传感器原理与应用-第6章-压电式传感器

合集下载

传感器原理及其应用(第二版)部分习题答案

传感器原理及其应用(第二版)部分习题答案

24.875
精品
第1章 传感器的一般特性
4、何为传感器的静态特性?静态特性的主要技术指标有 哪些? 答:传感器的静态特性是在稳态信号作用下的输入输出 特性。 衡量静态特性的重要指标有灵敏度、线性度、迟滞、重 复性、稳定性等。
精品
第1章 传感器的一般特性
5、何为传感器的动态特性?动态特性的主要技术指标有 哪些? 答:传感器的动态特性是传感器在被测量随时间变化的 条件下输入输出关系。动态特性有分为瞬态响应和频率 响应。
第3章 电感式传感器及其应用
(2) 接成单臂电桥后的电桥输出电压值为: U 0 U 2 Z Z 1 2 Z Z 2 1 U 2 Z Z 0 0 Z Z 0 Z Z 0 U 2 2 Z Z 0 2 4 2 1 8 0 5 . 3 5 - 0 . 1 1 7 V
精品
第1章 传感器的一般特性
3、对某传感器进行特性测定所得到的一组输入—输出数 据如下:
输入x:0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 输出y;2.2 4.8 7.6 9.9 12.6 15.2 17.8 20.1 22.1 试计算该传感器的非线性度和灵敏度。
精品
第1章 传感器的一般特性
当衔铁移动Δδ时,单端式传感器的灵敏度△L/△δ为:
k L L 0 0 5 0 4 .5 1 1 0 0 2 3 m H 1 0 .8H /m 3 3 .9 1 2 H /m
若做成差动结构形式,根据差动的变隙式的灵敏度公式 有:
k 差 动 L 2 L 0 0 2 0 5 .5 4 1 0 1 0 2 m 3 H 2 1 .6H /m 6 7 .8 2 4 H /m
故将其做成差动结构后,灵敏精品度将提高一倍。

压电式压力传感器原理及应用

压电式压力传感器原理及应用

压电式压力传感器原理及应用自动化研1302班王民军压电式压力传感器是工业实践中最为常用的一种传感器。

而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也叫压电式压电传感器。

压电式压力传感器可以用来测量发动机内部燃烧压力的测量与真空度的测量。

也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。

它既可以用来测量大的压力,也可以用来测量微小的压力。

一、压电式传感器的工作原理1、压电效应某些离子型晶体电介质(如石英、酒石酸钾钠、钛酸钡等)沿着某一个方向受力而发生机械变形(压缩或伸长)时,其内部将发生极化现象,而在其某些表面上会产生电荷。

当外力去掉后,它又会重新回到不带电的状态,此现象称为“压电效应”。

压电式传感器的原理是基于某些晶体材料的压电效应。

2、压电式压力传感器的特点压电式压力传感器是基于压电效应的传感器。

是一种自发电式和机电转换式传感器。

它的敏感元件由压电材料制成。

压电材料受力后表面产生电荷。

此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。

压电式压力传感器用于测量力和能变换为力的非电物理量,如压力、加速度等(见压电式压力传感器、加速度计)。

压电式压力传感器是利用压电材料的压电效应将被测压力转换为电信号的。

由压电材料制成的压电元件受到压力作用时产生的电荷量与作用力之间呈线性关系:Q=k*S*p。

式中 Q为电荷量;k为压电常数;S为作用面积;p为压力。

通过测量电荷量可知被测压力大小。

压电式压力传感器的工作原理与压电式加速度传感器和力传感器基本相同,不同的是弹性元件是由膜片等把压力转换成集中力,再传给压电元件。

为了保证静态特性及稳定性,通常多采用压电晶片并联。

在压电式压力传感器中常用的压电材料有石英晶体和压电陶瓷,其中石英晶体应用得最为广泛。

二、压电压力传感器等效电路和测量电路在校准用的标准压力传感器或高精度压力传感器中采用石英晶体做压电元件外,一般压电式压力传感器的压电元件材料多为压电陶瓷,也有用高分子材料(如聚偏二氟乙稀)或复合材料的合成膜的。

传感器原理及应用-第6章 - 压电式传感器剖析

传感器原理及应用-第6章 - 压电式传感器剖析

二、压电效应的基本原理
常见的压电材料可分为两类: 压电单晶体和多晶体压电陶瓷。
压电单晶体: 石英(包括天然石英和人造石 英)、水溶性压电晶体(包括酒石酸钾 钠、酒石酸乙烯二铵、酒石酸二钾、 硫酸锤等)。
多晶体压电陶瓷: 钛酸钡压电陶瓷、锆钛酸铅系 压电陶瓷、铌酸盐系压电陶瓷和铌 镁酸铅压电陶瓷等。
天然石英
若在同一切片上,沿机械轴y方向施加应 力,则仍在与x轴垂直的平面上产生电荷为
O
y
q12
d12
a b
Fy
x
b
z
d11
a b
FyxΒιβλιοθήκη yd11 = -d12 ,石英晶体轴对称条件。
产生电荷q11和q12的符号,决定于受压力
c a
还是受拉力。
§6.1 压电效应
二、压电效应的基本原理 4、石英晶体压电效应特点
Fx- -
++
- P1 +
P3 - + x
-
P2
+
- - ++
§6.1 压电效应
二、压电效应的基本原理 2、石英晶体压电效应的微观机理
在x轴的正向出现正电荷,在y、 z方向不出现电荷。
Fx<0 y
Fx- -
+ + Fx
- P1 +
P3 + -
x
-
P2
+
--
++
§6.1 压电效应
二、压电效应的基本原理 2、石英晶体压电效应的微观机理
§6.1 压电效应
二、压电效应的基本原理 5、压电陶瓷的压电效应
压电陶瓷是人工制造的多晶体 压电材料。

传感器技术-第6讲-压电磁敏传感器PPT

传感器技术-第6讲-压电磁敏传感器PPT

2.霍尔元件基本结构
霍尔元件的外形结构图,它由霍尔片、 4根引线和壳体组成,激励电极通常用红色 线,而霍尔电极通常用绿色或黄色线表示。
图3 霍尔元件
3.霍尔元件基本特性
(1)输入电阻和输出电阻
霍尔元件激励电极之间电阻为输入电 阻,霍尔电极输出电势对于电路外部来说 相当于一个电压源,其电源内阻即为输出 电阻。
(c)
P
i
H-
N 电流
图8 磁敏二极管的工作原理示意图
结论:随着磁场大小和方向的变化,可产生 正负输出电压的变化、特别是在较弱的磁场 作用下,可获得较大输出电压。若r区和r区 之外的复合能力之差越大,那么磁敏二极管 的灵敏度就越高。
磁敏二极管反向偏置时,则在 r区仅流 过很微小的电流,显得几乎与磁场无关。因 而二极管两端电压不会因受到磁场作用而有 任何改变。
6.1.3 压电式传感器的应用
1 压电式测力传感器
组成:
主要由石英晶片、绝缘套、电极、上 盖和基座等组成。
2、原理
传感器的上盖为传力元件,当受到外 力作用时,它将产生弹性形变,将力传递 到石英晶片上,利用石英晶片的压电效应 实现力—电转换。绝缘套用于绝缘和定位。
它的测力范围是0~50N,最小分辨率 为0.01N,绝缘阻抗为 2 1014 ,固有频 率为50~60kHz。非线性误差小于±1%。 整个该传感器重为10g,可用于机床动态 切削力的测量。
ΔU/V
2.0
1.6 1.2
3.霍尔式接近开关
利用霍尔效应可以制成开关型传感器。 广泛应用于测转速、制作接近开关等。霍 尔式接近开关主要由霍尔元件、放大电路、 整形电路、输出驱动及稳压电路5部分组成。
由工作特性曲线可见,工作时具有一定的 磁滞特性,可以使开关更可靠工作。图中

传感器原理及工程应用习题参考答案

传感器原理及工程应用习题参考答案

《传感器原理及工程应用》习题答案王丽香第1章 传感与检测技术的理论基础(P26)1-3 用测量范围为-50~150kPa 的压力传感器测量140kPa 的压力时,传感器测得示值为142kPa ,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。

解:已知: 真值L =140kPa 测量值x =142kPa 测量上限=150kPa 测量下限=-50kPa∴ 绝对误差 Δ=x-L=142-140=2(kPa)实际相对误差 %==43.11402≈∆L δ标称相对误差 %==41.11422≈∆x δ引用误差%--=测量上限-测量下限=1)50(1502≈∆γ1-10 对某节流元件(孔板)开孔直径d 20的尺寸进行了15次测量,测量数据如下(单位:mm ):120.42 120.43 120.40 120.42 120.43 120.39 120.30 120.40 120.43 120.41 120.43 120.42 120.39 120.39 120.40试用格拉布斯准则判断上述数据是否含有粗大误差,并写出其测量结果。

解:当n =15时,若取置信概率P =0.95,查表可得格拉布斯系数G =2.41。

则 2072.410.03270.0788()0.104d G mm v σ=⨯=<=-,所以7d 为粗大误差数据,应当剔除。

然后重新计算平均值和标准偏差。

当n =14时,若取置信概率P =0.95,查表可得格拉布斯系数G =2.37。

则 20 2.370.01610.0382()d i G mm v σ=⨯=>,所以其他14个测量值中没有坏值。

计算算术平均值的标准偏差200.0043()mm σσ=== 20330.00430.013()d mm σ=⨯=所以,测量结果为:20(120.4110.013)()(99.73%)d mm P =±=1-14交流电路的电抗数值方程为CL X ωω1-= 当角频率Hz 51=ω,测得电抗1X 为Ω8.0; 当角频率Hz 22=ω,测得电抗2X 为Ω2.0; 当角频率Hz 13=ω,测得电抗3X 为Ω-3.0。

压 电 式 传 感 器

压 电 式 传 感 器
• 串 联 时 , 输 出 总 电 荷 q′ 等 于 单 片 上 的 电 荷 , 输 出 电 压 为 单 片 电 压 的 2 倍 , 总 电 容 应 为单 片 的 1/2。 即
上一页 下一页 返回
6.2压电式传感 器的等效电路和测量 电路
• 由此可见,并连接法虽然输出电荷大,但由于本身电 容 亦 大 , 故 时 间 常 数 大 , 只 适 宜 测量 慢 变 化 信 号 , 并 以 电荷作为输出的情况。串联接法输出电压高,本身电 容 小 , 适 宜 于 以 电压 输 出 的 信 号 和 测 量 电 路 输 入 阻 抗 很 高的情况。
• 电 荷 放 大 器 是 一 个 有 反 馈 电 容 C f 的 高 增 益 运算 放 大 器 。 当 放 大 器 开 环 增 益 A 和 输 入 电 阻 R i 、反 馈 电 阻 R f ( 用 于 防 止 放 大 器 直 流 饱 和 ) 相 当 大时 , 放 大 器 的 输 出 电 压 U o 正 比 于 输 入 电 荷 q , 即当 A 足 够 大 时 , 则 有
下一页 返回
6.1压 电 式 传 感 器 的 工 作 原 理
• 6.1.2 压电材料
• 自然界中的大多数晶体具有压电效应,但压电效应十 分 明 显 的 不 多 。 天 然 形 成 的 石 英 晶体 、 人 工 制 造 的 压 电 陶瓷、锆钛酸铅、钛酸钡等材料是压电效应性能优良 的压电材料。
• 具有压电效应的物质很多,可分为三大类:一是压电 晶 体 ( 单 晶 ) , 它 包 括 压 电 石 英 晶体 和 其 他 单 晶 ; 二 是 压电陶瓷(多晶半导瓷);三是新型压电材料,其中 有 压 电 半 导 体 和 有机 高 分 子 压 电 材 料 两 种 。
• 介 电 常 数 ——— 一 定 形 状 和 尺 寸 的 压 电 元 件 , 固 有 电 容 与 介 电 常 数 有 关 , 而 固 有 频 率 又影 响 着 压 电 传 感 器 的 下 限。

第六章压电传感器

第六章压电传感器

F Poling axis
应力(106 Pa)
20mm Open circuit Voltage F
Q=kF U=Q/C
19
苏州大学城市轨道交通学院
压电材料的应用 高压打火
压电体
20
苏州大学城市轨道交通学院
压电材料的应用 原子力显微镜中的应用 用作微小位移调节探针
high-voltage amplifier
31
苏州大学城市轨道交通学院
压电传感器的信号调节
电荷放大器(一般情况)
-k
ui 等效电路
Cf
C
Q
uo
Q uo = C + Cf + Cf k
qc + qcf = Q
uo = -kui
32
Cui + Cf(ui - uo )= Q
-Cuo /k + Cf(-uo /k - uo )= Q
苏州大学城市轨道交通学院
压电传感器的信号调节
Q uo = C + Cf + Cf k
选用高增益的运放: 电荷放大器的输出电压
K
Q uo = Cf
只与反馈电容的大小、压电体产生的电荷量有关, 而与压电体的电容、电缆的对地电容等无关。
33
苏州大学城市轨道交通学院
压电振动传感器 压电振动传感器
34
苏州大学城市轨道交通学院
37
苏州大学城市轨道交通学院
Typical Frequency Response Curve
low frequency limit determjned by RC roll-off characteristics
Usable Range

第6章 压电式传感器习题

第6章 压电式传感器习题

第6章压电式传感器习题第6章压电式传感器1、为什么压电式传感器不能用于静态测量,只能用于动态测量中?而且是频率越高越好?2、什么是压电效应?试比较石英晶体和压电陶瓷的压电效应3、设计压电式传感器检测电路的基本考虑点是什么,为什么?4、有一压电晶体,其面积为20mm2,厚度为10mm,当受到压力P=10MPa作用时,求产生的电荷量及输出电压:(1)零度X切的纵向石英晶体;(2)利用纵向效应的BaTiO3。

解:由题意知,压电晶体受力为F=PS=10×106×20×10-6=200(N)(1)0°X切割石英晶体,εr=4.5,d11=2.31×10-12C/N 等效电容36120101010205.41085.8---?????==d S C r aεε=7.97×10-14(F)受力F产生电荷Q=d11F=2.31×10-12×200=462×10-2(C)=462pC输出电压()V C Q U a a3141210796.51097.710462?=??==--(2)利用纵向效应的BaTiO3,εr=1900,d33=191×10-12C/N 等效电容361201010102019001085.8---?????==d SC r aεε=33.6×10-12(F)=33.6(pF)受力F产生电荷Q=d33F=191×10-12×200=38200×10-12(C)=3.82×10-8C输出电压()V C Q U a a312810137.1106.331082.3?=??==--5、某压电晶体的电容为1000pF,k q=2.5C/cm,电缆电容C C =3000pF,示波器的输入阻抗为1MΩ和并联电容为50pF,求:(1)压电晶体的电压灵敏度足K u;(2)测量系统的高频响应;(3)如系统允许的测量幅值误差为5%,可测最低频率是多少?(4)如频率为10Hz,允许误差为5%,用并联连接方式,电容值是多大?解:(1)cm V pF cm C C K K a q u/105.21000/5.2/9?===(2)高频(ω→∞)时,其响应i c a q i c a m am u C C C k C C C d F U K++=++==33()cm/V.F cm/C.8121017610503000100052?=?++=-(3)系统的谐振频率()i c a n C C C R++==11τω()()s rad2471050300010001011126=?++?=-由()()2/1/n n am im U U Kωωωωω+==,得()%51/1/2-≤-+=n nωωωωγ(取等号计算)()()[]22/19025.0n nωωωω+=()29025.09025.0nωω+=解出(ω/ωn)2=9.2564→ω/ωn=3.0424ω=3.0424ωn=3.0424×247=751.5(rad/s)f=ω/2π=751.5/2π=119.6(Hz)(4)由上面知,当γ≤5%时,ω/ωn=3.0424当使用频率f=10Hz时,即ω=2πf=2π×10=20π(rad/s)时ωn=ω/3.0424=20π/3.0424=20.65(rad/s)又由ωn=1/RC,则C=1/ωn R=1/(20.65×1×106)=4.84×10-8(F)=4.84?104pF 6、分析压电加速度传感器的频率响应特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

+
+ Fx +
+
+
Fx>0 y
-
+
P1
P3
P2
-
+
在x轴的正向出现负电荷,在y、z 方向依然不出现电荷。
- Fx -x -
-
§6.1 压电效应
二、压电效应的基本原理 2、石英晶体压电效应的微观机理
Fy Fy
§6.1 压电效应
二、压电效应的基本原理
z
3、石英晶体压电效应作用力与电荷关系
若从晶体上沿y方向切下一块晶片,当沿 电轴x方向施加应力时,晶片将产生厚度变形,
第六章 压电式传感器
压电加速度计
压电陶瓷超声换能器
压电陶瓷位移器
压电秤重浮游计
压电警号
第六章 压电式传感器
§6.1 压电效应 §6.2 压电材料 §6.3 压电式传感器等效电路 §6.4 压电式传感器测量电路 §6.5 压电式传感器应用
§6.1 压电效应
一、压电效应的基本概念 F
1、正压电效应
极 化 处 理 后 压 电 陶 瓷 才 具方有向压 电特性。
(a)
极化处理前
(a)
极化处理后
(b)
§6.1 压电效应
Fx- -
++
- P1 +
P3 - + x
-
P2
+
- - ++
§6.1 压电效应
二、压电效应的基本原理 2、石英晶体压电效应的微观机理
在x轴的正向出现正电荷,在y、 z方向不出现电荷。
Fx<0 y
Fx- -
+ + Fx
- P1 +
P3 + x -
-
P2
+
--
++
§6.1 压电效应
二、压电效应的基本原理 2、石英晶体压电效应的微观机理
第六章 压电式传感器
被测非电量 压电 电压值 测量 U、I 效应 电荷值 电路
压电式传感器的定义 利用压电材料的压电效应,实现机械能与电能相互转换的
传感器。 压电式传感器的感测量
动态力、机械冲击和振动,在声学、医学、力学、导航方 面应用广泛。 压电式传感器的种类
根据工作原理:正压电效应型和逆压电效应型。
O
y
并发生极化现象。在晶体线性弹性范围内,极
x
化强度与应力成正比。
在垂直于x轴晶面上产生的电荷量为
b
z
q11d11Fx
x
y
d11—压电系数。下标的意义为产生电荷的 面的轴向及施加作用力的轴向;a、b、c—石
英晶片的长度、厚度和宽度。
c a
§6.1 压电效应
二、压电效应的基本原理
z
3、石英晶体压电效应作用力与电荷关系
沿光轴(Z轴)方向的作用力不产生压电效应。 压电式传感器主要是利用纵向压电效应。
§6.1 压电效应
二、压电效应的基本原理 2、石英晶体压电效应的微观机理
+
y + x -
-
+
§6.1 压电效应
二、压电效应的基本原理 2、石英晶体压电效应的微观机理
Fx=0 y -+
+ P1 P3 - x
P2 -+
Fx<0 y
应力
机 械
应变 能
压电元件
电 电荷 能 电场
§6.1 压电效应
一、压电效应的基本概念 3、压电效应的特点
(2)具有瞬时性 当力的方向改变时,电荷 的极性随之改变,输出电压的 频率与动态力的频率相同。
(3)具有不稳定性 当动态力变为静态力时, 电荷将由于表面漏电而很快泄 漏、消失。
§6.1 压电效应
压电陶瓷
§6.1 压电效应
二、压电效应的基本原理 1、石英晶体压电效应
天然石英晶体,结构形状为 一个六角形晶柱,两端为一对称 的棱锥。
在晶体学中,用三根互相垂 直的轴建立描述晶体结构形状的 坐标系。
纵轴Z称为光轴,通过六棱 线而垂直于光铀的X铀称为电轴, 与 X-X 轴 和 Z-Z 轴 垂 直 的 Y-Y 轴 (垂直于六棱柱体的棱面)称为机 械轴。ຫໍສະໝຸດ 某些物质沿某一方向受到外力作用
++++++ ------
时,会产生变形,同时内部产生极化现象,
F
在这种材料的两个表面产生符号相反的电
荷,当外力去掉后,又重新恢复到不带电
F=0
的状态,这种现象称为压电效应。
当作用力方向改变时,电荷极性也 随之改变。
这种机械能转化为电能的现象称为 “正压电效应”或“顺压电效应”。
二、压电效应的基本原理
常见的压电材料可分为两类: 压电单晶体和多晶体压电陶瓷。
压电单晶体: 石英(包括天然石英和人造石 英)、水溶性压电晶体(包括酒石酸钾 钠、酒石酸乙烯二铵、酒石酸二钾、 硫酸锤等)。
多晶体压电陶瓷: 钛酸钡压电陶瓷、锆钛酸铅系 压电陶瓷、铌酸盐系压电陶瓷和铌 镁酸铅压电陶瓷等。
天然石英
F
------ ++++++
F
§6.1 压电效应
一、压电效应的基本概念
2、逆压电效应
当在某些物质的极化方向上施加电场,这些材料在某一方向上 产生机械变形或机械压力;当外加电场撤去时,这些变形或应力也 随之消失。
这种电能转化为机械能的现象称为“逆压电效应”或“电致伸 缩效应”。
3、压电效应的特点
(1)压电效应具有可逆性
§6.1 压电效应
二、压电效应的基本原理 1、石英晶体压电效应
如果从石英晶体中切下一个平行六面体并使其 晶面分别平行于Z-Z、Y-Y、X-X轴线。晶片在正常 情况下呈现电性。
纵向压电效应:沿电轴(X轴)方向的作用力产 生的压电效应。
横向压电效应:沿机械轴(Y轴)方向的作用力 产生的压电效应
切向压电效应:沿相对两棱加力时产生的压电 效应。
若在同一切片上,沿机械轴y方向施加应 力,则仍在与x轴垂直的平面上产生电荷为
O
y
q 12
d 12
a b
Fy
x
b
z
d 11
a b
Fy
x
y
d11 = -d12 ,石英晶体轴对称条件。
产生电荷q11和q12的符号,决定于受压力
c a
还是受拉力。
§6.1 压电效应
二、压电效应的基本原理 4、石英晶体压电效应特点
§6.1 压电效应
二、压电效应的基本原理 5、压电陶瓷的压电效应
压电陶瓷是人工制造的多晶体 压电材料。
材料内部的晶粒有许多自发极 化的电畴,有一定的极化方向,从 而存在电场。
在无外电场作用时,电畴在晶
体中杂乱分布,各自的极化效应被
相互抵消,压电陶瓷内极化强度为
零。
电场 方向
因此,原始的压电陶瓷呈中性,
不具有压电性质。
(a)
极化处理前
(a)
极化处理后
(b)
§6.1 压电效应
二、压电效应的基本原理 5、压电陶瓷的压电效应
在陶瓷上施加外电场时,电畴 的极化方向发生转动,趋向于按外 电场方向的排列,从而使材料得到 极化。外电场强度大到使材料的极 化达到饱和的程度,即所有电畴极 化方向都整齐地与外电场方向一致 时,当外电场去掉后,电畴的极化 方向基本不变化,即剩余极化强度 很大,这时材料才具有压电特性电。场
相关文档
最新文档