整式的乘法与因式分解考点练习( 含答案)

合集下载

整式的乘法与因式分解单元测试卷附答案

整式的乘法与因式分解单元测试卷附答案

整式的乘法与因式分解单元测试卷附答案一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.已知a=2012×+2011 , b=2O12x+2O12 f c=2012×+2013,那么a2+b2+c2-ab - be - ca 的值等于()A.0B. 1C. 2D. 3【答案】D【解析】【分析】首先把a2+b2+c2 - ab - be-ac两两结合为α2 - ab+b2 - bc+c2 - ac I利用提取公因式法因式分解,再把a、b、C代入求值即可•【详解】a z+b2+c z - ab - be - ac=a2 - ab+b2 - bc+c2 - ac= a(a-b)+b(b-c)+c(c-a)当a 二2012x+2011 , b = 2012x+2012 , C 二2012x+2013 时,a-b= -I I b-C=-I , c - a=2 ,式=(2012x+2011 ) X ( - 1 ) + ( 2012x+2012 ) X ( - 1 ) + ( 2012x+2013 ) ×2=-2012x - 2011 - 2012X - 2012+2012x×2+2013×2二3 .故选D .【点睛】本题利用因式分解求代数式求值,注意代数之中字母之间的联系,正确运用因式分解,巧妙解答题目•2.下列四个多项式,可能是2x2+mχ-3(m是整数)的因式的是A.x-2B. 2x+3C. x÷4D. 2×2-l【答案】B【解析】【分析】将原式利用十字相乘分解因式即可得到答案.【详解】因为m是整数,.∙.将2x2+mx-3分解因式:2x2÷mχ-3= (x-l) (2x+3)或2x2÷mx~3= (x+l) (2x-3),故选:B.【点睛】此题考查因式分解,根据二次项和常数项将多项式分解因式是解题的关键•3.己知m'-m-l=0,则计算:m4-m'-m + 2fr⅛结果为( )•A. 3B. -3C. 5D. -5【答案】A【解析】【分析】观察已知m2-m-l=0可转化为m2-m=l,再对m4-m3-m+2提取公因式因式分解的过程中将r∏2-m作为一个整体代入,逐次降低m的次数,使问题得以解决.【详解】,.*m2-m-l=0 ,.,.m2-m=l ,Λ m4-m3-m+2=m2 (m2-m)-m+2=m2-m+2=l+2=3 ,故选A.【点睛】本题考查了因式分解的应用,解决本题的关键是将∏Λm作为一个整体岀现,逐次降低m 的次数.4.化简(2x)2的结果是( )A. X4B. 2x2C. 4x2D. 4尤【答案】C【解析】【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幕相乘即可.【详解】(2x)2=22∙ X2 =4x2,故选C.【点睛]本题考查了积的乘方,解题的关键是掌握积的乘方的运算法则.5.如图,矩形的长、宽分别为a、b,周长为10,而积为6,则a2b+ab2的值为()baA. 60 B・ 30 C. 15 D・ 16【答案】B【解析】【分析】直接利用矩形周长和而积公式得出a+b, ab,进而利用提取公因式法分解因式得出答案.【详解】J边长分别为a、b的长方形的周长为10,而积6,Λ2 (a+b) =10, ab=6,则a+b=5»故ab2+a2b=ab (b+a )=6×5=30.故选:B.【点睛】此题主要考査了提取公因式法以及矩形的性质应用,正确分解因式是解题关键.6.如果* + (m-2)x + 9是个完全平方式,那么m的值是()A. 8B. -4C. ±8D. 8 或-4【答案】D【解析】试题解析:Vx2+ (m-2 ) x+9是一个完全平方式,.,.(x±3 ) 2=×z±2(m-2)×+9 IΛ2(m-2)=±12 ,.°.m=8或-4 .故选D .7.若(.γ⅛∕σ)(旷8)中不含X的一次项,则也的值为( )A. 8B. -8C. 0D. 8 或-8【答案】B【解析】(jf-jiH-zz?) (x-8) =X3 -X2 + mx - 8.r2 +8x- Snl = X y- 9x2 + (m + 8)x 一8/7/由于不含一次项,m÷8=0,得m二-8.8.下列等式由左边向右边的变形中,属于因式分解的是()A、×2+5X— l=x(×+5) — 1 B. x?—4+3x=(x+2)(χ-2)+3xC. (x+2)(x-2)=×2-4D. ×2-9=(×+3)(x-3)【答案】D【解析】【分析】根据因式分解的左义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,判断求解.【详解】解:A、右边不是积的形式,故A错误:B、右边不是积的形式,故B错误;C、是整式的乘法,故C错误;D、χ2-9=(x+3)(χ-3),属于因式分解.故选D.【点睹】此题主要考查因式分解的左义:把一个多项式化为几个整式的积的形式,这种变形叫做把 这个多项式因式分解・9. 有两块总面积相等的场地,左边场地为正方形,由四部分构成,各部分的而积数拯如图 所示.右边场地为长方形,长为2(a+b)f 则宽为()【答案】C【解析】【分析】用长方形的面积除以长可得.【详解】 宽为:(/ + ab + ab + b 2^÷2(a + b) = (a + by ÷2(a + b)= 故选:C【点睛】考核知识点:整式除法与而积•掌握整式除法法则是关键・10・观察下列两个多项式相乘的运算过程:7 ...................... 、 7 ...................... 、τ - - * ----- :∙ i τ - - * --- ;• B(x∣⅛∣)(x ^]) = X 2∣⅛∣χ 呵 (X 囱)(X 固)二 X 2∣⅛]x 珂根据你发现的规律,若(x+α) (x+b) =X 2-7X +12,则α, b 的值可能分别是()A. -3, rB. -3,4C. 3, -4D. 3, 4【答案】A【解析】【分析】a +b = —7根据题意可得规律为< ,, ,再逐一判断即可.ab = ∖2【详解】a+b = —7根据题意得,a z b 的值只要满足< f , 即可,ab = ↑2A. -3+ ( -4 ) =-7 I -3× ( -4 ) =12» 符合题意;B. -3+4=l f -3 ×4-12.不符合题意:C. 3+ (-4 ) =-1,3× ( -4 ) =-12,不符合题意; 2(α∣Λ)B. 1 c ∙扣+ b) D ・ a+bAe 2D.3+4=7z3×4=12,不符合题意.故答案选A.【点睛]本题考查了多项式乘多项式,解题的关键是根据题意找岀规律・二.八年级数学整式的乘法与因式分解填空题压轴题(难)11・如图,有一张边长为X的正方形ABCD纸板,在它的一个角上切去一个边长为y的正方形AEFG,剩下图形的面积是32,过点F作FH丄DC,垂足为H.将长方形GFHD切下,与长方形EBCH重新拼成一个长方形,若拼成的长方形的较长的一边长为&则正方形ABCD 的面积是・A G【答案】36.【解析】【分析】根据题意列岀√-Γ =32,x + y = 8,求岀×-y=4,解方程组得到X的值即可得到答案.【详解】由题意得:x2-y2=32,x+y = 8,∙* √-y2=(χ+y)(χ-y).•∙X e y—4♦x = 6 y = 2'*・•.正方形ABCD而积为√ = 36,故填:36.【点睛】此题考查平方差公式的运用,根据题意求得x-y=4是解题的关键,由此解方程组即可.12.如果关于X的二次三项式χ2-4x + m在实数范用内不能因式分解,那么加的值可以是_________ •(填出符合条件的一个值)【答案】5【解析】【分析】根据前两项,此多项式如用十字相乘方法分解,m应是3或-5:若用完全平方公式分解,m 应是4,若用提公因式法分解,m的值应是0,排除3、-5、4、0的数即可.【详解】当m=5时,原式为X2-4Λ+5.不能因式分解,故答案为:5.【点睛】此题考查多项式的因式分解方法,熟记每种分解的因式的特点及所用因式分解的方法,掌握技巧才能熟练运用解题.13.如果9×2-axy+4y2是完全平方式,则a的值是 _______ .【答案】+12【解析】【分析】根据完全平方式得出-axy= ±2×3x2y,求出即可.【详解】解:9×2-axy+4y2= ( 3×±2y ) 2即-axy= + 2×3x2y所以a=±12【点睛】本题考查了完全平方式,能熟记完全平方公式的特点是解此题的关键,注意:完全平方式有两个a2-2ab+b2和a2+2ab+62是本题的易错点.14.已知x、y 为正偶数,且X2y +xy>2 =96,则x2 + y2= __________________ .【答案】40【解析】【分析】根据x2y + xy2 =96可知xy(x+y)=96,由x、y是正偶数可知xy24 , x+y24,进而可知96可分解成3种乘积的形式,分别计算即可得只有一种情况符合题意,即可求出x、y的值,根据x、y的值求得答案即可.【详解】,.* x2y + xy2 =96 ,.,.xy(×+y)=96 ,VX X y 为正偶数,xy≥4 , x+y>4 ,/. 96=2 ×2×2×2×2×3=6× 16=8 × 12=4 × 24当xy(×+y)=4×24 时,无解,当xy(×+y)=6×16 时,无解,当×y(×+y)=8 × 12 时,x+y=8 , ×y=12 f解得:x=2 f y=6,或x=6 , y=2 ,.,.x2+y2=22+62=40.故答案为:40【点睛】本题考查因式分解,把96分解成所有约数的积再分情况求解是解题关键.15.若a,b互为相反数,则a2 - b2= _________ .【答案】0【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】Ta , b互为相反数,Λ a+b=O rΛa2 - b2= ( a÷b ) ( a - b ) =0 ,故答案为0 .【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.16.若(2χ-3) x+5=l,则X 的值为 _______________ .【答案】2或1或-5【解析】⑴当2×-3=l时,x=2,此时(4-3)2+5=l,等式成立;⑵当2×-3=-l时,x=l,此时(2-3)1's=l.等式成立:⑶当×+5=0时,x=-5,此时(-10-3)° =1,等式成立.综上所述,X的值为:2 , 1或-5.故答案为2 f 1或-5.17.因式分解:a3 - 2a2b+ab2= ______ ・【答案】a(a-b)2.【解析】【分析】先提公因式a,然后再利用完全平方公式进行分解即可.【详解】原式=a ( a2 - 2ab+b2)=a ( a - b ) 2 ,故答案为a(a-b)2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18.因式分解:mn ( n - m ) - n ( m - n ) = ___________ .【答案】n(n-m)(m + ∖)【解析】mn(n-m)-n(m-n)= mn(n-m)+n(n-m)=n(n-m)(m+l),故答案为n(n-m)(m+l).19.分解因式:x2-l=—.【答案】(x+l) (X-I).【解析】试题解析:x2-l= (x+l) (X-I).考点:因式分解-运用公式法.2 . 220.已知"+b = 8, a1lr =4» 贝1J-_ -Clb= _______________ ・2【答案】28或36.【解析】【分析】【详解】解:T a2b2=4,∙∙∙ ab=±2.①、"∣a+b二8, ab=2 时,-_ - ab = +- 2ab = —- 2×2=28:2 2 2②、"∣ a+b=8> ab=・ 2 H寸, —————ab= --- 2ab = —- 2× ( - 2) =36:2 2 2故答案为28或36.【点睛】本题考查完全平方公式:分类讨论.。

第14章 整式的乘法与因式分解 单元测试(含答案)

第14章  整式的乘法与因式分解 单元测试(含答案)

第十四章整式的乘法与因式分解(90分钟 100分)一、选择题(每小题3分,共30分)1.(2020·朝阳中考)下列运算正确的是( C )A.a3·a2=a6B.(a3)2=a5C.2a3÷a2=2a D.2x+3x=5x2【解析】A.a3·a2=a5,故不正确;B.(a3)2=a6,故不正确;C.2a3÷a2=2a,正确;D.2x+3x=5x,故不正确.2.(2020·眉山中考)下列计算正确的是( C )A.(x+y)2=x2+y2B.2x2y+3xy2=5x3y3C.(-2a2b)3=-8a6b3D.(-x)5÷x2=x3【解析】A.原式=x2+2xy+y2,不符合题意;B.原式不能合并,不符合题意;C.原式=-8a6b3,符合题意;D.原式=-x5÷x2=-x3,不符合题意.3.下列运算正确的是( B )A.a2·a4=a8B.210+(-2)10=211C.(-1-3a)2=1-6a+9a2D.(-3x2y)3=-9x6y3【解析】A.a2·a4=a6,故本选项不符合题意;B.210+(-2)10=210+210=(1+1)×210=2×210=211,故本选项符合题意;C.(-1-3a)2=1+6a+9a2,故本选项不符合题意;D.(-3x2y)3=-27x6y3,故本选项不符合题意.4.下列因式分解正确的是( D )A.x2-y2=(x-y)2B.-x2-y2=-(x+y)(x-y) C.x2-2xy+4y2=(x-2y)2D.-x2-2xy-y2=-(x+y)2【解析】A.x2-y2=(x-y)(x+y),故此选项错误;B.-x2-y2,无法分解因式,故此选项错误;C.x2-2xy+4y2,不是完全平方式,故此选项错误;D.-x2-2xy-y2=-(x+y)2,正确.5.(2021·厦门期末)运用公式a2+2ab+b2=(a+b)2直接对整式4x2+4x+1进行因式分解,公式中的a可以是( C )A.2x2B.4x2C.2x D.4x【解析】∵4x2+4x+1=(2x)2+2×2x+1=(2x+1)2,∴对上式进行因式分解,公式中的a可以是2x.6.如图①,边长为a的大正方形中有四个边长均为b的小正方形,小华将阴影部分拼成了一个长方形(如图②),则这个长方形的面积为( A )A.a2-4b2B.(a+b)(a-b)C.(a+2b)(a-b) D.(a+b)(a-2b)【解析】根据题意得:(a+2b)(a-2b)=a2-4b2.7.为了用乘法公式计算(2x-3y-4z)( 2x-3y+4z),甲乙丙丁四位同学分别对它们进行了变形,其中变形正确的是( B )A.[2x-(3y+4z)][2x-(3y-4z)] B.[(2x-3y)-4z][(2x-3y)+4z] C.[(2x-4z)-3y][(2x+4z)-3y] D.[(2x-4z)+3y][(2x-4z)-3y] 【解析】观察(2x-3y-4z)( 2x-3y+4z),符号相同的是2x,-3y,符号相反的是-4z和4z,把符号相同的放在一起,符号相反的放在一起.8.若x2+(m-1)x+1可以用完全平方公式进行因式分解,则m的值为( D )A.-3 B.1 C.-3,1 D.-1,3【解析】∵x2+(m-1)x+1可以用完全平方公式进行因式分解,∴m-1=±2,解得m=-1或m=3.9.(2021·娄底期末)如果(x-3)(2x+4)=2x2-mx+n,那么m,n的值分别是( C )A.2,12 B.-2,12C.2,-12 D.-2,-12【解析】∵(x-3)(2x+4)=2x2-2x-12=2x2-mx+n,∴-m=-2,n=-12,解得m=2,n=-12.10.(2021·长沙期末)定义:若一个正整数能表示为两个连续自然数的平方差,那么就称这个正整数为“明德数”.如:1=12-02,3=22-12,5=32-22,因此1,3,5这三个数都是“明德数”.则介于1到200之间的所有“明德数”之和为( A )A.10 000 B.40 000 C.200 D.2 500【解析】介于1到200之间的所有“明德数”之和为:(12-02)+(22-12)+(32-22)+…+(992-982)+(1002-992)=12-02+22-12+32-22+42-32+…+992-982+1002-992=1002=10 000.二、填空题(每小题3分,共24分)11.(2020·丹东中考)因式分解:mn3-4mn=__mn(n+2)(n-2)__.【解析】原式=mn(n2-4)=mn(n+2)(n-2).12.(2020·咸宁中考)因式分解:mx2-2mx+m=__m(x-1)2__.【解析】mx2-2mx+m=m(x2-2x+1)=m(x-1)2.13.计算:(π-3)0+|-2 021|=__2__022__.【解析】原式=1+2 021=2 022.14.(2020·十堰中考)已知x+2y=3,则1+2x+4y=__7__.【解析】∵x+2y=3,∴2(x+2y)=2x+4y=2×3=6,∴1+2x+4y=1+6=7.15.如果(m2+n2+1)与(m2+n2-1)的乘积为15,那么m2+n2的值为__4__.【解析】∵(m2+n2+1)与(m2+n2-1)的乘积为15,∴(m2+n2+1)(m2+n2-1)=15,∴(m2+n2)2-1=15,即(m2+n2)2=16,解得m2+n2=4(负数舍去).16.已知a3n=5,b2n=3,则a6n·b4n的值为__225__.【解析】a6n·b4n=a3n×2·b2n×2=(a3n)2·(b2n)2=52·32=225.17.把一根20 cm长的铁丝分成两段,将每一段围成一个正方形,若这两个正方形的面积之差是5 cm2,则这两段铁丝的长分别为__12__cm和8__cm__.【解析】设其中较长的一段的长为x cm(10<x<20),则另一段的长为(20-x)cm.则两个小正方形的边长分别为1x cm和41(20-x)cm.4∵两正方形面积之差为5 cm2,∴(14x)2-[14(20-x)]2=5,解得x=12.则另一段长为20-12=8(cm).∴两段铁丝的长分别为12 cm和8 cm. 18.观察、分析、猜想:1×2×3×4+1=52;2×3×4×5+1=112;3×4×5×6+1=192;4×5×6×7+1=292;n(n+1)(n+2)(n+3)+1=__[n(n+3)+1]2__.(n为整数)【解析】∵1×2×3×4+1=[(1×4)+1]2=52,2×3×4×5+1=[(2×5)+1]2=112,3×4×5×6+1=[(3×6)+1]2=192,4×5×6×7+1=[(4×7)+1]2=292,∴n(n+1)(n+2)(n+3)+1=[n(n+3)+1]2.三、解答题(共46分)19.(6分)(1)计算:[x(x2y2-xy)-y(x2-x3y)]÷3x2y.(2)计算:(2x-3y)2-(y+3x)(3x-y).(3)已知x m=3,x n=2,求x3m+2n的值.(4)解方程:4(x-2)(x+5)-(2x-3)(2x+1)=11.【解析】(1)[x(x2y2-xy)-y(x2-x3y)]÷3x2y=(x3y2-x2y-x2y+x3y2) ÷3x2y=(2 x3y2-2x2y) ÷3x2y=2 x3y2÷3x2y-2x2y÷3x2y=23xy-23.(2)(2x-3y) 2-(y+3x)(3x-y)=4x2-12xy+9y2-(9x2-y2)=4x2-12xy+9y2-9x2+y2=-5x2-12xy+10y2.(3)因为x m=3,x n=2,所以x3m+2n=x3m×x2n=(x m)3×(x n)2=33×22=108.(4)4(x2+5x-2x-10)-(4x2+2x-6x-3)=4(x2+3x-10)-(4x2-4x -3)=11,4x2+12x-40-4x2+4x+3=11,移项合并同类项得16x=48,x=3.20.(6分)某同学化简a(a+2b)-(a+b)(a-b)出现了错误,解答过程如下:原式=a2+2ab-(a2-b2) (第一步)=a2+2ab-a2-b2(第二步)=2ab-b2 (第三步)(1)该同学解答过程从第____步开始出错,错误的原因是______________;(2)写出此题正确的解答过程.【解析】(1)该同学解答过程从第二步开始出错,错误的原因是去括号时没有变号.答案:二 去括号时没有变号(2)原式=a2+2ab-(a2-b2)=a2+2ab-a2+b2=2ab+b2.21(8分)甲、乙两人共同计算一道整式乘法题:(2x+a)(3x+b).甲由于把第一个多项式中的“+a”看成了“-a”,得到的结果为6x2+11x-10;乙由于漏抄了第二个多项式中x的系数,得到的结果为2x2-9x +10.(1)求正确的a,b的值.(2)计算这道乘法题的正确结果.【解析】(1)(2x-a)(3x+b)=6x2+2bx-3ax-ab=6x2+(2b-3a)x-ab=6x2+11x-10.(2x+a)(x+b)=2x2+2bx+ax+ab=2x2+(2b+a)x+ab=2x2-9x+10.∴{2b-3a=11,2b+a=-9,解得{a=-5,b=-2.(2)这道乘法题的正确结果为:(2x-5)(3x-2)=6x2-4x-15x+10=6x2-19x+10.22.(8分)已知a,b,c分别是△ABC的三边.(1)分别将多项式ac-bc,-a2+2ab-b2进行因式分解.(2)若ac-bc=-a2+2ab-b2,试判断△ABC的形状,并说明理由.【解析】(1)ac-bc=c(a-b),-a2+2ab-b2=-(a2-2ab+b2)=-(a -b)2.(2)∵ac-bc=-a2+2ab-b2,∴c(a-b)=-(a-b)2,c(a-b)+(a-b)2=0,(a-b)(c+a-b)=0,∵a,b,c分别是△ABC的三边,满足两边之和大于第三边,即c+a-b>0,∴a-b=0,即a=b,故△ABC的形状是等腰三角形.23.(8分)有一个边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.【解析】由题意可得,方案二:a2+ab+(a+b)b=a2+ab+ab+b2=a2+2ab+b2=(a+b)2;方案三:a2+[a+(a+b)]b2+[a+(a+b)]b2=a2+ab+12b2+ab+12b2=a2+2ab+b2=(a+b)2.24.(10分)(2021·潍坊期末)阅读下列材料,并回答问题:若一个正整数x能表示成a2-b2(a,b是正整数,且a>b)的形式,则正整数x称为“明礼崇德数”.例如:因为7=2×3+1=32+2×3+1-32=(3+1)2-32=42-32,所以7是“明礼崇德数”;再如:因为12=4×3=32+2×3+1-32+2×3-1=(3+1)2-(32-2×3+1)=(3+1)2-(3-1)2=42-22,所以12是“明礼崇德数”;再如:M=x2+2xy=x2+2xy+y2-y2=(x+y)2-y2(x,y是正整数),所以M也是“明礼崇德数”.问题1:2 021是“明礼崇德数”吗?说明理由;问题2:2 020是“明礼崇德数”吗?说明理由;问题3:已知N=x2-y2+4x-6y+k(x,y是正整数,k是常数,且x >y+1),要使N是“明礼崇德数”,试求出符合条件的一个k值,并说明理由.【解析】问题1:2 021是“明礼崇德数”.理由如下:2 021=2×1 010+1=1 0102+2×1 010+1-1 0102=1 0112-1 0102 ;问题2:2 020是“明礼崇德数”.理由如下:2 020=4×505=(5052+2×505+1)-(5052-2×505+1)=5062-5042;问题3:∵N=x2-y2+4x-6y+k=(x2+4x+4)-(y2+6y+9)+k+5=(x+2)2-(y+3)2+k+5,∴当k+5=0时,N=(x+2)2-(y+3)2为“明礼崇德数”,此时k=-5,故当k=-5时,N为“明礼崇德数”.关闭Word文档返回原板块。

整式的乘法与因式分解的练习题

整式的乘法与因式分解的练习题

整式的乘法与因式分解的练习题整式的乘除和因式分解选择题:1.正确的运算是B.(ab)3=a3b3.2.因式分解的变形是B.m3-n3=(m-n)(m2+mn+n2)。

3.完全平方式是C.a2+ab+b2.4.可以用平方差公式分解因式的是A.a2+(-b)2.5.m的值为B.3.填空题:7.(-a5)4·(-a2)3 = a26,可以在实数范围内分解因式a2-6.8.当x=4时,(x-4)=0.9.(-2002)-2 = 1/xxxxxxx。

1.5×2003÷12=125.253x-3y=3(2/3)-3(1/3)=19x^2+mxy+16y^2是完全平方式,当m=12时,可化为(3x+4y)^29xy-6xy+12xy=15xy,公因式为3xyx-9=(x-3)(x+3)x-4x+4=(x-2)^2xy+xy+4=2xy+4正方形的面积为(3x+y)^2,展开后可得9x^2+6xy+y^2,由于正方形的面积为9,故有9x^2+6xy+y^2=9,解得y=-3x+1或y=1-3x13.(8ab-5ab)/4ab=3/414.(x+2y-3)(x-2y+3)=x^2-4y^2-2x+6y-915.[(x-2y)^2+(x-2y)(2y+x)-2x(2x-y)]/2x=(x-2y+y-x)/2=-y/216.2a(x-y)-3b(y-x)=5a(x-y)17.-xy-2xy+35y=33y-3xy18.2xy-8xy+8y=-6xy+8y19.a(x-y)-4b(x-y)=(a-4b)(x-y)20.(x-1)-(x-1)(x+5)=17解得x=-3或x=2,代入可得ab+ab=-4a或4a21.2x-5+3x+1>13(x-10),解得x>23/322.a+2+b^2-2b+1=22,化简得b^2-2b+ab=10-a,再加上ab+ab,得b^2+ab-2b+2ab+11-a=0,由于a和b为实数,故有b^2+ab-2b+2ab+11-a=(b+a-1)^2+10>=10,即ab+ab>=-123.长方形的周长为2(3a+b),面积为(3a+b)(2a+b),由于周长为125.25米,故有2(3a+b)=125.25,解得a=20.75-0.5b,代入面积公式可得(3a+b)(2a+b)=83.5(41.5-b),扩展开后可得-3b^2+81b-1396=0,解得b=28或b=16/3,代入a=20.75-0.5b可得a=7.5或a=10.2524.设x=√(3y+2),则有x^2-3x-2=0,解得x=3或x=-1,代入可得y=1或y=0,故方程的解为(3,1)或(-1,0)25.设a=√(x+2),b=√(y-1),则有a^2-2=x,b^2+1=y,代入不等式可得(a^2-2)(b^2+1)>2,化简得a^2b^2-a^2-2b^2+3>0,即(a^2-2)(b^2-2)>1,代入可得(x-2)(y-1)>1,故不等式的解为{(x,y)|x>2,y>1,xy>1}阴影部分将要进行绿化,并在中间修建一座雕像。

中考数学复习《整式的乘法与因式分解》专项练习题--附带有答案

中考数学复习《整式的乘法与因式分解》专项练习题--附带有答案

中考数学复习《整式的乘法与因式分解》专项练习题--附带有答案一、选择题1.下列计算正确的是()A.(3a)2=6a2B.(a2)3=a5C.a6÷a2=a3D.a2⋅a=a32.若8x=21,2y=3,则23x−y的值是()A.7 B.18 C.24 D.633.计算(−2ab)(ab−3a2−1)的结果是()A.−2a2b2+6a3b B.−2a2b2−6a3b−2abC.−2a2b2+6a3b+2ab D.−2a2b2+6a3b−14.若(x−1)(x+4)=x2+ax+b,则a、b的值分别为().A.a=5,b=4 B.a=3,b=−4 C.a=3,b=4 D.a=55.下列变形中正确的是()A.(x+y)(−x−y)=x2−y2B.x2−4x−4=(x−2)2C.x4−25=(x2+5)(x2−5)D.(−2x+3y)2=4x2+12xy+9y26.下列分解因式正确的是()A.x2+2xy−y2=(x−y)2B.3ax2−6ax=3(ax2−2ax)C.m3−m=m(m−1)(m+1)D.a2−4=(a−2)27.图(1)是一个长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,小长方形的长为a,宽为b(a>b),然后按图(2)拼成一个正方形,通过计算,用拼接前后两个图形中阴影部分的面积可以验证的等式是()A.a2b2=(ab)2B.(a+b)2=(a−b)2+4abC.(a+b)2=a2+b2+2ab D.a2−b2=(a+b)(a−b)8.若x−y=−3,xy=5则代数式2x3y−4x2y2+2xy3的值为()A.90 B.45 C.-15 D.-30二、填空题9.若27×3x=39,则x的值等于10.计算:(√3−√2)(√3+√2)=.11.在实数范围内分解因式2x2+3x−1=.12.要使(y2−ky+2y)⋅(−y)的展开式中不含y2项,则k的值是.13.已知4y2−my+9是完全平方式,则m的值为.三、解答题14.计算:(2a−1)(a+2)−6a3b÷3ab.15.把下列多项式分解因式:(1)a4−8a2b2+16b4(2)x2(y2−1)+2x(y2−1)+(y2−1)16.已知a+b=5,ab=−6,求:(1)a2b+ab2的值;(2)a2+b2的值;(3)a-b的值.17.下面是某同学对多项式(x2−4x+2)(x2−4x+6)+4进行因式分解的过程解:设x2−4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2−4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的____(填序号).A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?.(填“是”或“否”)如果否,直接写出最后的结果.(3)请你模仿以上方法尝试对多项式(x2−2x)(x2−2x+2)+1进行因式分解.18.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)写出图2中所表示的数学等式;(2)根据整式乘法的运算法则,通过计算验证上述等式;(3)若a+b+c=10,ab+ac+bc=35利用得到的结论,求a2+b2+c2的值.参考答案1.D2.A3.C4.B5.C6.C7.B8.A9.610.111.2(x −−3+√174)(x −−3−√174)12.213.±1214.解:原式=2a 2+4a −a −2−2a 2=3a −2.15.(1)解:a 4−8a 2b 2+16b 4=(a 2−4b 2)2=(a +2b)2(a −2b)2(2)解:x 2(y 2−1)+2x(y 2−1)+(y 2−1)=(x 2+2x +1)(y 2−1)=(x +1)2(y +1)(y −1)16.(1)解:∵a +b =5,ab =−6∴a 2b +ab 2=ab(a +b)=−30(2)解: a 2+b 2=(a +b)2−2ab=25+12=37(3)解: (a −b)2=a 2+b 2−2ab=37+12=49故a−b=±7 .17.(1)C(2)否;(x−2)4(3)解:设x2−2x+1=y原式=(y−1)(y+1)+1=y2−1+1=y2=(x2−2x+1)2=[(x−1)2]2=(x−1)4.18.(1)解:∵边长为(a+b+c)的正方形的面积为:(a+b+c)2,分部分来看的面积为a2+b2+c2+2ab+ 2bc+2ac∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)解:∵(a+b+c)2=(a+b+c)(a+b+c)=a2+ab+ac+ab+b2+bc+ac+bc+c2=a2+b2+c2+2ab+2bc+2ac∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(3)解:∵a+b+c=10∴a2+b2+c2=(a+b+c)2−2ab−2bc−2ac=102−2×35=30∴a2+b2+c2的值为30.。

整式的乘法与因式分解分式的练习带答案

整式的乘法与因式分解分式的练习带答案

精品文档整式乘法与因式分解,分式的练习一.解答题(共20小题)2m3m2m2的值.),求(2x﹣(3)1.已知xx=2mm212332)的值.?3÷(,求(﹣mm2.已知3×9)×27m=3.计算下列各题:2﹣(2a+b)(b﹣2a)﹣a﹣2b)4a(a﹣b)((1)22.)﹣2y)+(3xy﹣(4x﹣9y)(4xx(2)(2+3y)+9 4.分解因式(1)4n(m﹣2)﹣6(2﹣m)22﹣1y.﹣2xy+(2)x5.分解因式:3223b;ba+75(1)3ab ﹣30a22.n6)4(m(3m+2n)﹣﹣(2)22)﹣x(7x+y﹣2y)+xy.(3)8(x2233.?x)﹣0.5xy)xy﹣(﹣62.计算:xy?(7.化简:3639+1)(x+x;+1)(1)(xx﹣1)(222222);+(xyy﹣)(xxy+xy+y)(2(x)﹣2222.y)﹣2x)(+2y)xy(x+4(32﹣(a﹣2b)(a+2b)a+2b)8.(9.把下列各式分解因式:33xyy)x﹣(1222x)162)(x﹣+4((3)x(y﹣z)﹣y(z﹣y)523)a+()(1)计算:(﹣a(﹣a)10.1011.8×0.125(2)计算:(﹣)11.因式分解:22﹣28mnmn1()4mn﹣2(m+1)﹣(m)(2m+1)精品文档.精品文档2y+12xy+9y(3)4x222﹣6)﹣15+2(x(4)(x.﹣6)÷的值.=2×,求代数式12.(1)已知a﹣b.(2=)解分式方程:+1.0.解方程:﹣1813=.()=xxx,其中满足(+13x)14+1.先化简,再求值:.﹣=15.解分式方程:.x,其中.先化简,再求值:16(﹣)÷3=.17.解方程﹣2.18.解方程:1+=.=19.解分式方程:+3.解分式方程.201().)2(精品文档.精品文档整式乘法与因式分解,分式的练习参考答案与试题解析一.解答题(共20小题)2m3m2m2的值.32xx)1.已知x)﹣(=2,求(6m2m x﹣【解答】解:原式=4x92m32m x4(x﹣9)=3﹣92×2=4×=14.mm212332)的值.mm?×9)×27÷(=3m,求(﹣2.已知3 mm2m3m1+5m21,3==3×33=×3【解答】解:3×927×∴1+5m=21,∴m=4,233265=﹣m=﹣÷m÷(m4?m.∴(﹣m)=﹣)m3.计算下列各题:2﹣(2a+b)(b﹣2a)﹣4aa(1)(﹣2b)(a﹣b)22.)﹣2y)+9y+(3y)x﹣(4x﹣9y)(4x+3(2)(2x 22222+4ab﹣b4+4)原式=(1aa﹣4ab+4ba﹣【解答】解:22;b+3=a222222﹣12xxy+4+12xy﹣16xy+81)原式=(24xy+9y+9 22.+94=﹣3xy4.分解因式(1)4n(m﹣2)﹣6(2﹣m)22﹣1+yx.﹣2xy2()【解答】解:(1)4n(m﹣2)﹣6(2﹣m)=4n(m﹣2)+6(m﹣2)=(4n+6)(m﹣2)=2(m﹣2)(2n+3).22﹣1yxyx2()﹣2+精品文档.精品文档2﹣)1=(x﹣y=(x﹣y+1)(x﹣y﹣1).5.分解因式:3223b;ab(1)3 ﹣30a b +75a22.n)m﹣+2n)6﹣4((2)(3m22)﹣x(7x+yy)+xy(3)8(x.﹣23223bbaba﹣30a+75【解答】解:(1)322)a10ab3ab(b+25﹣=2;)a﹣b=3ab(522)n﹣6)m﹣4((2)(3m+2n=[(3m+2n)+2(m﹣6n)][(3m+2n)﹣2(m﹣6n)]=(3m+2n+2m﹣12n)(3m+2n﹣2m+12n)=(5m﹣10n)(m+14n)=5(m﹣2n)(m+14n);22)﹣x(7x+﹣2yy)+xy(3)8(x222﹣xy+7x﹣16yxy﹣=8x22yx16﹣==(x+4y)(x﹣4y).2233.xy?﹣(﹣2x6).计算:xxyy?(﹣0.5)2233xy)?﹣(﹣2x解:xy?(﹣0.5xy【解答】)4343yyx+8=0.1x43.y=8.1x7.化简:3639+1)(x+x;+1)(1)(x﹣1)(x222222)y;﹣xyxy++y+)(x)(2(x﹣y()x2222.)y﹣2xy+4x(3)(+2y)(x3639+1)x)x)x)(【解答】解:1(﹣1(+x+1(精品文档.精品文档99+1))(=(xx﹣118﹣1=x;222222)y﹣xy)(﹣yx)(x++xy+(2)(xy 2222)yxy)(x++xy+y﹣)×(x+y﹣=(xy)(x 3333)yy+)(=(xx﹣66;y﹣=x2222)yxy﹣2(x+2y)+4(x(3)222])2xy+4x+2y)(xy﹣=[(332)=(xy+86336yx+64=xy+162﹣(a﹣2b))(a+2b)8.(a+2b2﹣(a﹣2b)(a+2b)【解答】解:(a+2b)2222)b﹣+4b﹣(a=a4+4ab2222baab+4b+4=a﹣+42+4abb.=89.把下列各式分解因式:33xyy1)x﹣(222x﹣+4)((2)x16(3)x(y﹣z)﹣y(z﹣y)33,xyyx解:(1)﹣【解答】22),﹣xy(xy==xy(x+y)(x﹣y);222,x﹣(x+4)16)(222+4﹣4x)x=(x+4+4x)(,22;2)﹣)x=(+2(x精品文档.精品文档(3)x(y﹣z)﹣y(z﹣y),=x(y﹣z)+y(y﹣z),=(x+y)(y﹣z).523)(a)a+10.(1)计算:(﹣a)(﹣1011.×(﹣0.125)8(2)计算:523))a+((1)(﹣a)(﹣a【解答】解:66a+=(﹣a)66a+=a6a=210118×(﹣0.125)(2)101018×80.125=×10×8×8)=(0.125=1×8=811.因式分解:22﹣2mnmmnn﹣84(1)2(m+1)﹣()mm+1)(22y+12xy+9)4xy(3222﹣6)﹣x15x.﹣6)(+2((4)22﹣2mn=2mn(2m﹣4)4mn﹣8mnn﹣1);1【解答】解:(2(m+1)﹣(mm+1)(2)2﹣1)+1)(m=(m2(m﹣1)=(m+1);2y+12xy4)x+9y(32+12x+9)4=y(x2;+3)x(=y2精品文档.精品文档222﹣6)﹣15+2((4)(xx﹣6)22﹣6+5x)﹣3)=(x(﹣622﹣1)9)(=(xx﹣=(x+3)(x﹣3)(x+1)(x﹣1).÷的值.,求代数式×1)已知a﹣b=212.(=)解分式方程:+1(2.)原式=1【解答】解:(×(=a+b)(a﹣b))a=2(﹣b;当a﹣4×2=b=2时,原式=2(2)方程两边都乘x(x﹣1),得22,xx3+x=﹣解得x=3,检验:当x=3时,x(x﹣1)=6≠0,∴原分式方程的解为x=3..解方程:﹣18=0.13=t,则原方程可化为:【解答】解:设2,t18﹣3t﹣=0,即(t﹣0t+3)=6)(,3=﹣t=6,t解得21,3或6即==﹣=.或解得xx=﹣=都是原方程的解.x=﹣或x经检验,.先化简,再求值:,其中x满足x(x+1)=143(x+1).精品文档.精品文档÷解:原式=【解答】×=,=∵x(x+1)=3(x+1),(x+1)(x﹣3)=0,∴x=﹣1或x=3,2﹣1≠0,即又∵xx≠±1,∴x=3,∴原式==4..解分式方程:﹣.=15解:原方程即﹣=,【解答】两边同时乘以(2x+1)(2x﹣1)得:x+1=3(2x﹣1)﹣2(2x+1),x+1=6x﹣3﹣4x﹣2,解得:x=6.经检验:x=6是原分式方程的解.∴原方程的解是x=6.)÷,其中x﹣(=3.16.先化简,再求值:,÷﹣]【解答】解:原式=[,=×,×=,=时,原式=1=.3x=当172﹣..解方程【解答】解:方程的两边同乘(x﹣3),得:2﹣x=﹣1﹣2(x﹣3),解得:x=3,精品文档.精品文档检验:当x=3时,(x﹣3)=0,∴x=3是原分式方程的增根,原分式方程无解.=.解方程:.1+18【解答】解:方程两边同乘以(x﹣2)得,(x﹣2)+3x=6,解得;x=2,检验:当x=2时,x﹣2=0,∴x=2是原分式方程的增根,∴原分式方程无解.+=193.解分式方程:.【解答】解:去分母得:x﹣2=3x﹣3,=x,解得:=x是分式方程的解.经检验20.解分式方程.)(1.)(2,(1)【解答】解:分式方程的最简公分母为x(x+1),方程两边都乘以x(x+1)得:22=6x(x+1x(+1)+5x),化简得:4x=1,=,解得:x精品文档.精品文档=是原分式方程的解;x 经检验,),(2分式方程的最简公分母为(x+2)(x﹣2),方程两边都乘以(x+2)(x﹣2)得:22,)=(﹣16x)(x﹣2+2化简得:8x=﹣16,解得:x=﹣2,经检验x=﹣2是增根,原分式方程无解.精品文档.。

整式乘法与因式分解100题+(基础篇答案)

整式乘法与因式分解100题+(基础篇答案)
16.解:A、应为 2x3•3x4=6x7,故本选项错误; B、应为 3x3•4x3=12x6,故本选项错误; C、应为 2a3+3a3=5a3,故本选项错误; D、4a3•2a2=4×2×a3•a2=8a5,正确. 故选 D.
17.解:A、(a5)2=a10,故正确; B、2a2•(-3a3)=2×(-3)a2•a3=-6a5,正确; C、b•b3=b4,故正确;
39.解:(-2a)3•b4÷12a3b2=-8a3b4÷12a3b2=- b2.
40.解:(9ab5)÷(3ab2)=3b3;(4a2b)÷(-12a3bc)=-3ac; (4x2y-8x3)÷4x2=y-2x.
整式乘法与因式分解 500 题--基础篇解析
41.解:(am+1bn+2)•(a2n-1b2m),
5.解:①根据零指数幂的性质,得(-3)0=1,故正确; ②根据同底数的幂运算法则,得 a3+a3=2a3,故错误; ③根据负指数幂的运算法则,得 4m-4= ,故错误;
④根据幂的乘方法则,得(xy2)3=x3y6,故正确. 故选 C.
6.解:A、应为 a2•a3=a2+3=a5,故 A 错误 B、应为(2a)•(3a)=6a2,故 B 错误
23.解:2x2•(-3x3)=2×(-3)•(x2•x3)=-6x5.
24.解:(-2x2)•3x4=-2×3x2•x4=-6x6.
整式乘法与因式分解 500 题--基础篇解析
25.解:(3x2y)(- x4y)=3×(- )x2+4y2=-4x6y2.
26.解:2a3•(3a)3=2a3•(27a3)=54a3+3=54a6. 27.解:(-3x2y)•( xy2)=(-3)× ×x2•x•y•y2=-x2+1•y1+2=-x3y3.

《第14章整式的乘法与因式分解》单元测试题(含答案).doc

《第14章整式的乘法与因式分解》单元测试题(含答案).doc

(第10题图)第十四章 整式的乘法与因式分解一、选择题1.下列各式由左边到右边的变形为因式分解的是( )A.a 2-b 2+1=(a+b)(a-b)+1B.m 2-4m+4=(m-2)2C.(x+3)(x-3)=x 2-9D.t 2+3t-16=(t+4)(t-4)+3t2.分解因式:x 3-x,结果为( )A.x(x 2-1)B.x(x-1)2C.x(x+1)2D.x(x+1)(x-1)3.下列因式分解正确的是( )A.16m 2-4=(4m+2)(4m-2)B.m 4-1=(m 2+1)(m 2-1)C.m 2-6m+9=(m-3)2D.1-a 2=(a+1)(a-1)4.下列多项式能因式分解的是( )A.m 2+n B .m 2-m+1 C .m 2-2m+1 D .m 2-n5.计算(2x 3y )2的结果是( )A .4x 6y 2B .8x 6y 2C .4x 5y 2D .8x 5y 26.已知a+b=3,ab=2,计算:a 2b+ab 2等于( )A .5B .6C .9D .17、下列运算中结果正确的是( )A 、633·x x x =;B 、422523x x x =+;C 、532)(x x =;D 、222()x y x y +=+.8、ab 减去22b ab a +-等于 ( )。

A 、222b ab a ++;B 、222b ab a +--;C 、222b ab a -+-;D 、222b ab a ++-9、已知x 2+kxy+64y 2是一个完全式,则k 的值是( )A 、8B 、±8C 、16D 、±1610、如下图(1),边长为a 的大正方形中一个边长为b小正方形,小明将图(1)的阴影部分拼成了一个矩形,如图(2)。

这一过程可以验证( )A 、a 2+b 2-2ab=(a -b)2 ;B 、a 2+b 2+2ab=(a+b)2 ;C 、2a 2-3ab+b 2=(2a -b)(a -b) ;D 、a 2-b 2=(a+b) (a -b)二、填空题11.若单项式-3x 4a-b y 2与3x 3y a+b 是同类项,则这两个单项式的积为 . 图1 图212.已知(x-1)(x+2)=ax2+bx+c,则代数式4a-2b+c的值为.13.若16b2+a2+m是完全平方式,则m= .14.分解因式:x3﹣x= .15.因式分解:43a﹣122a+9a= .16、若4x2+kx+25=(2x-5)2,那么k的值是三、解答题17.(8分)因式分解:(1)3a2-27b2; (2)x2-8(x-2).18. (10分)计算:(1)已知a+b=3,ab=-2,求a2+b2和a2-ab+b2的值;(2)已知(x+y)2=1,(x-y)2=49,求x2+y2和xy的值;(3)已知a-b=1,a2+b2=25,求ab的值.19.已知一个长方形的周长为20,其长为a,宽为b,且a,b满足a2-2ab+b2-4a+4b+4=0,求a,b的值.20、李老师给学生出了一道题:当a=0.35,b= -0.28时,求3323323a ab a b a a b a b a-+++--的值.题目出完后,小聪说:“老师给76336310的条件a=0.35,b= -0.28是多余的.”小明说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?21、如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)•展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的系数.(a+b)1=a+b;(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+_____a3b+_____a2b2+______ab3+b4答案BDCCA BACDD11.-9x 6y 412.013.±8ab14.x (x+1)(x ﹣1).15.a 2(23)a -16.-20;17.解 (1)3a 2-27b 2=3(a 2-9b 2)=3(a+3b)(a-3b);(2)x 2-8(x-2)=x 2-8x+16=(x-4)2.18 (1)a 2+b 2=(a+b)2-2ab=32-2×(-2)=13;a 2-ab+b 2=(a+b)2-3ab=32-3×(-2)=15.(2)∵(x+y)2=x 2+y 2+2xy=1,(x-y)2=x 2+y 2-2xy=49,即解得(3)∵a-b=1,∴(a-b)2=a 2+b 2-2ab=1.∵a 2+b 2=25,∴25-2ab=1,解得ab=12.19.解 ∵长方形的周长为20,其长为a,宽为b,∴a+b=20÷2=10.∵a 2-2ab+b 2-4a+4b+4=0,∴(a-b)2-4(a-b)+4=0.∴(a-b-2)2=0.∴a-b-2=0,由此得方程组解得 20.原式=332(7310)(66)(33)0a a b a b +-+-++-=,合并得结果为0,与a 、b 的取值无关,所以小明说的有道理.21.4;6;4;。

整式乘法与因式分解测试题及答案

整式乘法与因式分解测试题及答案

整式乘法与因式分解测试题及答案整式的乘法与因式分解一、选择题1.下列计算中正确的是().C.a2·a4=a8改写:a的二次方乘以a的四次方等于a的八次方。

2.(x-a)(x2+ax+a2)的计算结果是().B.x3-a3改写:将x的三次方减去a的三次方。

3.下面是某同学在一次测验中的计算摘录,其中正确的个数有().C.3个改写:有三个计算是正确的。

4.已知被除式是x3+2x2-1,商式是x,余式是-1,则除式是().D.x2-3x+1改写:将x的二次方减去3x再加1.5.下列各式是完全平方式的是().A.x2-x+1/4改写:将x的二次方减去x再加1/4.6.把多项式ax2-ax-2a分解因式,下列结果正确的是().A.a(x-2)(x+1)改写:将a乘以(x-2)和(x+1)。

7.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为().B.3改写:将m加上3.8.若3x=15,3y=5,则3xy等于().C.15改写:将3乘以x和y再相乘。

二、填空题9.计算(-3x2y)·(1/2xy)=-3/2x3y2.10.计算:(m n)(m n)=m2-n2.11.计算:(x y)2=x2+2xy+y2.12.计算:(-a2)3+(-a3)2-a2·a4+2a9÷a3=-a6-a4+2a6+2a6=4a6-a4.13.当x=5时,(x-4)2=1.14.若多项式x2+ax+b分解因式的结果为(x+1)(x-2),则a+b的值为3.15.若|a-2|+b2-2b+1=0,则a=2,b=1.16.已知a+1/2a=3,则a2+1/4a2的值是27/4.三、解答题略。

17.1) 计算:$\frac{(ab^2)^2 \times (-a^3b)^3}{-5ab}$化简得:$\frac{a^2b^4 \times a^9b^3}{5ab}$再化简得:$a^{11}b^6 \times \frac{1}{5}$答案为:$\frac{a^{11}b^6}{5}$2) 计算:$x^2 - (x+2)(x-2) - (x+\frac{(3)((x+y)^2 - (x-y)^2)}{2xy})$化简得:$x^2 - (x^2 - 4) - (x+\frac{(3)(4xy)}{2xy})$再化简得:$x^2 - x^2 + 4 - \frac{6}{2}$答案为:$1$4.计算:$2009 \times 2007 - 218$化简得:$xxxxxxx - 218$答案为:$xxxxxxx$19.先化简:$2(x-3)(x+2) - (3+a)(3-a)$化简得:$2x^2 - 6x + 4 - 9 + a^2$再代入$a=-2$和$x=20$,得到:$2(20-3)(20+2) - (3-(-2))(3+(-2)) = 34$答案为:$34$20.已知:$x+y=16$,$x-y=4$解方程得到:$x=10$,$y=6$因此,$xy=60$答案为:$60$21.根据已知条件,化简得:$a^2+b^2=c^2$这是直角三角形的勾股定理,因此△ABC为直角三角形证明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的乘法与因式分解复习
考点1 幂的运算
1.下列计算正确的是( )
A .(a 2)3=a 5
B .2a -a =2
C .(2a)2=4a
D .a·a 3=a 4
2.(铜仁中考)下列计算正确的是( )
A .a 2+a 2=2a 4
B .2a 2·a 3=2a 6
C .3a -2a =1
D .(a 2)3=a 6
3.计算:x 5·x 7+x 6·(-x 3)2+2(x 3)4.
A. 124x
B. 122x
C. 12x
D. 6
4x
考点2 整式的乘法 4.下列运算正确的是( )
A .3a 2·a 3=3a 6
B .5x 4-x 2=4x 2
C .(2a 2)3·(-ab)=-8a 7b
D .2x 2÷2x 2=0
5.计算:(3x -1)(2x +1)=________.
A. 162-+x x
B. 162--x x
C. 1562-+x x
D. 1562-+x x
6.计算:
(1)(-3x 2y)3·(-2xy 3); (2)(34x 2y -12
xy 2)(-4xy 2). A. 636y x , 422323y x y x +- B. -636y x , 4
23323y x y x +-
C. 6754y x ,423323y x y x +-
D. -6754y x , 422323y x y x +-
考点3 整式的除法
7.计算8a 3÷(-2a)的结果是( )
A .4a
B .-4a
C .4a 2
D .-4a 2
8.若5a 3b m ÷25a n b 2=252
b 2,则m =____________,n =__________. 9.化简:(a 2b -2ab 2-b 3)÷b -(a -b)2.
考点4 乘法公式
10.下列关系式中,正确的是( )
A .(a +b)2=a 2-2ab +b 2
B .(a -b)2=a 2-b 2
C .(a +b)(-a +b)=b 2-a 2
D .(a +b)(-a -b)=a 2-b 2
11.已知(x +m)2=x 2+nx +36,则n 的值为( )
A .±6
B .±12
C .±18
D .±72
12.计算:
(1)(-2m +5)2; (2)(a +3)(a -3)(a 2+9); (3)(a -1)(a +1)-(a -1)2.
考点5 因式分解
13.(北海中考)下列因式分解正确的是( )
A .x 2-4=(x +4)(x -4)
B .x 2+2x +1=x(x +2)+1
C .3mx -6my =3m(x -6y)
D .2x +4=2(x +2)
14.多项式mx 2-m 与多项式x 2-2x +1的公因式是( )
A .x -1
B .x +1
C .x 2-1
D .(x -1)2
15.(黔西南中考)分解因式:4x 2+8x +4=________.
16.若x -2y =-5,xy =-2,则2x 2y -4xy 2=________.
综合训练
17.(威海中考)下列运算正确的是( )
A .(-3mn)2=-6m 2n 2
B .4x 4+2x 4+x 4=6x 4
C .(xy)2÷(-xy)=-xy
D .(a -b)(-a -b)=a 2-b 2
18.(毕节中考)下列因式分解正确的是( )
A .a 4b -6a 3b +9a 2b =a 2b(a 2-6a +9)
B .x 2-x +14=(x -12
)2 C .x 2-2x +4=(x -2)2
D .4x 2-y 2=(4x +y)(4x -y)
19.(大连中考)若a =49,b =109,则ab -9a 的值为________.
20.(宁波中考)一个大正方形和四个全等的小正方形按图1、2两种方式摆放,则图2的大正方形中未被小正方形覆盖部分的面积是________(用a 、b 的代数式表示)
[
图1 图2
21.(绵阳中考)在实数范围内因式分解:x 2y -3y =________________.
22.(崇左中考)4个数a ,b ,c ,d 排列成⎪⎪⎪⎪⎪⎪a b c d ,我们称之为二阶行列式.规定它的运算法则为:⎪⎪⎪⎪⎪⎪a b c d =ad -bc.
若⎪⎪⎪⎪
⎪⎪x +3 x -3x -3 x +3=12,则x =________. 23.计算:
(1)5a 3b ·(-3b)2+(-ab)(-6ab)2;
(2)x(x 2+3)+x 2(x -3)-3x(x 2-x -1).
24.把下列各式因式分解:
(1)2m(a-b)-3n(b-a);(2)16x2-64;(3)-4a2+24a-36.
25先化简(a2b-2ab2-b3)÷b-(a+b)(a-b),然后对式子中a、b分别选择一个自己最喜欢的数代入求值.
26.我们约定:a b=10a÷10b,如43=104÷103=10.
(1)试求123和104的值;
(2)试求(215)×102的值.
参考答案 1.D
2.D
3.原式=x 12+x 6·x 6+2x 12=x 12+x 12+2x 12=4x 12.
4.C
5.6x 2+x -1
6.(1)原式=-27x 6y 3×(-2xy 3)=54x 7y 6.
(2)原式=34x 2y ·(-4xy 2)-12
xy 2·(-4xy 2)=-3x 3y 3+2x 2y 4. 7.D
8.4 3
9. 原式=a 2-2ab -b 2-a 2+2ab -b 2=-2b 2.
10. C
11. B
12. (1)原式=4m 2-20m +25. (2)原式=(a 2-9)(a 2+9)=a 4-81. (3)原式=a 2-1-a 2+2a -1=2a -2.
13. D
14. A
15.4(x +1)2
16.20
17. C
18. B
19.4 900
20.ab
21.y(x -3)(x +3)
22.1
23. (1)原式=5a 3b ·9b 2+(-ab)·36a 2b 2=45a 3b 3-36a 3b 3=9a 3b 3. (2)原式=x 3+3x +x 3-3x 2-3x 3+3x 2+3x =-x 3+6x.
24.(1)原式=(a -b)(2m +3n). (2)原式=16(x +2)(x -2). (3)原式=-4(a -3)2.
25.原式=a 2-2ab -b 2-(a 2-b 2)=a 2-2ab -b 2-a 2+b 2=-2ab.如选择一个喜欢的数为a =1,b =-1,则原式=2.
26.(1)123=1012÷103=109,104=1010÷104=106. (2)(215)×102=(1021÷105)×102=1018.。

相关文档
最新文档