2014届苏科版九年级数学上期末测试题含答案解析

合集下载

2014届苏科版九年级数学上期末测试题含答案解析.doc

2014届苏科版九年级数学上期末测试题含答案解析.doc

期末测试题【本测试题满分:120 分,时间: 120 分钟】一、选择题(每小题 3 分, 共 36 分)1.如图,将矩形沿对角线对折,使点落在处,C′交于点,下列不成立的是()A. B.∠∠A F D C. D.∠∠2.(2013·重庆中考)某特警部队为了选拔“神枪手”,举行了 1 000 米射击比赛,最后由甲、乙两名战士进入决赛,在相同条件下,两人各射靶B 10 次,经过统计计算,甲、乙两名战士的总成绩都是99.68 环,甲的方差是0.28,乙的方差是确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人成绩的稳定性相同D.无法确定谁的成绩更稳定C第 1 题图0.21,则下列说法中,正3.顺次连接等腰梯形ABCD 各边的中点,所得的四边形一定是()A. 等腰梯形B. 矩形C.菱形D. 平行四边形4.若,则xx2)的结果是(xA.0B.- 2C.0 或- 2D.25.若实数满足,则x y的值是()3 y 2 x3A.1B.2 + 2C.3+2 2D.3 - 2 26.关于 x 的一元二次方程有一根为0,则 m 的值为()A.1B.- 1C.1 或- 1D.07.( 2013·四川宜宾中考)已知x=2 是一元二次方程x 2 mx 2 0 的一个解,则m的值是()A. - 3B.3C.0D.0 或 38.方程的解为()A. B. C. x1 1, x2 3 D.以上答案都不对9.△ ABC 内接于圆O,∠ 50°,∠ 60°,是圆的直径,交于点,连接,则∠等于()A. 70 °B. 110 °C. 90 °D. 120 °10.已知 P 为⊙ O 内一点, OP=2,如果⊙ O 的半径是3,那么过 P 点的最短弦长是()A.1B.2C. 5D. 2 5二、填空题(每小题 3 分, 共 30 分)11.在方格纸上有一个△ABC,它的顶点都在格点上,位置如图所示,则这个三角形是_____三角形 .12.(2013 ·湖北孝感中考)为了考察某种小麦的长势,从中抽取了 10 株麦苗,测得苗高(单位: cm)为: 16, 9, 14, 11, 12, 10, 16, 8,17, 19.则这组数据的中位数是,极差是 _____________ .13.已知一等腰梯形的周长是80 cm,它的中位线和腰长相等,梯形的高是12 cm,那么梯形的面积是cm2 .14.(山东德州中考)当x 2时, x2 11 =_____________.x2 x15.已知则 .16.(2013 ·上海中考 )在⊙ O中,已知半径长为 3,弦 AB长为 4,那么圆心 O到 AB的距离为._______.17.在 Rt△中,斜边是一元二次方程的两个实数根,则m 等于 _________.18.甲、乙两人同解一个一元二次方程,甲看错常数项,解得两根为8 和 2,乙看错一次项系数,解得两根为和,则这个方程是.19.如图,⊙ O 的半径为 2,点 A 的坐标为(-2,2 3),直线AB为⊙O的切线, B 为切点.则 B 点的坐标为 __________.20.半径分别为 1 cm, 2 cm, 3 cm 的三圆两两外切,则以这三个圆的圆心为顶点的三角形的形状为 __________.三、解答题(共 54 分)21.已知:实数,在数轴上的位置如图所示,化简:.a b x-3 -2 -1 0 1 2 3 42 3 2 3 第 21 题图22.已知x ,求值: 2x 22 3 , y 2 3 3xy 2 y 2.23.如图,矩形的对角线交于点 2 3 ,于点,求的长.AB AEOCEDB D第 23 题图第 24 题图24.如图,点是△中边上的中点,⊥,⊥,垂足分别为,且(1)求证:△是等腰三角形;(2)当∠ 90°时,试判断四边形是怎样的四边形,证明你的结论.25.已知x1 , x2是关于x的一元二次方程x2 6x k 0 的两个实数根,(1)求 k 的值;(2)求x12x228的值 .FCx12 x22 - x1 - x2115.26.如图,中的弦,圆周角,求图中阴影部分的面积.CEA BD O第 27 题图27.如图,是⊙的直径,是⊙的弦,以为直径的⊙与相交于点,,求的长 .28.随着人们节能意识的增强,节能产品的销售量逐年增加.某地区高效节能灯的年销售量年为万只,预计年将达到万只.求该地区年到年高效节能灯年销售量的平均增长率.期末测试题参考答案一、选择题1.B2. B 解析 :本题考查了方差的意义,方差越小,数据越稳定.在甲、乙两名战士的总成绩相同的条件下,∵s 2 2> s乙,∴乙的成绩比甲的成绩稳定 .甲3.C 解析 : 因为等腰梯形的对角线相等,所以所得的四边形一定是菱形.4.D 解析 :因为,所以x2 x ,xx2 x ( x) 2 .x x5.C6.B 解析 : 将代入方程可求得或,但当时,方程不是一元二次方程,所以.7.A 解析 : 把 x=2 代入方程x2 mx 2 0 中,得到4+2 m +2=0,解得 m =-3.8.C9.B 解析 : 因为 BD 是圆 O 的直径,所以 .因为,所以 .又,所以 .10.D二、填空题11.等腰12.13 11 解析:把这组数据按照从小到大的顺序排列为:8,9,10,11,12,14,16,16,17,19.最大数是 19,最小数是8,所以极差为 11.因为有10 个数据,所以中位数是第五个数与第六个数的平均数,即 12 与 14 的平均数 .13.240 解析:设等腰梯形的中位线长为,则腰长为,上底加下底为,解得,所以这个梯形的面积 =20×12=240( cm2).14. 2 解析 : x2 1 1 ( x 1() x 1)1 x 1 1 12 x2 x x( x 1) x x 15.解析 : 因为所以所以,故 .16.5的和为,等腰梯形的周长2.217.4解析:设BC=a,AC =b,根据题意得,,由勾股定理可知,∴ ,解得 .∵,即,∴.18.解析:设这个一元二次方程的两根是α、,根据题意得,,那么以α、为两根的一元二次方程就是 .19.( 1,)解析:如图,过点作⊥轴于点,过点作⊥轴,∵ ⊙的半径为2,点的坐标为(-2,2 3),即,∴是圆的切线.∵, 3 ,即点的坐标为 (1, 3) .20.直角三角形解析 :根据两圆外切可知三角形的三边长分别为 3cm,4 cm, 5 cm,所以此三角形为直角三角形 .三、解答题21.解 :由数轴可知,所以, .所以 .22.解 :因为2 x2 3 xy 2 y 2 2x 2 4 xy 2 y 2 xy 2( x y) 2 xy ,2 3 2 3 ( 2 3 ) 2 ( 2 3 ) 2x y 8 3 ,2 3 2 3 ( 2 3 )( 2 3 ) ( 2 3 )( 2 3 )xy 2 3 2 31 ,( )(2)2 3 3所以2 x2 3xy 2 y2 2 (8 3) 2 1 385 .23.解:∵矩形的对角线相等且互相平分,∴.∵,∴△为等边三角形,则,∵ ⊥,∴为的中点,∴ .24.( 1)证明:因为⊥,⊥,且 ,所以△≌△ ,所以∠∠ .所以△是等腰三角形 .(2)解:当∠时,四边形是正方形.证明如下 :因为⊥,⊥,所以∠∠ .又∠ ,所以四边形是矩形 .由( 1)可知 ,所以四边形是正方形 .25.解 :( 1)因为x1 , x2 是关于 x 的一元二次方程x2 6x k 0 的两个实数根,所以 x1 x2 6 , x1x2 k .2- (x1 x2 ) k 2所以 k 2 121,k 11.所以( x1x2) 6 115,又由方程有两个实数根,可知36 - 4k 0 ,解得 k 9 .所以 k 11 .2x 2 (x1 2 - 2 x1 x2 8(2)因为x1 28 x2),且x1 x2 6,x1 x2 k 11,所以 x12 x22 8 36 22 8 66.26.解:连接,作于,则.∵,∴ .∵,∴ 为中点 .又,∴.∴,.∴ 阴影部分的面积为27.解:连接 ,∵ 为⊙的直径,为⊙的直径,∴ ∠∠ .∴ ∥ .又∵ ,∴ .∵,∴ .28. 解:设该地区年到年高效节能灯年销售量的平均增长率为.依据题意,列出方程化简整理,得解这个方程,得∴.∵ 该地区年到年高效节能灯年销售量的平均增长率不能为负数,∴舍去,∴.答:该地区年到年高效节能灯年销售量的平均增长率为。

苏科版九年级上册数学《期末测试卷》及答案解析

苏科版九年级上册数学《期末测试卷》及答案解析

苏 科 版 数 学 九 年 级 上 学 期期 末 测 试 卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列统计量中,能够刻画一组数据的离散程度的是( ) A. 方差或标准差B. 平均数或中位数C. 众数或频率D. 频数或众数2.在比例尺为1:38 000的城市交通地图上,某条道路的长为5 cm ,则它的实际长度为( ) A. 0.19 kmB. 1.9 kmC. 19 kmD. 190 km3.给出下列各组线段,其中成比例线段是( ) A. 2,4,6,8a cm b cm c cm d cm ==== B. 1111,,,2468a cm b cm c cm d cm ==== C. 2,3,10,25a cm b cm c cm d cm ====D. 2,5,23,15a cm b cm c cm d cm ==== 4.在 Rt △ABC 中,∠C =90°,sinA =35,则 cosB 的值为( ) A .34B.43 C.35D.455.已知正三角形的边长为12,则这个正三角形外接圆的半径是( ) A. 23B.3C.33 D. 436.如图,点A 、C 、B 在⊙O 上,已知∠AOB=∠ACB=α,则α的值为( )A. 135°B. 100°C. 110°D. 120°7.抛物线y=ax 2+bx+c 上部分点坐标如表所示,下列说法错误的是( ) x…-3-2-11…y … -6 0 46 6 …A. 抛物线与y 轴的交点为(0,6)B. 抛物线的对称轴是在y 轴的右侧C. 抛物线一定经过点(3,0)D. 在对称轴左侧,y 随x 增大而减小8.如图,以点O 为圆心的两个圆中,大圆的弦AB 切小圆于点C ,OA 交小圆于点D ,若OD=2,tan ∠OAB=12,则AB 的长是( )A. 4B. 23C. 8D. 43二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.若3sin 2α=,则α=________°. 10.已知3,,4,,5a b 这五个数据,其中a 、b 是方程2320x x -+=的两个根,则这五个数据的极差是____. 11.若,,D E F 分别为ABC ∆各边的中点,且DEF ∆的周长为9,则ABC ∆的周长为__________12.某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为x ,根据题意列出的方程是_________.13.甲、乙、丙3名学生随机排成一排拍照,其中甲排在中间的概率是_____. 14.若关于x 的方程x 2+2x +k =0有两个不相等的实数根,则k 的取值范围是____. 15.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______.16.如图,∠DAB=∠CAE ,请补充一个条件:________________,使△ABC ∽△ADE .17.在△ABC 中,(tanC-1)2+∣3-2cosB ∣=0则∠A= .18.如图,在平面直角坐标系中,已知点A 、B 的坐标分别为(8,0)、(0,23),C 是AB 的中点,过点C 作y 轴的垂线,垂足为D ,动点P 从点D 出发,沿DC 向点C 匀速运动,过点P 作x 轴的垂线,垂足为E ,连接BP 、EC .当BP 所在直线与EC 所在直线垂直时,点P 的坐标为____三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤..............) 19.(1)计算:2sin303cos604tan 45+- (2) 解方程:2210x x --=20.某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下: 甲 95 82 88 81 93 79 84 78 乙 8392809590808575(1)请你计算这两组数据的平均数、中位数;(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.21.甲、乙、丙3名学生各自随机选择到A 、B 2个书店购书. (1)求甲、乙2名学生在不同书店购书的概率; (2)求甲、乙、丙3名学生在同一书店购书的概率.22.如图,在矩形ABCD 中,6AB =,12AD =,点E 在AD 边上,且8AE =,EF BE ⊥ 交CD 于点F .(1)求证:ABE DEF △△∽.(2)求CF的长.23.如图,ABCD是围墙,AB∥CD,∠ABC=120°,一根6m长的绳子,一端拴在围墙一角的柱子上(B处),另一端拴着一只羊(E处).(1)请在图中画出羊活动的区域.(2)求出羊活动区域的面积.(保留π)24.如图,在△ABD和△ACE中,AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE相交于点F,BC与AD 相交于点G.(1)试判断线段BC、DE的数量关系,并说明理由;(2)若BC平分∠ABD,求证线段FD是线段F G 和FB的比例中项.25.大海中某小岛周围10km范围内有暗礁,一海轮在该岛的南偏西60方向的某处,由西向东行驶了20km 后到达该岛的南偏西30方向的另一处,如果该海轮继续向东行驶,会有触礁的危险吗?(3≈1.732).26.如图以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC的中点,过点D作⊙O的切线交AC边于点F.(1)求证:DF⊥AC;(2)若∠ABC=30°,求tan∠BCO的值.27.在Rt△ABC中,∠C=90°,P是BC边上不同于B、C的一动点,过P作PQ⊥AB,垂足为Q,连接AP.(1)试说明不论点P在BC边上何处时,都有△PBQ与△ABC相似;(2)若Rt△AQP≌Rt△ACP≌Rt△BQP,求tanB 的值;(3)已知AC=3,BC=4,当BP为何值时,△AQP面积最大,并求出最大值.28.如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,D为OC的中点,直线AD 交抛物线于点E(2,6),且△ABE与△ABC的面积之比为3∶2.(1)求这条抛物线对应的函数关系式;(2)连结BD,试判断BD与AD的位置关系,并说明理由;(3)连结BC交直线AD于点M,在直线AD上,是否存在这样的点N(不与点M重合),使得以A、B、N为顶点的三角形与△ABM相似?若存在,请求出点N的坐标;若不存在,请说明理由.答案与解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列统计量中,能够刻画一组数据的离散程度的是( ) A. 方差或标准差 B. 平均数或中位数C. 众数或频率D. 频数或众数【答案】A 【解析】由于方差、标准差都能反映数据的波动大小,而中位数是一组数据按大小排序后最中间一个数(或中间两个数的平均数),平均数反应的是一组数据的平均量,众数是一组数据中出现次数最多的数,而频率和频数反应的是数据的比值和数目. 故选A.2.在比例尺为1:38 000的城市交通地图上,某条道路的长为5 cm ,则它的实际长度为( ) A. 0.19 km B. 1.9 kmC. 19 kmD. 190 km【答案】B 【解析】设这条道路的实际长度为xcm ,则可得1:38000=5:x ,解得x=190000=1.9km. 故选B.3.给出下列各组线段,其中成比例线段是( ) A. 2,4,6,8a cm b cm c cm d cm ==== B. 1111,,,2468a cm b cm c cm d cm ====C. ,,,a b c d ====D. 2,,,a cm b c d ==== 【答案】D 【解析】根据成比例线段的定义,若a 、b 、c 、d 成比例,则a:b=c:d ,因此可知a 、b 、c 、d 成比例,而其余的乘积均不相等. 故选D.4.在Rt△ABC 中,∠C=90°,sinA=35,则cosB 的值为()A. 34B.43C.35D.45【答案】C 【解析】根据锐角三角函数的概念,可知正弦sinA=BCAB,可得cosB=BCAB=sinA=35.故选C.5.已知正三角形的边长为12,则这个正三角形外接圆的半径是( )A. 23B. 3C. 33D. 43【答案】D【解析】设正△ABC的中心为O,如图,连接OB,作OD⊥BC,由正三角形的边长可知BC=12,∠OBD=30°,求得BD=6,然后根据锐角三角形函数可知:OB=BD÷cos∠OBD=6÷3=43 .故选D.点睛:本题考查了正多边形和圆.关键是画出正三角形及其中心,表示正三角形外接圆的半径,把问题转化到直角三角形中求解.6.如图,点A、C、B在⊙O上,已知∠AOB=∠ACB=α,则α的值为()A. 135°B. 100°C. 110°D. 120°【答案】D【解析】∵∠ACB=α∴优弧所对的圆心角为2α∴2α+α=360°∴α=120°.故选D.7.抛物线y=ax2+bx+c上部分点坐标如表所示,下列说法错误的是( )A. 抛物线与y轴的交点为(0,6)B. 抛物线的对称轴是在y轴的右侧C. 抛物线一定经过点(3,0)D. 在对称轴左侧,y随x增大而减小【答案】D【解析】根据表中数据和抛物线的对称形,可得到抛物线的开口向下,当x=3时,y=0,即抛物线与x轴的交点为(-2,0)和(3,0);因此可得抛物线的对称轴是直线x=12,再根据抛物线的性质即可进行判断.根据图表,当x=-2,y=0,根据抛物线的对称形,当x=3时,y=0,即抛物线与x轴的交点为(-2,0)和(3,0);可得抛物线的对称轴是直线,x=12根据表中数据得到抛物线的开口向下,根据图像与性质可知:当x=12时,函数有最大值,而不是x=0,或1对应的函数值6,并且在直线x=12的左侧,y随x增大而增大.故选D.点睛:此类试题属于难度很大的试题,考生解答此类试题时一定要细心的分析求解,且不可急躁,把握好抛物线y=ax2+bx+c的性质和图像.8.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=12,则AB的长是()A. 4B. 23C. 8D. 43【答案】C【解析】试题解析:连接OC,∵大圆的弦AB切小圆于点C,∴OC⊥AB,∴AB=2AC,∵OD=2,∴OC=2,∵tan∠OAB=12,∴AC=4,∴AB=8,故选C.考点:切线的性质.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)9.若3sin2α=,则α=________°.【答案】60°【解析】根据特殊角30°,45°,60°的三角函数值,可知α的值为60°. 故答案为60°.10.已知3,,4,,5a b 这五个数据,其中a 、b 是方程2320x x -+=的两个根,则这五个数据的极差是____. 【答案】4 【解析】由方程x 2-3x+2=0,解方程的两个根是1,2,即a=1,b=2,故这组数据是3,1,4,2,5,求得这组数据的极差为5-1=4. 故答案为4.11.若,,D E F 分别为ABC ∆各边的中点,且DEF ∆的周长为9,则ABC ∆的周长为__________ 【答案】18 【解析】根据三角形的中位线,可知AB=2DE ,AC=2DF ,BC=2EF ,可得△ABC 的周长为AB+BC+AC=2(DE+DF+EF)=2△DEF 的周长=18. 故答案为18.点睛:此题主要考查了三角形的中位线的应用,解题关键是利用好三角形的中位线的性质,然后根据三角形的周长公式计算即可.三角形的中位线:连接三角形两边中点的线段,叫做三角形的中位线; 性质:三角形的中位线平行于第三边,并且等于第三边的一半.12.某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为x ,根据题意列出的方程是_________. 【答案】3200(1-x )2=2500 【解析】 【分析】本题可根据:原售价×(1-降低率)2=降低后的售价得出两次降价后的价格,然后即可列出方程. 【详解】解:依题意得:两次降价后的售价为3200(1-x )2=2500, 故答案为3200(1-x )2=2500.【点睛】本题考查降低率问题,由:原售价×(1-降低率)2=降低后的售价可以列出方程. 13.甲、乙、丙3名学生随机排成一排拍照,其中甲排在中间的概率是_____. 【答案】13【解析】列举出所有情况,看甲排在中间的情况占所有情况的多少即为所求的概率. 根据题意,列出甲、乙、丙三个同学排成一排拍照的所有可能:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,全部6种情况, 只有2种甲在中间,所以甲排在中间的概率是26=13. 故答案为13; 点睛:本题主要考查了列举法求概率,用到的知识点为:概率等于所求情况数与总情况数之比,关键是列举出同等可能的所有情况.14.若关于x 的方程x 2+2x +k =0有两个不相等的实数根,则k 的取值范围是____. 【答案】1k < 【解析】根据一元二次方程根的判别式,由关于x 的一元二次方程x 2+2x+k=0有两个不相等的实数根,a=1,b=2,c=k ,可得△=b 2-4ac=22-4×1×k >0,解得k <1. 故答案为k <1.点睛:此题主要考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△=b 2-4ac >0,方程有两个不相等的实数根;(2)△=b 2-4ac =0,方程有两个相等的实数根;(3)△=b 2-4ac <0,方程没有实数根.15.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______. 【答案】15π 【解析】试题分析:利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.圆锥的侧面积=12•2π•3•5=15π. 故答案为15π. 考点:圆锥的计算.16.如图,∠DAB=∠CAE ,请补充一个条件:________________,使△ABC ∽△ADE .【答案】解:∠D=∠B 或∠AED=∠C . 【解析】 【分析】根据相似三角形的判定定理再补充一个相等的角即可.【详解】解:∵∠DAB=∠CAE∴∠DAE=∠BAC∴当∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD•AC=AB•AE时两三角形相似.故答案为∠D=∠B(答案不唯一).17.在△ABC中,(tanC-1)2+∣3-2cosB∣=0则∠A= .【答案】105°【解析】由题意得tanC=1,cosB=32,∴∠C=45°, ∠B=30°∴∠A=180°-45°-30°=105°18.如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,23),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP所在直线与EC所在直线垂直时,点P的坐标为____【答案】(1,3)【解析】【分析】先根据题意求得CD和PE的长,再判定△EPC∽△PDB,列出相关的比例式,求得DP的长,最后根据PE、DP的长得到点P的坐标.【详解】由题意可知,OB=23,AO=8,∵CD⊥BO,C是AB的中点,∴BD=DO=12BO==PE,CD=12AO=4.设DP=a,则CP=4﹣a,当BP所在直线与EC所在直线第一次垂直时,∠FCP=∠DBP,又∵EP⊥CP,PD⊥BD,∴∠EPC=∠PDB=90°,∴△EPC∽△PDB.DP DBPE PC ∴=∴343aa=-,∴a1=1,a2=3(舍去).∴DP=1,∵PE=3,∴P(1,3).考点:1相似三角形性质与判定;2平面直角坐标系.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤..............)19.(1)计算:2sin303cos604tan45+-(2) 解方程:2210x x--=【答案】(1)32-; (2)112x=+;212x=-.【解析】试题分析:(1)根据特殊角的锐角三角形函数值,直接代入求解即可;(2)根据配方法求解一元二次方程即可.试题解析:(1)原式==(2) 解:2212x x-+=,()212x-=,∴12x-=±∴112x=212x=20.某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下: 甲 95 82 88 81 93 79 84 78 乙 8392809590808575(1)请你计算这两组数据的平均数、中位数;(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.【答案】(1)这两组数据的平均数都是85.这两组数据的中位数分别为83,84. (2)派乙参赛比较合适,理由略. 【解析】 【详解】解:(1)=(82+81+79+78+95+88+93+84)=85,=(92+95+80+75+83+80+90+85)=85.这两组数据的平均数都是85. 这两组数据的中位数分别为83,84. (2) 派甲参赛比较合适.理由如下:由(1)知=,∵=,22s s 甲乙,∴甲的成绩较稳定,派甲参赛比较合适.21.甲、乙、丙3名学生各自随机选择到A 、B 2个书店购书. (1)求甲、乙2名学生在不同书店购书的概率; (2)求甲、乙、丙3名学生在同一书店购书的概率. 【答案】 (1)P=12;(2)P=14. 【解析】试题分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.试题解析:(1)甲、乙两名学生到A 、B 两个书店购书的所有可能结果有:从树状图可以看出,这两名学生到不同书店购书的可能结果有AB 、BA 共2种, 所以甲乙两名学生在不同书店购书的概率P (甲、乙2名学生在不同书店购书)=41=82; (2)甲、乙、丙三名学生AB 两个书店购书的所有可能结果有:从树状图可以看出,这三名学生到同一书店购书的可能结果有AAA 、BBB 共2种, 所以甲乙丙到同一书店购书的概率P(甲、乙、丙3名学生在同一书店购书)=21=84. 点睛:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.如图,在矩形ABCD 中,6AB =,12AD =,点E 在AD 边上,且8AE =,EF BE ⊥ 交CD 于点F .(1)求证:ABE DEF △△∽. (2)求CF 的长.【答案】(1)证明见解析;(2) CF=23【解析】试题分析:(1)由四边形ABCD 是矩形,易得∠A=∠D=90°,又由EF⊥BE,利用同角的余角相等,即可得∠1=∠3,则可证得△ABE∽△DEF;(2)先根据矩形的性质,求出DE 的长,然后根据勾股定理可求出BE 的长,结合(1)的结论,根据相似三角形的性质,可得对应边成比例,代入数值求出DF 的长,等量代换可求解. 试题解析:①如图,EF BE ⊥,90EFB ∴∠=.1290∴∠+∠=在矩形ABCD 中,9090A D ∠=∠=,,2390∴∠+∠=.13∴∠=∠ 90A D ∠=∠=.ABE DEF ∴∽.②在ABE 中,9068A AB AE ∠===,,. ∴22226810BE AB AE =+=+=又1284DE AD AE =-=-=.由①得ABE DEF ∽,23.如图,ABCD 是围墙,AB ∥CD ,∠ABC =120°,一根6m 长的绳子,一端拴在围墙一角的柱子上(B 处),另一端拴着一只羊(E 处).(1)请在图中画出羊活动的区域.(2)求出羊活动区域的面积.(保留π)【答案】(1)作图见解析; (2)383πm2 .【解析】试题分析:(1)羊的活动区域应该分为两部分:①以∠ABC为圆心角,BE长为半径的扇形;②以∠BCD的补角为圆心角,以(BE-BC)长为半径的扇形;(2)可根据两个扇形各自的圆心角和半径,计算出羊活动区域的面积.试题解析:(1)如图,扇形BFG和扇形CGH为羊活动的区域.(2)m2m2∴羊活动区域的面积为:m2点睛:此题主要考查的是扇形的面积计算方法,正确的判断出羊的活动区域是解答此题的关键.24.如图,在△ABD和△ACE中,AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE相交于点F,BC与AD 相交于点G.(1)试判断线段BC、DE的数量关系,并说明理由;(2)若BC平分∠ABD,求证线段FD是线段F G 和FB的比例中项.【答案】(1)BC DE=,理由见解析; (2)证明见解析.【解析】试题分析:(1)先判断出关系,然后根据三角形全的判定SAS 证明△BAC≌△DAE 即可;(2)根据条件证明△DFG∽△BFD,利用相似三角形的性质得出比例式,再利用比例的性质得出FD 2=FG·FB 即可.试题解析:(1)BC DE ,的数量关系是BC DE =. 理由如下:BAD CAE BAC DAE ∠=∠∴∠=∠,.又AB AD AC AE ==,,ABC ADE ∴≌(SAS ). BC DE ∴=.(2)ABC ADE ≌,ABC ADE ∴∠=∠.ABC CBD ADE CBD ∠=∠∴∠=∠,.又BFD DFG ∠=∠,BFD DFG ∴∽.∴2BF DFFD FG FB DF GF=∴=⋅, 即线段FD 是线段FG 和FB 的比例中项.25.大海中某小岛周围10km 范围内有暗礁,一海轮在该岛的南偏西60方向的某处,由西向东行驶了20km 后到达该岛的南偏西30方向的另一处,如果该海轮继续向东行驶,会有触礁的危险吗?(3≈1.732). 【答案】不会有触礁的危险 【解析】试题分析:根据题意,构造符合条件的图形(直角三角形模型),然后根据解直角三角形求出海轮和该岛的最短距离,比较即可.试题解析:根据题意,画出图形为:海轮与该岛的最短距离∴不会有触礁的危险26.如图以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC的中点,过点D作⊙O的切线交AC边于点F.(1)求证:DF⊥AC;(2)若∠ABC=30°,求tan∠BCO的值.【答案】(1)证明见解析; (2) tan∠BCO=3 .【解析】【分析】(1)连接OD,根据三角形的中位线定理可求出OD∥AC,根据切线的性质可证明DF⊥OD,进而得证.(2)过O作OE⊥BD,根据等腰三角形的性质及三角函数的定义用OB表示出OE、CE的长,根据三角函数的定义求解.【详解】(1)证明:连接OD.∵O为AB中点,D为BC中点,∴OD∥AC.∵DF为⊙O的切线,∴DF⊥OD.∴DF⊥AC.(2)过O作OE⊥BD,则BE=ED.在Rt△BEO中,∠ABC=30°∴OE=12OB, BE=32OB∵BD=DC, BE=ED,∴EC=3BE=332OB在Rt△OEC中,tan∠BCO=1329332OBOEECOB==.27.在Rt△ABC中,∠C=90°,P是BC边上不同于B、C的一动点,过P作PQ⊥AB,垂足为Q,连接AP.(1)试说明不论点P在BC边上何处时,都有△PBQ与△ABC相似;(2)若Rt△AQP≌Rt△ACP≌Rt△BQP,求tanB的值;(3)已知AC=3,BC=4,当BP为何值时,△AQP面积最大,并求出最大值.【答案】(1)证明见解析;(2)3; (3)当BP=258时,△APQ的面积最大,最大值是7532;【解析】试题分析:(1)直接证明∠C=∠PQB=90°,而∠B=∠B,即可根据两角对应相等的两三角形相似;(2)分别根据全等三角形的性质,求出AQ=QB=AC,然后根据锐角三角形函数的性质求出tanB的值;(3)利用勾股定理求出AB的值,然后根据相似三角形的性质列出比例式求出PQ、BQ,再根据三角形的面积公式求出△AQP面积,根据二次函数的性质和配方法解答即可.试题解析:(1)不论点P在BC边上何处时,都有∠PQB=∠C=90°,∠B=∠B∴△PBQ∽△ABC;(2)∵Rt△AQP≌Rt△ACP∴AQ=AC又Rt△AQP≌Rt△BQP ∴AQ=QB∴AQ=QB=AC∴∠B=∴(3)设BP=x(0<x<4),由勾股定理,得AB=5∵由(1)知,△PBQ∽△ABC,∴,即∴S△APQ===∴当时,△APQ的面积最大,最大值是;点睛:该题主要考查了相似三角形的判定及其性质、二次函数的性质及其性质的应用问题;解题的关键是灵活运用有关定理来分析、解答.28.如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,D为OC的中点,直线AD 交抛物线于点E(2,6),且△ABE与△ABC的面积之比为3∶2.(1)求这条抛物线对应的函数关系式;(2)连结BD,试判断BD与AD的位置关系,并说明理由;(3)连结BC交直线AD于点M,在直线AD上,是否存在这样的点N(不与点M重合),使得以A、B、N为顶点的三角形与△ABM相似?若存在,请求出点N的坐标;若不存在,请说明理由.【答案】(1)根据△ABE与△ABC的面积之比为3∶2及E(2,6),可得C(0,4).∴D(0,2). 由D(0,2)、E(2,6)可得直线AD所对应的函数关系式为y=2x+2.当y=0时,2x+2=0,解得x=-1. ∴A(-1,0).由A(-1,0)、C(0,4)、E(2,6)求得抛物线对应的函数关系式为y=-x2+3x+4.(2)BD⊥AD.求得B(4,0),通过相似或勾股定理逆定理证得∠BDA=90°,即BD⊥AD.(3)法1:求得M(,),AM=. 由△ANB∽△ABM,得=,即AB2=AM·AN,∴52=·AN,解得AN=3.从而求得N(2,6). 法2:由OB=OC=4及∠BOC=90°得∠ABC=45°.由BD⊥AD及BD=DE=2得∠AEB=45°. ∴△AEB∽△ABM,即点E符合条件,∴N(2,6). 【解析】(1)根据△ABE与△ABC的面积之比为3∶2及E(2,6),可得C(0,4). ∴D(0,2). 由D(0,2)、E(2,6)根据待定系数法可得直线AD所对应的函数关系式为y=2x+2.求得一次函数与x轴的交点坐标A(-1,0),由A(-1,0)、C(0,4)、E(2,6)根据待定系数法求得抛物线对应的函数关系式为y=-x2+3x+4.(2)求得B(4,0),通过相似或勾股定理逆定理证得∠BDA=90°,即BD⊥AD.(3)由△ANB∽△ABM,根据对应边成比例即可求得点N的坐标.。

江苏2014届九年级上期末考试数学试题及答案

江苏2014届九年级上期末考试数学试题及答案

2013—2014学年度第一学期期末考试 初三数学一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填在答题纸上.)1▲ ) A .4 B .-4 C .±4 D2.函数y =2—1-x 中自变量x 的取值范围是( ▲ ) A .x >1B .x ≥1C .x ≤1D .1≠x3.下列图案既是轴对称图形,又是中心对称图形的是( ▲ )A .B .C .D .4.一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法错误..的是( ▲ ) A .极差是20B .中位数是91C .众数是98D .平均数是915.在平面几何中,下列命题为真命题的是( ▲ ) A .四边相等的四边形是正方形 B .四个角相等的四边形是矩形C .对角线相等的四边形是菱形 D .对角线互相垂直的四边形是平行四边形6.已知圆锥的底面半径为2,母线长为4,则它的侧面积为( ▲ )A .4πB .16πC .43πD .8π7.已知⊙O 的半径是5,直线l 是⊙O 的切线,P 是l 上的任一点,那么( ▲ )A . 0<OP <5 B . OP =5 C . OP >5D . OP ≥58.如图,已知:在边长为12的正方形ABCD 中,有一个小正方形EFGH ,其中E 、F 、G 分别在AB 、BC 、FD 上.若BF =3,则BE 长为( ▲ )A .1B .2.5C .2.25D .1.59.如图,已知:在梯形ABCD 中,CD ∥AB ,AD 、BC 的延长线相交于点E ,AC 、BD 相交于点O ,连接EO 并延长交AB 于点M ,交CD 于点N .则S △AOE :S △BOE 等于( ▲ )A .1∶1B .4∶3C .3∶4D .3∶210.如图,在平面直角坐标系x O y 中,我们把横、纵坐标都是整数的点叫做整点.已知点A (0,4),点B (4n ,0)(n 为正整数),记△AOB 内部(不包括边界)的整点个数为m .则m 等于( ▲ ) A .3n B .3n -2C .6n+2D .6n -3二、填空题:(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把最后结果填在答题纸对应的位置上.)11.分解因式:x 2-2x = ▲ .12.3月20日,无锡市中级人民法院依法裁定,对无锡尚德太阳能电力有限公司实施破产重组.据调查,截至2月底,包括工行、农行、中行等在内的9家债权银行对无锡尚德的本外币授信余额折合人民币已达到7 100 000 000元,则7 100 000 000可用科学记数法表示为 ▲ .13.若双曲线xky =与直线13+=x y 的一个交点的横坐标为1-,则k 的值为 ▲ .14.六边形的内角和等于 ▲ .15.已知:菱形ABCD 中,对角线AC 与BD 相交于点O ,OE ∥DC 交BC 于点E , OE =3cm ,则AD 的长为 ▲ . 16.如图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点,若CD =2EF =4,BC =4 2 ,则∠C 等于 ▲ .17.如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积为 ▲ cm 2.(结果可保留根号) 18.在平面直角坐标系中,点A 、B 、C 的坐标分别为(2,0),(3,3),(1,3),点D 、E 的坐标分别为(m ,3m ),(n ,33n )(m 、n 为非负数),则CE +DE +DB 的最小值是 ▲ .三、解答题:(本大题共10小题,共84分.解答时将文字说明、证明过程或演算步骤写在答题纸相应的位置上.)第8题图第9题图F E DBA19.(本题满分8分)计算或化简:(1)计算:()01213332-+⨯---. (2)先化简,再求值:()()()x x x x +-+-333,其中x =-2.20.(本题满分8分)⑴ 解方程: . ⑵ 解不等式组:12512x x x +⎧⎪⎨->⎪⎩≤,,.21.(本题满分8分)在数学课上,陈老师在黑板上画出如图所示的图形,在△AEC 和△DFB 中,已知∠E =∠F ,点A ,B ,C ,D 在同一直线上,并写下三个关系式:①AE ∥DF ,②AB =CD ,③CE =BF .请同学们从中再任意选取两个作为补充条件,剩下的那个关系式作为结论构造命题.小明选取了关系式①,②作为条件,关系式③作为结论。

2014年秋季新版苏科版九年级数学上学期期末复习试卷6

2014年秋季新版苏科版九年级数学上学期期末复习试卷6

赵墩中学2013-2014学年度第一学期九年级数学(一)一选择题(每题3分共24分)1.下列图形中,是轴对称图形而不是是中心对称图形的有( )ABC D2.某地区周一至周六每天的平均气温为:2,1-,3,5,6,5,(单位℃)则这组数据的极差是( )℃A .7B .6C .5D .03.估计20的算术平方根的大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间 4.如图,AC =AD ,BC =BD ,则有( ) A .AB 垂直平分CD B .CD 垂直平分AB C .AB 与CD 互相垂直平分D .CD 平分∠ACB5.两圆的半径分别为2和5,圆心距为7,则这两圆的位置关( ) A .外离B .外切C .相交D .内切6.把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为( )A .B .C .D .2(1)3y x=-++ 7. 定义:如果一元二次方程20(0)a x b x c a ++=≠满足0a b c ++=,那么我们称这个方程为“和谐”方程;如果一元二次方程20(0)a x b x c a ++=≠满足0a b c -+=那么我们称这个方程为“美好”方程,如果一个一元二次方程既是“和谐”方程又是“美好”方程,则下列结论正确的是( ) A.方程有两个相等的实数根 B .方程有一根等于0C.方程两根之和等于0D .方程两根之积等于08. 下图是由10 把相同的折扇组成的“蝶恋花”(图 l )和梅花图案(图 2 )(图中的折扇无重叠), 则梅花图案中的五角星的五个锐角均为 ( )ABCDA . 48ºB . 42ºC . 45º D. 36º二填空:(每题3分共30分)9. 函数y =自变量x 的取值范围是 . 10. 如图,⊙O 是正方形 ABCD 的外接圆,点 P 在⊙O 上,则∠APB=______° 11. 写出一个开口向上且图像与x 轴有两个交点的二次函数解析式_________________12. 某县2012年农民人均年收入为7 800元,计划到2014年农民人均年收入达到9 100元.设人均年收入的平均增长率为x ,则可列方程为_________________13. 如图,在平行四边形ABCD 中,E 是AD 边上的中点.若∠ABE=∠EBC ,AB=4,则平行四边形ABCD 的边长BC=______14. 21,23=_______.x x --则的值 15. 如图是二次函数y=ax 2+bx+c 图象的一部分,其对称轴为直线x =1,若其与x 轴一交点为A (3,0),则由图象可知,方程ax 2+bx+c =0的解是 .第10题图 第13题图 第15题图16.如图,扇形的半径为R ,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为2则R=__________.17. 如图,菱形ABCD 的边长为2㎝,∠ADC=120°,弧BD 是以A 为圆心AB 长为半径的弧,弧CD 是以点B 为圆心BC 长为半径的弧。

苏科版数学九年级上册 全册期末复习试卷测试卷(含答案解析)

苏科版数学九年级上册 全册期末复习试卷测试卷(含答案解析)

苏科版数学九年级上册 全册期末复习试卷测试卷(含答案解析)一、选择题1.二次函数y =x 2﹣6x 图象的顶点坐标为( )A .(3,0)B .(﹣3,﹣9)C .(3,﹣9)D .(0,﹣6)2.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个3.下图是甲、乙两人2019年上半年每月电费支出的统计,则他们2019年上半年月电费支出的方差2S 甲和2S 乙的大小关系是( )A .2S 甲>2S 乙B .2S 甲=2S 乙C .2S 甲<2S 乙D .无法确定 4.抛物线223y x x =++与y 轴的交点为( )A .(0,2)B .(2,0)C .(0,3)D .(3,0) 5.若x=2y ,则x y 的值为( ) A .2 B .1 C .12 D .136.若直线l 与半径为5的O 相离,则圆心O 与直线l 的距离d 为( ) A .5d < B .5d >C .5d =D .5d ≤ 7.如图,点P 为⊙O 外一点,PA 为⊙O 的切线,A 为切点,PO 交⊙O 于点B ,∠P=30°,OB=3,则线段BP 的长为( )A .3B .33C .6D .98.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为( )A .433B .23C .334D .3229.将二次函数22y x =的图象先向左平移4个单位长度,再向下平移1个单位长度后,所得新的图象的函数表达式为( )A .()2241y x =--B .()2241y x =+- C .()2241y x =-+ D .()2241y x =++ 10.一个扇形的半径为4,弧长为2π,其圆心角度数是( )A .45B .60C .90D .180 11.如图,O 的半径为2,弦2AB =,点P 为优弧AB 上一动点,60PAC ∠=︒,交直线PB 于点C ,则ABC 的最大面积是 ( )A .12B .1C .2D .2 12.cos60︒的值等于( ) A .12 B .22 C .3 D .3 13.如图所示的网格是正方形网格,则sin A 的值为( )A .12B .22C .35D .4514.抛物线y=(x ﹣2)2﹣1可以由抛物线y=x 2平移而得到,下列平移正确的是( ) A .先向左平移2个单位长度,然后向上平移1个单位长度B .先向左平移2个单位长度,然后向下平移1个单位长度C .先向右平移2个单位长度,然后向上平移1个单位长度D .先向右平移2个单位长度,然后向下平移1个单位长度15.已知⊙O 的半径是6,点O 到直线l 的距离为5,则直线l 与⊙O 的位置关系是 A .相离 B .相切 C .相交 D .无法判断二、填空题16.已知一组数据:4,4,m ,6,6的平均数是5,则这组数据的方差是______.17.O 的半径为4,圆心O 到直线l 的距离为2,则直线l 与O 的位置关系是______.18.如图,在△ABC 中,AB =3,AC =4,BC =6,D 是BC 上一点,CD =2,过点D 的直线l 将△ABC 分成两部分,使其所分成的三角形与△ABC 相似,若直线l 与△ABC 另一边的交点为点P ,则DP =________.19.如图,在□ABCD 中,AB =5,AD =6,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点C 作⊙O 的切线交AD 于点N ,切点为M .当CN ⊥AD 时,⊙O 的半径为____.20.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.21.抛物线()2322y x =+-的顶点坐标是______.22.如图,点O 是△ABC 的内切圆的圆心,若∠A =100°,则∠BOC 为_____.23.如图,港口A 在观测站 O 的正东方向,OA =4km ,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达 B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船与观测站之间的距离(即OB 的长)为 _____km.24.像23x +=x 这样的方程,可以通过方程两边平方把它转化为2x +3=x 2,解得x 1=3,x 2=﹣1.但由于两边平方,可能产生增根,所以需要检验,经检验,当x 1=3时,9=3满足题意;当x 2=﹣1时,1=﹣1不符合题意;所以原方程的解是x =3.运用以上经验,则方程x +5x +=1的解为_____.25.若⊙O 的直径是4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是_________.26.设二次函数y =x 2﹣2x ﹣3与x 轴的交点为A ,B ,其顶点坐标为C ,则△ABC 的面积为_____.27.若一个圆锥的侧面展开图是一个半径为3cm ,圆心角为120°的扇形,则该圆锥的底面半径为__________cm .28.已知关于x 的一元二次方程ax 2+bx +5a =0有两个正的相等的实数根,则这两个相等实数根的和为_____.29.已知234x y z x z y+===,则_______ 30.如图,在四边形ABCD 中,∠BAD =∠BCD =90°,AB +AD =8cm .当BD 取得最小值时,AC 的最大值为_____cm .三、解答题31.如图,平行四边形ABCD 中,30B ∠=︒,过点A 作AE BC ⊥于点E ,现将ABE ∆沿直线AE 翻折至AFE ∆的位置,AF 与CD 交于点G .(1)求证:CG BF CD CF ⋅=⋅;(2)若3AB =8AD =,求DG 的长.32.如图,已知AB 是⊙O 的直径,C ,D 是⊙O 上的点,OC ∥BD ,交AD 于点E ,连结BC .(1)求证:AE=ED ;(2)若AB=10,∠CBD=36°,求AC 的长.33.已知:△ABC 在直角坐标平面内,三个顶点的坐标分别为A (0,3)、B (3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC 向下平移4个单位长度得到的△A 1B 1C 1,点C 1的坐标是 ;(2)以点B 为位似中心,在网格内画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且位似比为2:1,点C 2的坐标是 ;(3)△A 2B 2C 2的面积是 平方单位.34.关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根. 35.对于实数a ,b ,我们可以用{}max ,a b 表示a ,b 两数中较大的数,例如{}max 3,13-=,{}max 2,22=.类似的若函数y 1、y 2都是x 的函数,则y =min{y 1, y 2}表示函数y 1和y 2的取小函数.(1)设1y x =,21=y x ,则函数1max ,y x x ⎧⎫=⎨⎬⎩⎭的图像应该是___________中的实线部分.(2)请在下图中用粗实线描出函数()(){}22max 2,2y x x =---+的图像,观察图像可知当x 的取值范围是_____________________时,y 随x 的增大而减小.(3)若关于x 的方程()(){}22max 2,20x x t ---+-=有四个不相等的实数根,则t 的取值范围是_____________________. 四、压轴题36.已知,如图1,⊙O 是四边形ABCD 的外接圆,连接OC 交对角线BD 于点F ,延长AO 交BD 于点E ,OE=OF.(1)求证:BE=FD ;(2)如图2,若∠EOF=90°,BE=EF ,⊙O 的半径25AO =,求四边形ABCD 的面积; (3)如图3,若AD=BC ;①求证:22•AB CD BC BD +=;②若2•12AB CD AO ==,直接写出CD 的长.37.如图,在ABC ∆中,90ACB ∠=︒,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 于点E ,连结CD .(1)若28A ∠=︒,求ACD ∠的度数;(2)设BC a =,AC b =;①线段AD 的长度是方程2220x ax b +-=的一个根吗?说明理由.②若线段AD EC =,求a b 的值. 38.MN 是O 上的一条不经过圆心的弦,4MN =,在劣弧MN 和优弧MN 上分别有点A,B (不与M,N 重合),且AN BN =,连接,AM BM .(1)如图1,AB 是直径,AB 交MN 于点C ,30ABM ︒∠=,求CMO ∠的度数; (2)如图2,连接,OM AB ,过点O 作//OD AB 交MN 于点D ,求证:290MOD DMO ︒∠+∠=;(3)如图3,连接,AN BN ,试猜想AM MB AN NB ⋅+⋅的值是否为定值,若是,请求出这个值;若不是,请说明理由.39.抛物线()20y ax bx c a =++≠的顶点为(),P h k ,作x 轴的平行线4y k =+与抛物线交于点A 、B ,无论h 、k 为何值,AB 的长度都为4.(1)请直接写出a 的值____________;(2)若抛物线当0x =和4x =时的函数值相等,①求b 的值;②过点()0,2Q 作直线2y =平行x 轴,交抛物线于M 、N 两点,且4QM QN +=,求c 的取值范围;(3)若1c b =--,2727b -<<AB 与抛物线所夹的封闭区域为S ,将抛物线绕原点逆时针旋转α,且1tan 2α=,此时区域S 的边界与y 轴的交点为C 、D 两点,若点D 在点C 上方,请判断点D 在抛物线上还是在线段AB 上,并求CD 的最大值.40.如图,一次函数122y x =-+的图象交y 轴于点A ,交x 轴于点B 点,抛物线2y x bx c =-++过A 、B 两点.(1)求A ,B 两点的坐标;并求这个抛物线的解析式;(2)作垂直x 轴的直线x =t ,在第一象限交直线AB 于M ,交这个抛物线于N .求当t 取何值时,MN 有最大值?最大值是多少?(3)在(2)的情况下,以A 、M 、N 、D 为顶点作平行四边形,求第四个顶点D 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】将二次函数解析式变形为顶点式,进而可得出二次函数的顶点坐标.【详解】解:∵y=x2﹣6x=x2﹣6x+9﹣9=(x﹣3)2﹣9,∴二次函数y=x2﹣6x图象的顶点坐标为(3,﹣9).故选:C.【点睛】此题主要考查二次函数的顶点,解题的关键是熟知二次函数的图像与性质.2.C解析:C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a<0,c>0,故①正确;抛物线与x轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;由图象可知,图象开口向下,对称轴x>-1,在对称轴右侧, y随x的增大而减小,而在对称轴左侧和-1之间,是y随x的增大而减小,故④错误.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.3.A解析:A【解析】【分析】方差的大小反映数据的波动大小,方差越小,数据越稳定,根据题意可判断乙的数据比甲稳定,所以乙的方差小于甲.【详解】解:由题意可知,乙的数据比甲稳定,所以2S 甲>2S 乙故选:A【点睛】本题考查方差的定义与意义,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 4.C解析:C【解析】【分析】令x=0,则y=3,抛物线与y 轴的交点为(0,3).【详解】解:令x=0,则y=3,∴抛物线与y 轴的交点为(0,3),故选:C .【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,会求函数与坐标轴的交点是解题的关键.5.A解析:A【解析】【分析】将x=2y 代入x y中化简后即可得到答案.将x=2y代入xy得:22x yy y==,故选:A.【点睛】此题考查代数式代入求值,正确计算即可.6.B解析:B【解析】【分析】直线与圆相离等价于圆心到直线的距离大于半径,据此解答即可.【详解】解:∵直线l与半径为5的O相离,∴圆心O与直线l的距离d满足:5d>.故选:B.【点睛】本题考查了直线与圆的位置关系,属于应知应会题型,若圆心到直线的距离为d,圆的半径为r,当d>r时,直线与圆相离;当d=r时,直线与圆相切;当d<r时,直线与圆相交. 7.A解析:A【解析】【分析】直接利用切线的性质得出∠OAP=90°,进而利用直角三角形的性质得出OP的长.【详解】连接OA,∵PA为⊙O的切线,∴∠OAP=90°,∵∠P=30°,OB=3,∴AO=3,则OP=6,故BP=6-3=3.故选A.【点睛】此题主要考查了切线的性质以及圆周角定理,正确作出辅助线是解题关键.8.C解析:C【分析】根据圆内接正六边形的边长是1可得出圆的半径为1,利用勾股定理可求出该内接正三角形的边长为3,高为32,从而可得出面积. 【详解】 解:由题意可得出圆的半径为1,∵△ABC 为正三角形,AO=1,AD BC ⊥,BD=CD ,AO=BO ,∴1DO 2=,32AD =, ∴223BD OB OD =-=, ∴BC 3=∴1333322ABC S =⨯=. 故选:C .【点睛】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键.9.B解析:B【解析】【分析】根据题意直接利用二次函数平移规律进而判断得出选项.【详解】解:22y x =的图象向左平移4个单位长度,再向下平移1个单位长度,平移后的函数关系式是:()2241y x =+-.故选:B .【点睛】本题考查二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 10.C【解析】【分析】根据弧长公式即可求出圆心角的度数.【详解】解:∵扇形的半径为4,弧长为2π,∴42180n ππ⨯=解得:90n =,即其圆心角度数是90︒故选C .【点睛】 此题考查的是根据弧长和半径求圆心角的度数,掌握弧长公式是解决此题的关键. 11.B解析:B【解析】【分析】连接OA 、OB ,如图1,由2OA OB AB ===可判断OAB 为等边三角形,则60AOB ∠=︒,根据圆周角定理得1302APB AOB ∠=∠=︒,由于60PAC ∠=︒,所以90C ∠=︒,因为2AB =,则要使ABC 的最大面积,点C 到AB 的距离要最大;由90ACB ∠=︒,可根据圆周角定理判断点C 在D 上,如图2,于是当点C 在半圆的中点时,点C 到AB 的距离最大,此时ABC 为等腰直角三角形,从而得到ABC 的最大面积.【详解】解:连接OA 、OB ,如图1,2OA OB ==,2AB =,OAB ∴为等边三角形,60AOB ∴∠=︒,1302APB AOB ∴∠=∠=︒, 60PAC ∠=︒90ACP ∴∠=︒2AB =,要使ABC 的最大面积,则点C 到AB 的距离最大,作ABC 的外接圆D ,如图2,连接CD ,90ACB ∠=︒,点C 在D 上,AB 是D 的直径,当点C 半圆的中点时,点C 到AB 的距离最大,此时ABC 等腰直角三角形,CD AB ∴⊥,1CD =,12ABC S ∴=⋅AB ⋅CD 12112=⨯⨯=, ABC ∴的最大面积为1.故选B .【点睛】本题考查了圆的综合题:熟练掌握圆周角定理和等腰直角三角形的判断与性质;记住等腰直角三角形的面积公式.12.A解析:A【解析】【分析】根据特殊角的三角函数值解题即可.【详解】解:cos60°=12. 故选A.【点睛】本题考查了特殊角的三角函数值. 13.C解析:C【解析】【分析】设正方形网格中的小正方形的边长为1,连接格点BC ,AD ,过C 作CE ⊥AB 于E ,解直角三角形即可得到结论.【详解】解:设正方形网格中的小正方形的边长为1,连接格点BC ,AD ,过C 作CE ⊥AB 于E ,∵224225AC BC =+==BC =2AD 2232AC CD +=,∵S△ABC=12AB•CE=12BC•AD,∴CE=223265525BC ADAB⨯==,∴6535525CEAsin CABC∠===,故选:C.【点睛】本题考查了解直角三角形的问题,掌握解直角三角形的方法以及锐角三角函数的定义是解题的关键.14.D解析:D【解析】分析:抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.详解:抛物线y=x2顶点为(0,0),抛物线y=(x﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x2向右平移2个单位,向下平移1个单位得到抛物线y=(x﹣2)2﹣1的图象.故选D.点睛:本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定平移方向.15.C解析:C【解析】试题分析:根据直线与圆的位置关系来判定:①直线l和⊙O相交,则d<r;②直线l和⊙O相切,则d=r;③直线l和⊙O相离,则d>r(d为直线与圆的距离,r为圆的半径).因此,∵⊙O的半径为6,圆心O到直线l的距离为5,∴6>5,即:d<r.∴直线l与⊙O的位置关系是相交.故选C.二、填空题16.8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为: (表示样本的平均数,n 表示样本数据的个数,S2表示方差.)【详解】解:∵4,4,,6,6的平均数是5,∴4+4解析:8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为:2222121n S x x x x x x n (x 表示样本的平均数,n 表示样本数据的个数,S 2表示方差.)【详解】解:∵4,4,m ,6,6的平均数是5,∴4+4+m+6+6=5×5,∴m=5,∴这组数据为4,4,m ,6,6,∴22222214545556565=0.85S ,即这组数据的方差是0.8.故答案为:0.8.【点睛】本题考查样本的平均数和方差的定义,掌握定义是解答此题的关键.17.相交【解析】【分析】由圆的半径为4,圆心O 到直线l 的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l 与O 的位置关系是相交.【详解】解:∵⊙O 的半径为4,圆心O 到直线L 的解析:相交【解析】【分析】由圆的半径为4,圆心O 到直线l 的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l 与O 的位置关系是相交.【详解】解:∵⊙O 的半径为4,圆心O 到直线L 的距离为2,∵4>2,即:d<r,∴直线L与⊙O的位置关系是相交.故答案为:相交.【点睛】本题考查知道知识点是圆与直线的位置关系,若d<r,则直线与圆相交;若d>r,则直线与圆相离;若d=r,则直线与圆相切.18.1,,【解析】【分析】分别利用当DP∥AB时,当DP∥AC时,当∠CDP=∠A时,当∠BPD=∠BAC时求出相似三角形,进而得出结果.【详解】BC=6,CD=2,∴BD=4,①如图解析:1,83,32【解析】【分析】分别利用当DP∥AB时,当DP∥AC时,当∠CDP=∠A时,当∠BPD=∠BAC时求出相似三角形,进而得出结果.【详解】BC=6,CD=2,∴BD=4,①如图,当DP∥AB时,△PDC∽△ABC,∴PD CDAB BC=,∴236DP=,∴DP=1;②如图,当DP∥AC时,△PBD∽△ABC.∴PD BDAC BC=,∴446DP=,∴DP=83;③如图,当∠CDP=∠A时,∠DPC∽△ABC,∴DP DCAB AC=,∴234DP=,∴DP=32;④如图,当∠BPD=∠BAC时,过点D的直线l与另一边的交点在其延长线上,,不合题意。

2013—2014学年九年级上学期期末考试数学试题(苏科版含答案)

2013—2014学年九年级上学期期末考试数学试题(苏科版含答案)

2013—2014学年九年级上学期期末考试数学试题(满分:150分 测试时间:120分钟)一.选择题(每题有且只有一个答案正确,请把你认为正确的答案前的字母填入下表相应的空格内,每题3分,计24分)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .平行四边形B .等边三角形 C2.如右图,数轴上点N 表示的数可能是( ) A .2 B .3 C .5 D . 10 3.给出下列四个结论,其中正确的结论为( )A .等腰三角形底边上的中点到两腰的距离相等B .正多边形都是中心对称图形C .三角形的外心到三条边的距离相等D .对角线互相垂直且相等的四边形是正方形 4.已知⊙O 1、⊙O 2的半径分别为3cm 、5cm ,且它们的圆心距为8cm ,则⊙O 1与⊙O 2的位置关系是( ) A .外切 B .相交 C .内切 D .内含 5.对任意实数x ,多项式1062-+-x x 的值是一个( )A.正数B.负数C.非负数D.无法确定6.将抛物线12+=x y 先向左平移2个单位,再向下平移2个单位,那么所得抛物线的函数关系式是( )A .y =(x +2)2+2B .y =(x +2)2-2C .y =(x -2)2+2D .y =(x -2)2-2 7.已知一元二次方程01582=+-x x 的两个解恰好分别是等腰△ABC 的底边长和腰长,则△ABC 的周长为( ) A .13 B .11 C .11或13 D .128.如图,二次函数y=ax 2+bx+c (a ≠0)的图象与x 轴交于 A 、B 两点,与y 轴交于点C ,点B 坐标(﹣1,0),下面 的四个结论:①OA=3;②a+b+c <0;③ac >0; ④b 2﹣4ac >0.其中正确的结论是( )A .①④B .①③C .②④D .①② 二、填空题(本大题共10个小题,每小题3分,共30分.) 9.在函数关系式11-=x y 中,x 的取值范围是 .10.已知梯形的中位线长是4cm ,下底长是5cm ,则它的上底长是 cm .11.抛物线2y x 12=-+()的顶点坐标是 .12.平面直角坐标系内的三个点A (1,0)、B (0,-3)、C (2,-3) 确定一个圆(填“能”或“不能”)。

苏科版九年级数学上册 全册期末复习试卷测试卷(含答案解析)

苏科版九年级数学上册 全册期末复习试卷测试卷(含答案解析)

苏科版九年级数学上册全册期末复习试卷测试卷(含答案解析)一、选择题1.如图,等边三角形ABC的边长为5,D、E分别是边AB、AC上的点,将△ADE沿DE折叠,点A恰好落在BC边上的点F处,若BF=2,则BD的长是()A.2 B.3 C.218D.2472.如图,OA、OB是⊙O的半径,C是⊙O上一点.若∠OAC=16°,∠OBC=54°,则∠AOB的大小是()A.70°B.72°C.74°D.76°3.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC,则线段AC 的长为()A.43B.42C.6 D.44.如图,在由边长为1的小正方形组成的网格中,点A,B,C,D都在格点上,点E 在AB的延长线上,以A为圆心,AE为半径画弧,交AD的延长线于点F,且弧EF经过点C,则扇形AEF的面积为()A.58B.58πC.54πD.545.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( )A .方差B .平均数C .众数D .中位数6.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是A .B .C .D .7.如图,抛物线2144y x =-与x 轴交于A 、B 两点,点P 在一次函数6y x =-+的图像上,Q 是线段PA 的中点,连结OQ ,则线段OQ 的最小值是( )A .22B .1C .2D .28.如图,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为( )A .10πB .103C 10πD .π9.如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,∠BAC=50°,则∠ADC 为( )A .40°B .50°C .80°D .100°10.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且 1.5AB =,2BC =, 1.8DE =,则EF =( )A .4.4B .4C .3.4D .2.411.若关于x 的一元二次方程240kx x -+=有实数根,则k 的取值范围是( ) A .16k ≤B .116k ≤C .1,16k ≤且0k ≠ D .16,k ≤ 且0k ≠ 12.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .1213.如图所示的网格是正方形网格,则sin A 的值为( )A .12B .22C .35D .4514.在△ABC 中,∠C =90°,tan A =13,那么sin A 的值是( )A .12B .13C .1010D .3101015.如图,点P (x ,y )(x >0)是反比例函数y=kx(k >0)的图象上的一个动点,以点P 为圆心,OP 为半径的圆与x 轴的正半轴交于点A ,若△OPA 的面积为S ,则当x 增大时,S 的变化情况是( )A .S 的值增大B .S 的值减小C .S 的值先增大,后减小D .S 的值不变二、填空题16.已知tan (α+15°)=3,则锐角α的度数为______°. 17.已知三点A (0,0),B (5,12),C (14,0),则△ABC 内心的坐标为____. 18.抛物线y =3(x+2)2+5的顶点坐标是_____.19.如图,Rt △ABC 中,∠ACB =90°,AC =BC =4,D 为线段AC 上一动点,连接BD ,过点C 作CH ⊥BD 于H ,连接AH ,则AH 的最小值为_____.20.已知,二次函数2(0)y ax bx c a =++≠的图象如图所示,当y <0时,x 的取值范围是________.21.如图,利用标杆BE 测量建筑物的高度,已知标杆BE 高1.2m ,测得1.6,12.4AB m BC m ==,则建筑物CD 的高是__________m .22.如图,D 、E 分别是△ABC 的边AB ,AC 上的点,AD AB =AEAC,AE =2,EC =6,AB =12,则AD 的长为_____.23.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是__________________________.24.如图,△ABC 的顶点A 、B 、C 都在边长为1的正方形网格的格点上,则sinA 的值为________.25.某电视台招聘一名记者,甲应聘参加了采访写作、计算机操作和创意设计的三项素质测试得分分别为70、60、90,三项成绩依次按照5:2:3计算出最后成绩,那么甲的成绩为__.26.在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该生此次实心球训练的成绩为_______米.27.设二次函数y =x 2﹣2x ﹣3与x 轴的交点为A ,B ,其顶点坐标为C ,则△ABC 的面积为_____.28.有4根细木棒,它们的长度分别是2cm 、4cm 、6cm 、8cm .从中任取3根恰好能搭成一个三角形的概率是_____.29.顶点在原点的二次函数图象先向左平移1个单位长度,再向下平移2个单位长度后,所得的抛物线经过点(0,﹣3),则平移后抛物线相应的函数表达式为_____. 30.如图,四边形ABCD 中,∠A =∠B =90°,AB =5cm ,AD =3cm ,BC =2cm ,P 是AB 上一点,若以P 、A 、D 为顶点的三角形与△PBC 相似,则PA =_____cm .三、解答题31.定义:如果一个四边形的一组对角互余,那么我们称这个四边形为“对角互余四边形”.(1)如图①,在对角互余四边形ABCD中,∠B=60°,且AC⊥BC,AC⊥AD,若BC=1,则四边形ABCD的面积为;(2)如图②,在对角互余四边形ABCD中,AB=BC,BD=13,∠ABC+∠ADC=90°,AD=8,CD=6,求四边形ABCD的面积;(3)如图③,在△ABC中,BC=2AB,∠ABC=60°,以AC为边在△ABC异侧作△ACD,且∠ADC=30°,若BD=10,CD=6,求△ACD的面积.32.如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.(1)求证:DP是⊙O的切线;(2)若⊙O的半径为3cm,求图中阴影部分的面积.33.如图,AB为O的直径,PD切O于点C,交AB的延长线于点D,且∠=∠.D A2∠的度数.(1)求D(2)若O的半径为2,求BD的长.34.小亮晚上在广场散步,图中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯的位置.(1)请你在图中画出小亮站在AB处的影子BE;(2)小亮的身高为1.6m,当小亮离开灯杆的距离OB为2.4m时,影长为1.2m,若小亮离开灯杆的距离OD=6m时,则小亮(CD)的影长为多少米?cm,那么这个三角形的35.如果一个直角三角形的两条直角边的长相差2cm,面积是242两条直角边分别是多少?四、压轴题36.已知P是⊙O上一点,过点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ上分别有动点A、B(不与P,Q重合),连接AP、BP. 若∠APQ=∠BPQ.(1)如图1,当∠APQ=45°,AP=1,BP=22时,求⊙O的半径;(2)如图2,选接AB,交PQ于点M,点N在线段PM上(不与P、M重合),连接ON、OP,若∠NOP+2∠OPN=90°,探究直线AB与ON的位置关系,并证明.37.如图①,A(﹣5,0),OA=OC,点B、C关于原点对称,点B(a,a+1)(a>0).(1)求B、C坐标;(2)求证:BA⊥AC;(3)如图②,将点C绕原点O顺时针旋转α度(0°<α<180°),得到点D,连接DC,问:∠BDC的角平分线DE,是否过一定点?若是,请求出该点的坐标;若不是,请说明理由.38.如图,函数y=-x 2+bx +c 的图象经过点A (m ,0),B (0,n )两点,m ,n 分别是方程x 2-2x -3=0的两个实数根,且m <n .(1)求m ,n 的值以及函数的解析式;(2)设抛物线y=-x 2+bx +c 与x 轴的另一交点为点C ,顶点为点D ,连结BD 、BC 、CD ,求△BDC 面积;(3)对于(1)中所求的函数y=-x 2+bx +c , ①当0≤x ≤3时,求函数y 的最大值和最小值;②设函数y 在t ≤x ≤t +1内的最大值为p ,最小值为q ,若p-q =3,求t 的值. 39.如图1(注:与图2完全相同)所示,抛物线212y x bx c =-++经过B 、D 两点,与x 轴的另一个交点为A ,与y 轴相交于点C . (1)求抛物线的解析式.(2)设抛物线的顶点为M ,求四边形ABMC 的面积(请在图1中探索)(3)设点Q 在y 轴上,点P 在抛物线上.要使以点A 、B 、P 、Q 为顶点的四边形是平行四边形,求所有满足条件的点P 的坐标(请在图2中探索)40.()1尺规作图1:已知:如图,线段AB 和直线且点B 在直线上求作:点C ,使点C 在直线上并且使ABC 为等腰三角形. 作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C .()2特例思考:如图一,当190∠=时,符合()1中条件的点C 有______个;如图二,当160∠=时,符合()1中条件的点C 有______个.()3拓展应用:如图,AOB 45∠=,点M ,N 在射线OA 上,OM x =,ON x 2=+,点P 是射线OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 有且只有三个,求x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据折叠得出∠DFE =∠A =60°,AD =DF ,AE =EF ,设BD =x ,AD =DF =5﹣x ,求出∠DFB =∠FEC ,证△DBF ∽△FCE ,进而利用相似三角形的性质解答即可. 【详解】解:∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,AB =BC =AC =5, ∵沿DE 折叠A 落在BC 边上的点F 上, ∴△ADE ≌△FDE ,∴∠DFE =∠A =60°,AD =DF ,AE =EF , 设BD =x ,AD =DF =5﹣x ,CE =y ,AE =5﹣y , ∵BF =2,BC =5, ∴CF =3,∵∠C =60°,∠DFE =60°,∴∠EFC +∠FEC =120°,∠DFB +∠EFC =120°, ∴∠DFB =∠FEC , ∵∠C =∠B ,∴△DBF∽△FCE,∴BD BF DFFC CE EF==,即2535x xy y-==-,解得:x=218,即BD=218,故选:C.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知折叠的性质、相似三角形的判定定理.2.D解析:D【解析】【分析】连接OC,根据等腰三角形的性质得到∠OAC=∠OCA=16°;∠OBC=∠OCB=54°求出∠ACB 的度数,然后根据同圆中同弧所对的圆周角等于圆心角的一半求解.【详解】解:连接OC∵OA=OC,OB=OC∴∠OAC=∠OCA=16°;∠OBC=∠OCB=54°∴∠ACB=∠OCB-∠OCA=54°-16°=38°∴∠AOB=2∠ACB=76°故选:D【点睛】本题考查的是等腰三角形的性质及同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半,掌握相关性质定理是本题的解题关键.3.B解析:B【分析】 由已知条件可得ABC DAC ~,可得出AC BC DC AC =,可求出AC 的长. 【详解】解:由题意得:∠B =∠DAC ,∠ACB =∠ACD,所以ABC DAC ~,根据“相似三角形对应边成比例”,得AC BC DC AC=,又AD 是中线,BC =8,得DC=4,代入可得AC=42, 故选B.【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答. 4.B解析:B【解析】【分析】连接AC ,根据网格的特点求出r=AC 的长度,再得到扇形的圆心角度数,根据扇形面积公式即可求解.【详解】连接AC ,则r=AC=22251=+扇形的圆心角度数为∠BAD=45°,∴扇形AEF 的面积=()2455360π⨯⨯=58π 故选B.【点睛】此题主要考查扇形面积求解,解题的关键是熟知勾股定理及扇形面积公式.5.A解析:A【解析】【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【详解】平均数,众数,中位数都是反映数字集中趋势的数量,方差是反映数据离散水平的数据,也就会说反映数据稳定程度的数据是方差考点:方差6.B解析:B【解析】【分析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【详解】已知给出的三角形的各边AB 、CB 、AC 、2只有选项B 的各边为1B .【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.7.A解析:A【解析】【分析】先求得A 、B 两点的坐标,设()6P m m -,,根据之间的距离公式列出2PB 关于m 的函数关系式,求得其最小值,即可求得答案.【详解】令0y =,则21404x -=, 解得:4x =±,∴A 、B 两点的坐标分别为:()()4040A B -,、,, 设点P 的坐标为()6m m -,, ∴()()2222246220522(5)2PB m m m m m =-+-=-+=-+,∵20>,∴当5m =时,2PB 有最小值为:2,即PB ,∵A 、B 为抛物线的对称点,对称轴为y 轴,∴O 为线段AB 中点,且Q 为AP 中点,∴12OQ PB ==. 故选:A .【点睛】本题考查了二次函数与一次函数的综合问题,涉及到的知识有:两点之间的距离公式,三角形中位线的性质,二次函数的最值问题,利用两点之间的距离公式求得2PB 的最小值是解题的关键.解析:C【解析】【分析】【详解】如图所示:在Rt△ACD中,AD=3,DC=1,根据勾股定理得:AC=2210AD CD+=,又将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为l=6010101803ππ⨯=.故选C.9.A解析:A【解析】试题分析:先根据圆周角定理的推论得到∠ACB=90°,再利用互余计算出∠B=40°,然后根据圆周角定理求解.解:连结BC,如图,∵AB为⊙O的直径,∴∠ACB=90°,∵∠BAC=50°,∴∠B=90°﹣50°=40°,∴∠ADC=∠B=40°.故选A.考点:圆周角定理.10.D解析:D【解析】【分析】根据平行线等分线段定理列出比例式,然后代入求解即可.【详解】解:∵////a b c∴AB DEBC EF=即1.5 1.82EF=解得:EF=2.4故答案为D.【点睛】本题主要考查的是平行线分线段成比例定理,利用定理正确列出比例式是解答本题的关键.11.C解析:C【解析】【分析】一元二次方程有实数根,则根的判别式∆≥0,且k≠0,据此列不等式求解.【详解】根据题意,得:∆=1-16k≥0且k≠0,解得:116k≤且k≠0.故选:C.【点睛】本题考查一元二次方程根的判别式与实数根的情况,注意k≠0.12.D解析:D【解析】【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.13.C解析:C【解析】【分析】设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,解直角三角形即可得到结论.【详解】解:设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,∵224225AC BC=+==,BC=22,AD=2232AC CD+=,∵S△ABC=12AB•CE=12BC•AD,∴CE=223265525BC ADAB⨯==,∴6535525CEAsin CABC∠===,故选:C.【点睛】本题考查了解直角三角形的问题,掌握解直角三角形的方法以及锐角三角函数的定义是解题的关键.14.C解析:C【解析】【分析】根据正切函数的定义,可得BC,AC的关系,根据勾股定理,可得AB的长,根据正弦函数的定义,可得答案.【详解】tan A=BCAC=13,BC=x,AC=3x,由勾股定理,得AB=10x,sin A=BCAB=10,故选:C.【点睛】本题考查了同角三角函数的关系,利用正切函数的定义得出BC=x,AC=3x是解题关键.15.D解析:D【解析】【分析】作PB⊥OA于B,如图,根据垂径定理得到OB=AB,则S△POB=S△PAB,再根据反比例函数k的几何意义得到S△POB=12|k|,所以S=2k,为定值.【详解】作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.∵S△POB=12|k|,∴S=2k,∴S的值为定值.故选D.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.二、填空题16.15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)=∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,解析:15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.17.(6,4).【解析】【分析】作BQ⊥AC于点Q,由题意可得BQ=12,根据勾股定理分别求出BC、AB的长,继而利用三角形面积,可得△OAB内切圆半径,过点P作PD⊥AC于D,PF⊥AB于F,P解析:(6,4).【解析】【分析】作BQ⊥AC于点Q,由题意可得BQ=12,根据勾股定理分别求出BC、AB的长,继而利用三角形面积,可得△OAB内切圆半径,过点P作PD⊥AC于D,PF⊥AB于F,PE⊥BC于E,设AD=AF=x,则CD=CE=14-x,BF=13-x,BE=BC-CE=15-(14-x)=1+x,由BF=BE可得13-x=1+x,解之求出x的值,从而得出点P的坐标,即可得出答案.【详解】解:如图,过点B作BQ⊥AC于点Q,则AQ=5,BQ=12,∴AB=2213AQ BQ +=,CQ=AC-AQ=9,∴BC=2215BQ CQ +=设⊙P 的半径为r ,根据三角形的面积可得:r=14124141315⨯=++ 过点P 作PD ⊥AC 于D ,PF ⊥AB 于F ,PE ⊥BC 于E ,设AD=AF=x ,则CD=CE=14-x ,BF=13-x ,∴BE=BC-CE=15-(14-x )=1+x ,由BF=BE 可得13-x=1+x ,解得:x=6,∴点P 的坐标为(6,4),故答案为:(6,4).【点睛】本题主要考查勾股定理、三角形的内切圆半径公式及切线长定理,根据三角形的内切圆半径公式及切线长定理求出点P 的坐标是解题的关键.18.(﹣2,5)【解析】【分析】已知抛物线的顶点式,可直接写出顶点坐标.【详解】解:由y =3(x+2)2+5,根据顶点式的坐标特点可知,顶点坐标为(﹣2,5).故答案为:(﹣2,5).【点解析:(﹣2,5)【解析】【分析】已知抛物线的顶点式,可直接写出顶点坐标.【详解】解:由y=3(x+2)2+5,根据顶点式的坐标特点可知,顶点坐标为(﹣2,5).故答案为:(﹣2,5).【点睛】本题考查二次函数的性质,熟知二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,顶点坐标为(h,k),对称轴为x=h.19.2﹣2【解析】【分析】取BC中点G,连接HG,AG,根据直角三角形的性质可得HG=CG=BG=BC=2,根据勾股定理可求AG=2,由三角形的三边关系可得AH≥AG﹣HG,当点H在线段AG上时,解析:25﹣2【解析】【分析】取BC中点G,连接HG,AG,根据直角三角形的性质可得HG=CG=BG=12BC=2,根据勾股定理可求AG=25,由三角形的三边关系可得AH≥AG﹣HG,当点H在线段AG上时,可求AH的最小值.【详解】解:如图,取BC中点G,连接HG,AG,∵CH⊥DB,点G是BC中点∴HG=CG=BG=12BC=2,在Rt△ACG中,AG22AC CG5在△AHG中,AH≥AG﹣HG,即当点H在线段AG上时,AH最小值为52,故答案为:52【点睛】本题考查了动点问题,解决本题的关键是熟练掌握直角三角形中勾股定理关系式.20.【解析】【分析】直接利用函数图象与x轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x轴交于(-1,0),(3,0),故当y<0时,x的取值范围是:-1<x<3.故答案为:x解析:13【解析】【分析】直接利用函数图象与x轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x轴交于(-1,0),(3,0),故当y<0时,x的取值范围是:-1<x<3.故答案为:-1<x<3.【点睛】此题主要考查了抛物线与x轴的交点,正确数形结合分析是解题关键.21.5【解析】【分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.解析:5【解析】【分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴BE AB CD AC=, 即:1.2 1.61.612.4CD =+, ∴CD =10.5(m ).故答案为10.5.【点睛】 本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键. 22.3【解析】【分析】把AE =2,EC =6,AB =12代入已知比例式,即可求出答案.【详解】解:∵=,AE =2,EC =6,AB =12,∴=,解得:AD =3,故答案为:3.【点睛】本题解析:3【解析】【分析】把AE =2,EC =6,AB =12代入已知比例式,即可求出答案.【详解】 解:∵AD AB =AE AC,AE =2,EC =6,AB =12, ∴12AD =226+, 解得:AD =3,故答案为:3.【点睛】 本题考查了成比例线段,灵活的将已知线段的长度代入比例式是解题的关键.23.50(1﹣x )2=32.【解析】由题意可得,50(1−x)²=32,故答案为50(1−x)²=32.解析:50(1﹣x )2=32.【解析】 由题意可得, 50(1−x)²=32, 故答案为50(1−x)²=32.24.【解析】如图,由题意可知∠ADB=90°,BD=,AB=,∴sinA=.解析:5 【解析】如图,由题意可知∠ADB=90°,BD=221+1=2,AB=223+1=10,∴sinA=2510BD AB ==.25.74【解析】【分析】利用加权平均数公式计算.【详解】甲的成绩=,故答案为:74.【点睛】此题考查加权平均数,正确理解各数所占的权重是解题的关键.解析:74【解析】【分析】利用加权平均数公式计算.【详解】甲的成绩=70560290374523,故答案为:74.【点睛】 此题考查加权平均数,正确理解各数所占的权重是解题的关键.26.10【解析】【分析】根据铅球落地时,高度,把实际问题可理解为当时,求x 的值即可.【详解】解:当时,,解得,(舍去),.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自解析:10【解析】【分析】根据铅球落地时,高度0y =,把实际问题可理解为当0y =时,求x 的值即可.【详解】解:当0y =时,212501233y x x =-++=, 解得,2x =-(舍去),10x =.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自变量与函数表达的实际意义;结合题意,选取函数或自变量的特殊值,列出方程求解是解题关键.27.8【解析】【分析】首先求出A 、B 的坐标,然后根据坐标求出AB 、CD 的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x ﹣3,设y =0,∴0=x2﹣2x ﹣3,解得:x1=3,解析:8【解析】【分析】首先求出A 、B 的坐标,然后根据坐标求出AB 、CD 的长,再根据三角形面积公式计算即可.解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,x2=﹣1,即A点的坐标是(﹣1,0),B点的坐标是(3,0),∵y=x2﹣2x﹣3,=(x﹣1)2﹣4,∴顶点C的坐标是(1,﹣4),∴△ABC的面积=12×4×4=8,故答案为8.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中.28.【解析】【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、解析:1 4【解析】【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、8;2、6、8;、4、6、8,其中恰好能搭成一个三角形为4、6、8,所以恰好能搭成一个三角形的概率=14.故答案为14.【点睛】本题考查列表法或树状图法和三角形三边关系,解题的关键是通过列表法或树状图法展示出所有等可能的结果数及求出构成三角形的结果数.29.y=﹣(x+1)2﹣2【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为,再把点(0,﹣3)代入即可求解a 的值,进而得平移后抛物线的函数表达式.【详解】解析:y =﹣(x +1)2﹣2【解析】【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为()212y a x +-=,再把点(0,﹣3)代入即可求解a 的值,进而得平移后抛物线的函数表达式.【详解】由题意可知,平移后的函数的顶点为(﹣1,﹣2),设平移后函数的解析式为()212y a x +-=,∵所得的抛物线经过点(0,﹣3),∴﹣3=a ﹣2,解得a =﹣1,∴平移后函数的解析式为()212y x +=--,故答案为()212y x +=--.【点睛】本题考查坐标与图形变化-平移,解题的关键是掌握坐标平移规律:“左右平移时,横坐标左移减右移加,纵坐标不变;上下平移时,横坐标不变,纵坐标上移加下移减”。

【2014】江苏省无锡市新区2014届九年级上期末考试数学试题及答案【苏科版】

【2014】江苏省无锡市新区2014届九年级上期末考试数学试题及答案【苏科版】

2013-2014学年度第一学期九年级数学期末试卷满分:120分 时限:100分钟一、选择题(每小题3分,共30分.)1. 下列运算错误的是 ( )=B.==D.2(2=2. 已知⊙O 半径是6,点O 到直线l 的距离为5,则直线l 与⊙O 的位置关系是( )A .相离B .相切C .相交D .无法判断3. 下列选项中,能够反映一组数据离散程度的统计量是 ( )A .平均数B .中位数C .众数D .方差4. 下列一元二次方程中,有两个不相等的实数根的方程是 ( )A .2310x x -+=B .210x +=C .2210x x -+=D .2230x x ++=5. 如图在⊙O 中,弦AB=8,OC⊥AB,垂足为C ,且OC=3,则⊙O 的半径 ( )A.10B.8C.6D.56. 某商店将一批夏装降价处理,经过两次降价后,由每件100元降至81元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程 ( )A .100(1-x )2=81B .81(1+x )2=100 C .100(1+x )=81×2 D .2×100(1-x )=87. 下列语句中,正确的是 ( )A.相等的圆心角所对的弧相等;B.平分弦的直径垂直于弦;C.长度相等的两条弧是等弧;D.经过圆心的每一条直线都是圆的对称轴 8. 如图,四边形ABCD 和四边形AEFC 是两个矩形,点B 在EF 边上,若矩形ABCD 和矩形AEFC 的面积分别是S 1、S 2的大小关系是 ( ) A.S 1>S 2 B. S 1=S 2 C. S 1<S 2 D. 3S 1=2S 29. 如图,某厂生产横截面直径为7cm 的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为90º,则“蘑菇罐头”字样的长度为 ( )A.4π cm B.47π cm C.27πcm D.7πcm 10. 已知点A (0,0),B (0,4),C (3,t +4),D (3,t ). 记N (t )为□ABCD 内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N (t )第8题罐头横截面 第9题 第5题A .6、7B .7、8C .6、8、9D .6、7、8 二、填空题(每小题2分,共16分.) 11.函数y x 的取值范围是 ;12. 已知一正多边形的每个外角是036,则该正多边形是 边形. 13. 已知最简二次根式2+a,则a= .14. 已知关于x 的一元二次方程 x 2+2kx +k ―1=0的一个根为0,则另一根为 . 15. 已知⊙O 1与⊙O 2相切,两圆半径分别为3和5,则圆心距O 1O 2的值是 . 16. 若圆锥的侧面展开图为半圆,则该圆锥的母线l 与底面半径r 的关系是 . 17.如图,AB 是半圆O 的直径,且AB=8,点C 为半圆上的一点.将此半圆沿BC 所在的直线折叠,若圆弧BC 恰好过圆心O ,则图中阴影部分的面积是 .(结果保留π)18. 射线QN 与等边△ABC 的两边AB ,BC 分别交于点M ,N ,且AC ∥QN ,AM=MB=2cm ,QM=4cm.动点P 从点Q 出发,沿射线QN 以每秒1cm 的速度向右移动,经过t 秒,以点P 为圆心,3 cm 为半径的圆与△ABC 的边相切(切点在边上),请写出t 可取的一切值 .(单位:秒)三、解答题(本大题共8小题,共74分.) 19.(本题满分11分)计算:(1)6328 - (2) (15)-1+(2-1)0+2×(-3)(3)化简求值:11212-1222-+---+a a a a a a ,其中a=13-第17题第18题20.(本题满分8分)解下列方程:(1)y y 422=-(配方法) (2)0)23(2)32(32=---x x21.(本小题满分8分)某校要从九年级(1)班和(2)班中各选取10名女同学组成礼仪队,选取的两班女生的身高如下:(单位:厘米)(1)班:168 167 170 165 168 166 171 168 167 170 (2)班:165 167 169 170 165 168 170 171 168 167②请选一个合适的统计量作为选择标准,说明哪一个班能被选取.22.(本小题满分9分)已知:如图,AC 是⊙O 的直径,BC 是⊙O 的弦,点P 是⊙O 外一点,∠PBA=∠C. (1)求证:PB 是⊙O 的切线;(2)若OP∥BC,且OP=8,BC=2.求⊙O 的半径.(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.【拓展延伸】(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.24.(本小题满分8分)国家为了加强对房地产市场的宏观调控,抑制房价的过快上涨,规定购买新房满5年后才可上市转卖,对二手房买卖征收差价的x%的附加税.某城市在不征收附加税时,每年可成交10万套二手房;征收附加税后,每年减少0.1x万套二手房交易.现已知每套二手房买卖的平均差价为10万元.如果要使每年征收的附加税金为16亿元,并且要使二手房市场保持一定的活力,每年二手房交易量不低于6万套.问:二手房交易附加税的税率应确定为多少?若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD是梯形ABCD的和谐线;(2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个△ABC,点A、B、C均在格点上,请在给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;(3)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数.如图1,正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不与M、C重合),以AB为直径作⊙O,过点P作⊙O的切线,交AD于点F,切点为E.(1)求证:OF∥BE;(2)设BP=x,AF=y,求y关于x的函数解析式,并写出自变量x的取值范围;(3)延长DC、FP交于点G,连接OE并延长交直线DC与H(图2),问是否存在点P,使△EFO∽△EHG(E、F、O与E、H、G为对应点)?如果存在,试求(2)中x和y 的值;如果不存在,请说明理由.2013-2014学年度第一学期九年级期终数学试卷2014.1一、选择题(本大题共10题,每题3分,共30分)11、x ≥3 12、十 13、0 14、-2 15、2或8 16、r l 2= 17、π3818、t=2或3≤t ≤7或t=8三、解答题(本大题共有10个题目,共74分) 19、(1)24- (3分) (2) 0 (3分) (3)a -1+1a 1+ (3分) 原式=2334-(2分)20、(1)(y-2)2 =6 (2分) x 1= 2+6, x 2= 2-6 (2分) (2) x 1=23 , x 2=67; (4分)21、(1)一班的方差为3.2; ……………………………………………2分二班的极差为6; ……………………………………………4分 二班的中位数为168; ……………………………………………6分 (2)选择方差做标准, ……………………………………………7分∵一班方差<二班方差, ∴一班可能被选取. ……………………………………………8分22. (1)证明:连接OB ,∵AC 是⊙O 直径, ∴∠ABC=90°,……………………………………1分∵OC=OB , ∴∠OBC=∠ACB ,………………………………2分 ∵∠PBA=∠ACB , ∴∠PBA=∠OBC ,………………………………3分 即∠PBA+∠OBA=∠OBC+∠ABO=∠ABC=90°, ∴OB ⊥PB ,………………………………………4分 ∵OB 为半径, ∴PB 是⊙O 的切线;……………………………5分(2)解:设⊙O 的半径为r ,则AC=2r ,OB=R ,∵OP ∥BC ,∠OBC=∠OCB ,∴∠POB=∠OBC=∠OCB,∵∠PBO=∠ABC=90°,∴△PBO∽△ABC,……………………………………………7分∴=,∴=,r=2,即⊙O的半径为2.……………………………………………9分23. (1)证明:∵△ABC、△AMN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,∵在△BAM和△CAN中,∴△BAM≌△CAN(SAS),∴∠ABC=∠ACN.……………………………………3分(2)解:结论∠ABC=∠ACN仍成立.理由如下:∵△ABC、△AMN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,∵在△BAM和△CAN中,∴△BAM≌△CAN(SAS),∴∠ABC=∠ACN.……………………………………6分(3)解:∠ABC=∠ACN.理由如下:∵BA=BC,MA=MN,顶角∠ABC=∠AMN,∴底角∠BAC=∠MAN,……………………………………7分∴△ABC∽△AMN,∴=,……………………………………8分又∵∠BAM=∠BAC﹣∠MAC,∠CAN=∠MAN﹣∠MAC,∴∠BAM=∠CAN,∴△BAM∽△CAN,……………………………………9分∴∠ABC=∠ACN.……………………………………10分24. 解:设税率应确定为x%,x2﹣100x+1600=0,解得x1=80,x2=20,……………………………………2分当x2=80时,10﹣0.1×80=2<6,不符合题意,舍去,x1=20时,100﹣0.1×20=8>6,……………………………………7分答:税率应确定为20%.……………………………………8分25. 解:(1)∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADB=∠DBC.∵∠BAD=120°,∴∠ABC=60°.∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∴∠ABD=∠ADB,∴△ADB是等腰三角形.在△BCD中,∠C=75°,∠DBC=30°,∴∠BDC=∠C=75°,∴△BCD为等腰三角形,∴BD是梯形ABCD的和谐线;……………………………………3分(2)由题意作图为:图2……………………………………4分图3……………………………………6分(3)∵AC是四边形ABCD的和谐线,∴△ACD是等腰三角形.∵AB=AD=BC,如图4,当AD=AC时,∴AB=AC=BC,∠ACD=∠ADC∴△ABC是正三角形,∴∠BAC=∠BCA=60°.∵∠BAD=90°,∴∠CAD=30°,∴∠ACD=∠ADC=75°,∴∠BCD=60°+75°=135°.……………………7分∴AB=AD=BC=CD.∵∠BAD=90°,∴四边形ABCD是正方形,∴∠BCD=90°……………………8分如图6,当AC=CD时,过点C作CE⊥AD于E,过点B作BF⊥CE于F,∵AC=CD.CE⊥AD,∴AE=AD,∠ACE=∠DCE.∵∠BAD=∠AEF=∠BFE=90°,∴四边形ABFE是矩形.∴BF=AE.∵AB=AD=BC,∴BF=BC,∴∠BCF=30°.∵AB=BC,∴∠ACB=∠BAC.∵AB∥CE,∴∠BAC=∠ACE,∴∠ACB=∠ACE=∠BCF=15°,∴∠BCD=15°×3=45°.……………………………………………10分(1)连接OEFE、FA是⊙O的两条切线∴∠FAO=∠FEO=90°在Rt△OAF和Rt△OEF中,∴Rt△FAO≌Rt△FEO(HL),∴∠AOF=∠EOF=∠AOE,∴∠AOF=∠ABE,∴OF∥BE,……………………………………………3分(2)解:过F作FQ⊥BC于Q∴PQ=BP﹣BQ=x﹣yPF=EF+EP=FA+BP=x+y∵在Rt△PFQ中∴FQ2+QP2=PF2化简得:,(1<x<2);……………………6分(3)存在这样的P点,理由:∵∠EOF=∠AOF,∴∠EHG=∠EOA=2∠EOF,当∠EFO=∠EHG=2∠EOF时,即∠EOF=30°时,Rt△EFO∽Rt△EHG,此时Rt△AFO中,∴∴当时,△EFO∽△EHG.……………………………………………10分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期末测试题
【本测试题满分:120分,时间:120分钟】
一、选择题(每小题3分,共36分)
1.如图,将矩形沿对角线对折,使点落在处, 交于点,下列不成立的是( )
A. B.∠∠ C. D.∠∠
2. (2013·重庆中考)某特警部队为了选拔“神枪手”,
举行了1 000米射击比赛,最后由甲、乙两名战士进入决赛, 在相同条件下,两人各射靶10次,经过统计计算,甲、 乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是0.21,则下列说法中,正
确的是( )
A.甲的成绩比乙的成绩稳定
B.乙的成绩比甲的成绩稳定
C.甲、乙两人成绩的稳定性相同
D.无法确定谁的成绩更稳定
3.顺次连接等腰梯形ABCD 各边的中点,所得的四边形一定是( )
A.等腰梯形
B.矩形
C.菱形
D.平行四边形
4.若,则x
x x 2
-的结果是( ) A.0 B.-2 C.0或-2 D.2
5.若实数满足,则x y y
x 23-+的值是( )
A.1
B.32
+ 2 C.3+2 2 D.3-2 2 6.关于x 的一元二次方程有一根为0,则m 的值为( )
A.1
B.-1
C.1或-1
D.0
7.( 2013·四川宜宾中考)已知x =2是一元二次方程022=++mx x 的一个解,则m 的值
是( )
A.-3
B.3
C.0
D.0或3
8.方程的解为( )
A. B. C.3,121=-=x x D.以上答案都不对
9.△ABC 内接于圆O ,∠50°,∠60°,是圆的直径,交于点,连接,则∠等于( )
A. 70°
B. 110°
C. 90°
D. 120°
10.已知P 为⊙O 内一点,OP =2,如果⊙O 的半径是3,那么过P 点的最短弦长是( )
A.1
B.2
C.5
D.25
二、填空题(每小题3 分,共30分)
11.在方格纸上有一个△ABC ,它的顶点都在格点上,位置如图所
A B C D F C ′ 第1题图
示,则这个三角形是_____三角形.
12. (2013·湖北孝感中考)为了考察某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:cm )为:16,9,14,11,12,10,16,8,17,19.
则这组数据的中位数是 ,极差是_____________.
13.已知一等腰梯形的周长是80 cm ,它的中位线和腰长相等,梯形的高是12 cm ,那么梯形的面积是 cm 2.
14.(山东德州中考)当2x =时,2211x x x
---=_____________. 15.已知则.
16. (2013·上海中考)在⊙O 中,已知半径长为3,弦AB 长为4,那么圆心O 到AB 的距离为._______.
17.在Rt △中,斜边是一元二次方程的两个实数根,则m 等于_________.
18.甲、乙两人同解一个一元二次方程,甲看错常数项,解得两根为8和2,乙看错一次项系数,解得两根为和,则这个方程是 .
19.如图,⊙O 的半径为2,点A 的坐标为(-)32,2,直线AB 为⊙O 的
切线,B 为切点.则B 点的坐标为__________.
20.半径分别为1 cm ,2 cm ,3 cm 的三圆两两外切,则以这三个圆的圆心为
顶点的三角形的形状为__________.
三、解答题(共54分)
21.已知:实数,在数轴上的位置如图所示,化简:.
22.已知,3232,3232+-=-+=y x 求值:22232y xy x +-.
23.如图,矩形的对角线交于点32,于点,求的长.
24.如图,点是△中边上的中点,⊥,⊥,垂足分别为,且 (1)求证:△是等腰三角形;
(2)当∠90°时,试判断四边形是怎样的四边形,证明你的结论.
25.已知1x ,2x 是关于x 的一元二次方程062=+-k x x 的两个实数根,115--212221=x x x x .
(1)求k 的值;
(2)求82
221++x x 的值.
26. 如图,中的弦,圆周角, A B C D O
E 第23题图 A B C D E
F 第24题图
-3 -2 -1 0 1 2 3 4 a b x 第21题图
求图中阴影部分的面积.
27. 如图,是⊙的直径,是⊙的弦,以为直径的⊙与相交于点,,求的长.
28. 随着人们节能意识的增强,节能产品的销售量逐年增加.某地区高效节能灯的年销售量年为万只,预计年将达到 万只.求该地区年到年高效节能灯年销售量的平均增长率.
A B
C
O D E
第27题图
期末测试题参考答案
一、选择题
1.B
2. B 解析:本题考查了方差的意义,方差越小,数据越稳定.在甲、乙两名战士的总成绩相同的条件下,∵ 2甲s >2
乙s ,∴ 乙的成绩比甲的成绩稳定.
3.C 解析:因为等腰梯形的对角线相等,所以所得的四边形一定是菱形.
4.D 解析:因为,所以x x -=2,2)(2=--=-x x x x x x .
5.C
6.B 解析:将代入方程可求得或,但当时,方程不是一元二次方程,所以.
7.A 解析:把x =2代入方程022=++mx x 中,得到4+2m +2=0,解得m =-3.
8.C
9.B 解析:因为BD 是圆O 的直径,所以.因为,所以.又,所以.
10.D
二、填空题
11.等腰
12.13 11 解析:把这组数据按照从小到大的顺序排列为:8,9,10,11,12,14,16,16,17,19.最大数是19,最小数是8,所以极差为11.因为有10个数据,所以中位数是第五个数与第六个数的平均数,即12与14的平均数.
13.240 解析:设等腰梯形的中位线长为,则腰长为,上底加下底的和为,等腰梯形的周长为,解得,所以这个梯形的面积=20×12=240(cm 2). 14.22 解析: 2
21111)1(1)1(1122==-+=---+=---x x x x x x x x x x )(. 15. 解析: 因为所以
所以,故. 16.5
17.4 解析:设BC =a ,AC =b ,根据题意得,,
由勾股定理可知,
∴ ,
解得.∵ ,即,∴ .
18. 解析:设这个一元二次方程的两根是α、,根据题意得,,那么以α、为两根的一元二次方程就是.
19.(1,) 解析:如图,过点作⊥轴于点,过点作⊥轴,
∵ ⊙的半径为2,点的坐标为(-)32,2,即,∴ 是圆的切线.
∵ ,3,即点的坐标为)3(1,.
20.直角三角形 解析:根据两圆外切可知三角形的三边长分别为3
cm ,4 cm ,5 cm ,所以此三角形为直角三角形.
三、解答题
21.解:由数轴可知,
所以,.
所以.
22.解:因为 xy y x xy y xy x y xy x +-=++-=+-22222)(2242232,
38)32)(32()32()32)(32()32(3232323222=-+---++=+---+=-y x , 1)3
232)(3232(=+--+
=xy , 所以3851)38(2232222=+⨯=+-y xy x .
23.解:∵ 矩形的对角线相等且互相平分,
∴ .∵ ,
∴ △为等边三角形,则,
∵ ⊥,∴ 为的中点,∴ .
24.(1)证明:因为⊥,⊥,且,
所以△≌△,所以∠∠.
所以△是等腰三角形.
(2)解:当∠时,四边形是正方形.证明如下:
因为⊥,⊥,所以∠∠.
又∠,所以四边形是矩形.
由(1)可知,所以四边形是正方形.
25.解:(1)因为1x ,2x 是关于x 的一元二次方程062=+-k x x 的两个实数根, 所以621=+x x ,k x x =21.
所以
1156)(-)(221221=-=+k x x x x ,所以1212=k ,11±=k . 又由方程有两个实数根,可知04-36≥k ,解得9≤k .所以11-=k .
(2)因为82-8212
212221++=
++x x x x x x )(, 且621=+x x ,1121-==k x x ,所以668223682221=++=++x x . 26.解:连接,作于,则.
∵,∴ .
∵ ,∴ 为中点.
又,∴.∴,.
∴ 阴影部分的面积为
27.解:连接,
∵ 为⊙的直径,为⊙的直径,
∴ ∠∠.∴ ∥.
又∵ ,∴.∵,∴ .
28. 解:设该地区年到年高效节能灯年销售量的平均增长率为. 依据题意,列出方程化简整理,得
解这个方程,得∴.
∵该地区年到年高效节能灯年销售量的平均增长率不能为负数,∴舍去,∴.
答:该地区年到年高效节能灯年销售量的平均增长率为。

相关文档
最新文档