温度传感器的技术要求、试验方法、检验规则等内容。 本标准适用于我公司生产的冰箱(柜)产品使用的温度传感器。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 4706.1-2005 家用和类似用途电器的安全第1部分:通用要求 GB 4706.13-2008 家用和类似用途电器的安全通用要求制冷器具、冰淇淋机和制冰机的特殊要求GB/T 191-2008 包装储运图示标志 GB/T 2423.1-2008 电工电子产品基本环境试验第2部分:试验方法试验A:低温试验方法 GB/T 2423.2-2008 电工电子产品基本环境试验第2部分:试验方法试验B:高温试验方法GB/T 2423.3-2006 电工电子产品基本环境试验第2部分:试验方法试验Cab:恒定湿热试验GB/T 2423.8-1995 电工电子产品基本环境第2部分:试验方法试验Ed:自由跌落 GB/T2423.10-2008 电工电子产品基本环境第2部分:试验方法试验Fc:和导则:振动(正弦)GB/T 2423.22-2002 电工电子产品基本环境试验第2部分试验方法N温度变化 GB 5080.7-86 设备可靠性试验恒定失效率假设下的失效率与平均无故障时间的验证试验方案GB/T 2423.29-2002 电工电子产品基本环境试验第2部分试验方法试验U:引出端及整体安装 件强度 GB/T 5095.2-1997 电子设备用机电元件基本试验规程及测量方法 第二部分:一般检查、电连续性、接触电阻测试、绝缘试验和电应力试验2011/65/EU 电子电气设备中限制使用有害物质(RoHS)指令 IEC 62321 电子电气产品RoHS六种限制物质测试方法 SN/T 2003.1 电子电气产品中铅、汞、镉、铬、溴的测定第一部分:X射线荧光光谱定性筛选法 SN/T 2004.3 电子电气产品中六价铬的测定第三部分:二苯碳酰二肼分光光度法 SN/T 2005.2 电子电气产品中多溴联苯和多溴联苯醚的测定第二部分:气相色谱法—质谱法 3 术语和定义 3.1 温度传感器:冰箱上使用的温度传感器是具有负温度系数的热敏电阻。 3.2 B值:两个温度下零功率电阻值的自然对数之差与这两个温度倒数之差的比值。 公式为:B=ln(R T1/R T2)/(1/T1-1/T2) R T1:温度T1时的零功率电阻 R T2:温度T2时的零功率电阻 3.3零功率电阻值: 在规定的温度时,采用引起电阻值变化相对于总的测量误差来说可以忽略不记的测量功率测得的电阻值。 3.4零功率电阻值R25:在25℃条件下,测量的热敏电阻的零功率电阻值。 3.5 耗散系数(δ):热平衡下,单位温度变化所需要消耗的功率。 3.6热时间常数(τ):在零功率条件下,当温度发生突变的时,热敏电阻体温度发生了始末两个温差的63.2%所需的时间。

相关文档
最新文档