2015-2016年安徽省阜阳市太和县北城中学初三上学期期末数学试卷及参考答案
安徽省太和县北城中心学校九年级上学期期末考试物理试题

安徽省太和县北城中心学校2015-2016学年度第一学期九年级上学期期末考试-物理学校:___________姓名:___________班级:___________考号:___________一、单选题(本大题共10小题,共30.0分)1. 下列说法中不正确的是()A. 桃花会上,游客能闻到桃花的香味,说明分子是运动的B. 铁丝很难被拉断,说明分子间有引力C. “破镜不能重圆”,说明分子间有斥力D. 酒精和水混合后总体积变小说明分子间存在间隙2. 在进行如图所示的实验或有关装置工作时,能量转化由机械能转化为内能的是()A. B. C. D.3. 如图所示的电路中,甲、乙两灯泡串联后接在电路中,观察到甲灯泡比乙灯泡亮,则下列描述中错误的是()A. B. C. D.4. 如图所示,下列说法正确的是()A. A图的实验说明磁场能产生电流B. B图的实验所揭示的原理可制成发电机C. C图是演示电磁感应现象的实验装置D. D图中麦克风应用了磁场对电流的作用5. 如图所示的家庭电路中,闭合开关后灯泡不亮.用试电笔检测插座的两孔,发现只有插入右孔时氖管才发光。
用试电笔检测A点氖管发光,检测B点氖管不发光。
发生这一现象的原因可能是()A. 灯泡短路B. 灯丝断了C. 开关接触不良D. 插座短路6. 关于内能、热量和温度,下列说法中正确的是()A. 温度低的物体可能比温度高的物体内能多B. 物体内能增加,温度一定升高C. 物体内能增加,一定要从外界吸收热量D. 物体温度升高,它的热量一定增加7. 将“6V3W”和“6V6W”的两只灯泡和串联后接在电源两端,不考虑温度对灯丝电阻的影响,则()A. 电源电压为12V时,两只灯泡均能正常发光B. 两个灯泡发光时,灯泡比灯泡亮一些C. 灯泡发光时,电路中允许通过的最大电流为1AD. 灯泡正常发光时,灯泡的实际功率是1.5W8. 用电热丝烧水,当电压为U时,烧开水所需时间为t,如果电压降为原来的一半,则同样烧开这些水所需时间为( )A. t/4B. t/2C. 2tD. 4t9. 如图所示,关于家庭用电的操作或做法,正确的是()A. 试电笔的握法B. 带金属外壳的用电器使用三孔插座C. 多个大功率用电器同时使用一个插座D. 在高压线下放风筝10. 下列有关能源和信息的说法正确的是()A. 空气中的电磁波频率越高波长越长B. 核电站是利用核裂变的能量来发电的C. 手机是利用超声波来传递信息的D. 我国生活用电的方向每秒改变50次二、填空题(本大题共9小题,共26.0分)11. 单位换算:2KW·h= J;12. 在图电路中,电源电压为6V,=4Ω,闭合开关S后,电压表读数为2V,电阻的阻值为Ω。
(完整word版)2015-2016学年度上学期期末质量检测九年级数学试卷

2015-2016学年度上学期期末质量检测九年级数学试卷说 明:1.本卷共六大题,全卷共 24题,满分120分,考试时间为120分钟2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答, 否则不给分c +d b c B . cCD.—221.下列各数中,为有理数的是( ▲ )A . nB . \ 3C.3.14D .—、32.已知5个正数a , b , c , d , e ,且 a v b v c v dv e ,则新一组数据 的中位数是(▲)、选择题(本大题共 6小题,每小题3分,共18分)每题只有一个正确的选项0,a ,b , c , d ,e3.某几何体的主视图和左视图完全一样如图所示, 则该几何体的俯视图不可能是(▲)A .4.关于x 的一元 A . 1Z I C.次不等式 x — b v 0恰有两个正整数解,则 B . 2.5C. 2D. 5.如图,△ ABC 中, BD=5, DC=2,AE 交BC 于点D ,DE 的长等于(▲AD=3,10 3b 的值可能是(3.56. 如图是二次函数 ①二次三项式 ax ③ 一元二次方程④ 使y<3成立的x 的取值范围是x 淘. 2y 二ax bx c 的图象,下列结论:2■ bx ' c 的最大值为 4 :②4a + 2b + c v 0;2ax bx 1的两根之和为一2;其中正确的个数有( A . 1 个 B▲) .2个 C8个小题,每小题.3个 D . 4个 3分,共24分) 8•点A (m,m - 3)在第一象限,则实数m 的取值范围为 ____ ▲9.已知:二均为锐角,且sin 。
-1 2(tan -1)^0,则: 二 ▲:B.O D. ▲)10.如图,直线a // b,直线l与a相交于点P,与直线b相交于点Q,且PM垂直于I,若/仁58°则/ 2= ▲;11. 从—1, 0, 2,这三个数中,任取两个数分别作为系数a, b代入ax2•bx::;,2 = 0中.在所有可能的结果中,任取一个方程为有实数解的一元二次方程的概率是▲; 12. 如图在平面直角坐标系中,点A在抛物线y = x2 - 4x • 6上运动.过点A作AC丄x轴于点C,以AC为对角线作矩形ABCD,则对角线BD的最小值为▲;613. 如图,已知点A在双曲线y 上,过点A作AC丄x轴于点C, OC=3,线段0A的x垂直平分线交0C于点8,则厶ABC的周长为▲;14. 菱形ABCD的对角线AC=6 cm,BD=4 cm,以AC为边作正方形ACEF,贝U BF长为三、解答题(本大题共4小题,每小题各6分,共24分)15.计算:(—73 $ +(J2015 — J2016 X J2016 + J2015 )—2誓—tan”45.16. ( 1)如图,六边形ABCDEF满足:AB£EF,AF丄CD.仅用无刻度的直尺画出一条直线I,使得直线l能将六边形ABCDEF的面积给平分;(2)假设你所画的这条直线l与六边形ABCDEF的AF边与CD边(或所在的直线)分别交于点G与点H,则下列结论:①直线I还能平分六边形ABCDEF的周长;②点G与点H恰为AF边与CD边中点;③AG=CH ,FG=DH ;④AG=DH,FG=CH .其中,正确命题的序号为▲.217.已知关于x的一元二次方程x -(k-2)x,2k=0 .(1 )若x=1是这个方程的一个根,求k的值和它的另一根;2(2)当k=—1时,求X j -3X2的值.18.在不透明的袋子中有四张标着数字1, 2, 3,4的卡片,这些卡片除数字外都相同•甲同学按照一定的规则抽出两张卡片,并把卡片上的数字相加•如图是他所画的树状图的一部分.(1 )帮甲同学完成树状图;(2)求甲同学两次抽到的数字之和为偶数的概率.第18题图四、(本大题共4小题,每小题各 8分,共32分) 19.如图,四边形 ABCD 为菱形,M 为BC 上一点, 且/ABM=2/ BAM . (1) 求证:AG=BG ;(2) 若点M 为BC 的中点,且S B MG =1 , 试求△ ADG的面积.20.据报道,历经一百天的调查研究,景德镇 PM 2.5源解析已经通过专家论证.各种调查显示,机动车成为 PM 2.5的最大来源,一辆车每行驶 20千米平均向大气里排放 0.035 千克污染物.校环保志愿小分队从环保局了解到景德镇 100天的空气质量等级情况,并制成统计图和表:空气质量等级优 良轻度污染 中度污染 重度污染 严重污染 天数(天)10a 12 825 b(2)彤彤是环保志愿者,她和同学们调查了 机动车每天的行驶路程,了解到每辆车 每天平均出行25千米.已知景德镇市 2016年机动车保有量已突破 50万辆, 请你通过计算,估计 2016年景德镇市 一天中出行的机动车至少要向大气里 排放多少千克污染物?21.如图ABCD 为正方形,点 A 坐标为(0, 1),点B 坐标为(k y的图象经过点 C , 一次函数y=ax + b 的图象经过 A 、x开始第一次 1234 /N 第二次2 3 4第19题图2016年景德镇市100天空气质量等级天数统计表(1)表中a= ▲, b= ▲ ,图中严重污染部分对应的圆心角n= ▲2016年景德镇市100天空气质量等级天数统计图第20题图(1) 求反比例函数与一次函数的解析式;(2) 若点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.22.小敏将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°,感觉最舒适(如图1),侧面示意图为图2.使用时为了散热,她在底板下垫入散热架ACO 后,电脑转到AO B位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C丄OA 于点C, O' C=2cm.(1)求/ CAO的度数;(2)显示屏的顶部B'比原来升高了多少?第22题图五、(本大题共1小题,每小题10分,共10分)23.如图,抛物线y = -x2• bx • c交x轴于点A (- 3, 0)和点B,交y轴于点C (0, 3).(1) 求抛物线的函数表达式;(2) 若点P在抛物线上,且S AOP =4S.BOC,求点P的坐标;(3) 如图b,设点Q是线段AC上的一动点,作DQ丄x轴,交抛物线于点D, 求线段DQ长度的最大值.六、(本大题共1小题,每小题12分,共12分)M , N分别是AD , CD的中点,连接24.如图,在Rt△ ABC中,/ ACB=90°, AC=6, BC=8,点D以每秒1个单位长度的速度由点A向点B匀速运动,到达B点即停止运动, MN,设点D运动的时间为t.(1) 判断MN与AC的位置关系;(2) 求点D由点A向点B匀速运动的过程中,线段MN所扫过区域的面积;(3 )若厶DMN是等腰三角形,求t的值.2016学年第一次质量检测试卷九年级数学答案、选择题(本大题共 6小题,每小题3分,共18分)• x f - 3x 2 = -3x 4 2 - 3x 2 二-3(x 1 x 2) 2=11.(1 )补全树状图如图所示:.一…第一次 1 2/N z1\第二次 2 3 41 3 4(2)由树状图得:共有12种情况,两次抽到的数字之和为偶数的有四、(本大题共4小题,每小题各 8分,共32分) 19. (1)证明:•••四边形 ABCD 是菱形, •••/ABD = / CBD ,•••/ ABM =2 / BAM , ABD =Z BAM ,• AG=BG ;(2)解:T AD // BC ,ADG MBG ,•••点M 为BC 的中点, •竺=2,BM故P (两次抽到的数字之和为偶数)4 = 112 3ii.12. ____ 2 13.5 ____ 14.4小题,每小题各6分,共24分)15解原=2 .16解: (1) 如图;(2) ③. 17解: (1)k=-3,另一根为-6;(2) 当k= - 1时,方程变形为x 2 3x 2 =0 ,_3 X i18.解: 4种,• AG ADGM " BM32° 、解答2二 X i• BMG =1, 二 S A ADG =4.20.解:(1) a=25, b=20, c=72;答:2016年景德镇市一天中出行的机动车至少要向大气里排放21.解:(1 )•••点A 的坐标为(0, 1),点B 的坐标为(0,— 2),••• AB=1 + 2=3.即正方形 ABCD 边长为 3,二 C (3,— 2). 将C 点坐标代入反比例函数可得:k= — 6.丁八6•反比例函数解析式: y 二-丄.x(a ~ -1 将 C( 3, — 2), A ( 0, 1)代入 y=ax + b 解得:2 = 1• 一次函数解析式为 y=— x + 1.111•••—X 1 X | t |= 3 X 3,解得 t =± 18. • P 点坐标为(18, )或(-18,).23 322.解:(1 )• O' C 丄 OA 于 C , OA=OB=24cm ,OC OC 1 • sin / CAO = -------- = -------- = — ,•/ CAO=30OA OA2(2)过点B 作BD 丄AO 交AO 的延长线于 D .• O' C 丄 OA , / CAO=30°, •/ AO C=60° • / AO B' 120°, •/ AO B'+/ AO C = 180° .• O B + O' C — BD= 24 + 12— 12 3 =36 - 12上 3 . •显示屏的顶部 B'比原来升高(2)根据题意得:50 X 0.035 X 10000X=21875 (千克)20(2)设P(t, -• △ OAP 的面积恰好等于正方形 ABCD 的面积,21875千克污染物•/ sin / BOD =电OB '• BD=OB • sin / BOD ,• / AOB=120°, •/ BOD= 60• BD=OB • sin / BOD= 24 X了(36 —12、刁)cm.五、(本大题共1小题,每小题10分,共10分)2 223.解:(1 )将A (- 3, 0)、C (0, 3)代入y = —X +bx + c ,解得:y = —X — 2x + 3 .(2)由(1 )知,该抛物线的解析式为y = _x2_2x3,则易得B( 1, 0). 设P(x,-x2 -2x • 3 ),1 2 1•/ S^O^4S^OC,二{汇3汇一x _2x+3 = 4X[X1><3 . 解得:x - -1 或x - -1 二2'、2 .则符号条件的点P的坐标为(-1, 4)或(-1 2,2 , - 4)或(-1 -2、. 2 , - 4).(3)易知直线AC的解析式为y=x+ 3.设Q点坐标为(x, x+ 3) (- 3< x w 0),则D点坐标为(x, _ x^ 2x 3 ),2 23 2 9QD= ( -x - 2x 3 ) -( x + 3) =-x -3x=-(x )2 4•••当x =「3时,QD有最大值-.2 4六、(本大题共1小题,每小题12分,共12分)24. ( 1)v在厶ADC中,M是AD的中点,N是DC的中点,• MN // AC ;(2)如图1,分别取△ ABC三边AC, AB, BC的中点E, F , G,并连接EG, FG ,根据题意可得线段MN扫过区域的面积就是平行四边AFGE的面积,•/ AC=6, BC=8, • AE=3, GC=4,•••/ ACB=90 °二S 四边形AFGE=AE?GC=3 X 4=12.•线段MN所扫过区域的面积为12.1 1 1(3)据题意可知:MD=—AD , DN= —DC, MN = — AC=3 ,2 2 2①当MD=MN=3时,△ DMN为等腰三角形,此时AD=AC=6 , • t=6 ,1②当MD=DN时,AD=DC ,如图2,过点D作DH丄AC交AC于H ,则AH = — AC=32 ,-cosA= AD 爲• 3 6AD 一10 '解得AD=5 ,••• AD=t=5 .③如图3,当DN=MN=3时,AC=DC,连接MC,贝U CM丄AD , •/ coA=如一竺,即刎」,AC AB 6 1018 36AM= , • AD=t=2AM=^ ,5 5综上所述,当t=5或6或36时,△ DMN为等腰三角形.5DG。
安徽省太和县民族中心学校、北城中心学校2016届九年级上学期第一次联考数学试题(附答案)$669460

二校联考九年级数学试题一、选择题1.下列图形中不是中心对称图形的是( )A B C D2.下列关于x 的方程中,是一元二次方程的有 ( )①02=++c bx ax ②2150x x+-=③2560x x --=④235560x x -+-=⑤ A.0个 B.1个 C.2个 D.3个3.如图,A 、B 、P 是半径为2的⊙O 上的三点,∠APB=45°,则弦AB 的长为( )A .2B .2C.D .44.把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为( )A.2(1)3y x =---B.2(1)3y x =--+C.2(1)3y x =-+-D.2(1)3y x =-++5.如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC ,AD=CE ,若AB:AC=3:2,BC=10,则DE 的长为( )A.3B.4C.5D.66.如图,已知面积为1的正方形ABCD 的对角线相交于点O,过点O 任意作一条直线分别交AD,BC,于E,F,则阴影部分的面积是( )A.1B.0.5C.0.25D.无法确定()223232x x +=-第5题图(第6题图)(第7题图)7.二次函数2y ax bx c =++的图像如图所示.则一次函数y bx ac =-与反比列函数a b c y x-+=在同一坐标系内的图像可能为( )8.如图.电路图上有四个开关A 、B 、C 、D 和一个小灯泡,闭合开关D 或同时闭合开关A ,B ,C 都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率为( ) A.21 B.31 C.41 D.619.如图,在△ABC 中,∠CAB=70°,将△ABC 绕点A 逆时针旋转到△AB ’C ’的位置,使得CC ’∥AB ,则∠BAB ’的度数是( )A .70°B .35°C .40°D .50°10.如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 以1cm/秒的速度沿折线BE —ED —DC 运动到点C 时停止,点Q 以2cm/秒的速度沿BC 运动到点C 时停止.设P 、Q 同时出发t 秒时,△BPQ 的面积为ycm2.已知y 与t 的函数关系图象如图(2)(其中曲线OG 为抛物线的一部分,其余各部分均为线段),则下列结论:①当0<t ≤5时,252t y =;②当t =6秒时,△ABE ≌△PQB ;③AD=BE=10;④当229=t 秒时,△ABE ∽△QBP ; 其中正确的是( )A .①②B .①③④C .③④D .①②③④二、填空题(每题5分,共20分)11.已知关于x 的一元二次方程2410kx x ++=有实数根,则k 的取值范围是 .12.半径为24的圆O 中,弦AB 的长为8,则弦AB 所对的圆周角度数为 .13.如右图,M 为反比例函数xk y =的图象上的一点,MA 垂直y 轴,垂足为A ,△MAO 的面积为3,则k 的值为 .14.已知二次函数2y ax bx c =++的图象如图所示,有下列5个结论:①0<abc ②b a c <+③420a b c ++>④b c 32<⑤ (m 为任意实数);其中正确的是 .三、(共2题,每题8分)15.解方程(23)46x x x -=-16.为改善居民的住房条件,我市计划用两年的时间,将城镇居民的人均住房面积提高21%.试求这两年城镇居民人均住房面积的年平均增长率.13题图14题图四、(共2题,每题8分)17.如图,在RtΔABC中,∠C=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆交AB于点D,交BC于点E,求AB、AD的长.18.△ABC在平面直角坐标系中的位置如图所示.(1)作出△ABC关于y轴对称的三角形△A1B1C1;(2)将△A1B1C1向下平移3个单位长度,画出平移后的△A2B2C2.五、(共2题,每题10分)19.我校高中部开展了丰富多彩的社团活动,刚升高一的李明同学喜欢其中的书法社及篮球社,他不知如何选择,最后他决定通过掷硬币决定,规则如下:连续抛掷硬币三次,如果三次正面向上或反面向上,则两个都去;如果两次正面向上一次反面向上,则选择书法社;如果两次反面向上一次正面向上,则选择篮球社.(1)用画树状图的方法表示三次抛掷硬币的所有结果;(2)李明两门课都选择的概率有多大;(3)李明用这个游戏规则去选择去哪个社团是否合理?为什么?20.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B.(1求证:△ADF ∽△DEC(2)若AB =4,AD =33,AE =3,求AF 的长.六、(本题12分)21.已知:如图,反比例函数1k y x =的图象与一次函数2y x b =+的图象交于点A (1,4),点B (﹣4,n ).(1)求一次函数和反比例函数的解析式;(2)求△OAB 的面积;(3)根据图象,试比较12,y y 的大小.七、(本题12分)22.某网店试营销一种新产品,进价为20元/件,试营销期为18天,销售价y (元/件)与销时,130y k x =+;当 时,220k y x =+ .售时间x (天)满足:当 在试营销期间,销售量30p x =-;已知当x =5或12时,32.5y =(1)求12,k k 的值;(2)求该网店的销售利润w (元)与销售天数x (天)之间的函数关系式;(3)网店试营销期间,第几天获得的利润最大?最大利润是多少?八、(本题14分)23.如图1,在正方形ABCD内有一点P,PA=5,PB=2,PC=1,求∠BPC的度数.【分析】根据已知条件比较分散的特点,我们可以通过旋转变换将分散的已知条件集中在一起,于是将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图2),然后连结PP′.(1)请你通过计算求出图2中∠BPC的度数;2,PB=4,PC=2.(2)如图3,若在正六边形ABCDEF内有一点P,且PA=13①求∠BPC的度数;②求正六边形ABCDEF的边长.答案一、选择1~5CBCDB 6~10CAACD二、填空11、k ≤4且k ≠012、45°或135°13、614、①③④⑤三、15、x 1=3/2,x 2=216、10%17、AB=5,AD=18/518、略19、(1)8种(2)1/4(3)合理20、证明略,AF=3221、(1)y 1=4/x ,y 2=x+3(2)7.5(3)当-4<x<0或x>1时,y 2>y 1;当x=1或x=-4时,y 2=y 1;当0<x<1或x<-4时,y 2<y 122、(1)1/2,150 (2){()()21530019245001501018x x x w x x -++#=-# (3)第5天最大,为312.5元23、(1)135°(2)①120°②72。
九年级上册阜阳数学期末试卷复习练习(Word版 含答案)

九年级上册阜阳数学期末试卷复习练习(Word 版 含答案)一、选择题1.二次函数y =3(x -2)2-1的图像顶点坐标是( )A .(-2,1)B .(-2,-1)C .(2,1)D .(2,-1)2.在平面直角坐标系中,如图是二次函数y =ax 2+bx +c (a ≠0)的图象的一部分,给出下列命题:①a +b +c =0;②b >2a ;③方程ax 2+bx +c =0的两根分别为﹣3和1;④b 2﹣4ac >0,其中正确的命题有( )A .1个B .2个C .3个D .4个3.电影《我和我的祖国》讲述了普通人与国家之间息息相关的动人故事.一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把平均每天票房的增长率记作x ,则可以列方程为( )A .3(1)10x +=B .23(1)10x +=C .233(1)10x ++=D .233(1)3(1)10x x ++++= 4.如图,若二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,与y 轴交于点C ,与x 轴交于点A 、点B (﹣1,0),则①二次函数的最大值为a+b+c ;②a ﹣b+c <0;③b 2﹣4ac <0;④当y >0时,﹣1<x <3,其中正确的个数是( )A .1B .2C .3D .45.如图,已知等边△ABC 的边长为4,以AB 为直径的圆交BC 于点F ,CF 为半径作圆,D 是⊙C 上一动点,E 是BD 的中点,当AE 最大时,BD 的长为( )A.23B.25C.4 D.66.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A.2 B.54C.53D.757.已知⊙O的直径为4,点O到直线l的距离为2,则直线l与⊙O的位置关系是A.相交B.相切C.相离D.无法判断8.一组数据0、-1、3、2、1的极差是()A.4 B.3 C.2 D.19.如图,在□ABCD中,E、F分别是边BC、CD的中点,AE、AF分别交BD于点G、H,则图中阴影部分图形的面积与□ABCD的面积之比为()A.7 : 12 B.7 : 24 C.13 : 36 D.13 : 7210.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+m上的三点,则y1,y2,y3的大小关系为()A.y3>y2>y1B.y1>y2>y3C.y1>y3>y2D.y2>y1>y3 11.抛物线y=(x﹣2)2﹣1可以由抛物线y=x2平移而得到,下列平移正确的是()A.先向左平移2个单位长度,然后向上平移1个单位长度B .先向左平移2个单位长度,然后向下平移1个单位长度C .先向右平移2个单位长度,然后向上平移1个单位长度D .先向右平移2个单位长度,然后向下平移1个单位长度12.二次函数y=ax 2+bx+c (a≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②4a+c <2b ;③3b+2c <0;④m (am+b )+b <a (m≠﹣1),其中正确结论的个数是( )A .4个B .3个C .2个D .1个二、填空题13.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG =2,则线段AE 的长度为_____.14.已知扇形半径为5cm ,圆心角为60°,则该扇形的弧长为________cm .15.如图,四边形ABCD 是半圆的内接四边形,AB 是直径,CD CB =.若100C ∠=︒,则ABC ∠的度数为______.16.若圆锥的底面半径为3cm ,高为4cm ,则它的侧面展开图的面积为_____cm 2.17.数据2,3,5,5,4的众数是____.18.若线段AB=10cm ,点C 是线段AB 的黄金分割点,则AC 的长为_____cm.(结果保留根号)19.如图,由边长为1的小正方形组成的网格中,点,,,A B C D 为格点(即小正方形的顶点),AB 与CD 相交于点O ,则AO 的长为_________.20.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是__________________________.21.已知关于x 的方程230x mx m ++=的一个根为-2,则方程另一个根为__________.22.一组数据3,2,1,4,x 的极差为5,则x 为______.23.一组数据:3,2,1,2,2,3,则这组数据的众数是_____.24.如图,正方形ABCD 的边长为5,E 、F 分别是BC 、CD 上的两个动点,AE ⊥EF .则AF 的最小值是_____.三、解答题25.在平面直角坐标系中,点O (0,0),点A (﹣3,0).已知抛物线y =﹣x 2+2mx+3(m 为常数),顶点为P .(1)当抛物线经过点A 时,顶点P 的坐标为 ;(2)在(1)的条件下,此抛物线与x 轴的另一个交点为点B ,与y 轴交于点C .点Q 为直线AC 上方抛物线上一动点.①如图1,连接QA 、QC ,求△QAC 的面积最大值;②如图2,若∠CBQ =45°,请求出此时点Q 坐标.26.计算(1)02020318(1)2⎛⎫-+- ⎪⎝⎭(2)2430x x -+=27.小亮晚上在广场散步,图中线段AB 表示站立在广场上的小亮,线段PO 表示直立在广场上的灯杆,点P 表示照明灯的位置.(1)请你在图中画出小亮站在AB 处的影子BE ;(2)小亮的身高为1.6m ,当小亮离开灯杆的距离OB 为2.4m 时,影长为1.2m ,若小亮离开灯杆的距离OD =6m 时,则小亮(CD )的影长为多少米?28.在矩形ABCD 中,3AB =,5AD =,E 是射线DC 上的点,连接AE ,将ADE ∆沿直线AE 翻折得AFE ∆.(1)如图①,点F 恰好在BC 上,求证:ABF ∆∽FCE ∆;(2)如图②,点F 在矩形ABCD 内,连接CF ,若1DE =,求EFC ∆的面积; (3)若以点E 、F 、C 为顶点的三角形是直角三角形,则DE 的长为 .29.如图,E 是正方形ABCD 的CD 边上的一点,BF ⊥AE 于F ,(1)求证:△ADE ∽△BFA ;(2)若正方形ABCD 的边长为2,E 为CD 的中点,求△BFA 的面积,30.如图,二次函数y =ax 2+bx +c 的图象与x 轴相交于点A (﹣1,0)、B (5,0),与y 轴相交于点C (0,33). (1)求该函数的表达式;(2)设E 为对称轴上一点,连接AE 、CE ;①当AE +CE 取得最小值时,点E 的坐标为 ;②点P 从点A 出发,先以1个单位长度/的速度沿线段AE 到达点E ,再以2个单位长度的速度沿对称轴到达顶点D .当点P 到达顶点D 所用时间最短时,求出点E 的坐标.31.如图,在直角三角形ABC中,∠C=90°,点D是AC边上一点,过点D作DE⊥BD,交AB于点E,若BD=10,tan∠ABD=12,cos∠DBC=45,求DC和AB的长.32.(问题呈现)阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,点M是ABC的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=DB+BA.下面是运用“截长法”证明CD=DB+BA的部分证明过程.证明:如图2,在CD上截取CG=AB,连接MA、MB、MC和MG.∵M是ABC的中点,∴MA=MC①又∵∠A=∠C②∴△MAB≌△MCG③∴MB=MG又∵MD⊥BC∴BD=DG∴AB+BD=CG+DG即CD=DB+BA根据证明过程,分别写出下列步骤的理由:①,②,③;(理解运用)如图1,AB、BC是⊙O的两条弦,AB=4,BC=6,点M是ABC的中点,MD⊥BC于点D,则BD=;(变式探究)如图3,若点M是AC的中点,(问题呈现)中的其他条件不变,判断CD、DB、BA之间存在怎样的数量关系?并加以证明.(实践应用)根据你对阿基米德折弦定理的理解完成下列问题:如图4,BC是⊙O的直径,点A圆上一定点,点D圆上一动点,且满足∠DAC=45°,若AB=6,⊙O的半径为5,求AD长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由二次函数的顶点式,即可得出顶点坐标.【详解】解:∵二次函数为y=a(x-h)2+k顶点坐标是(h,k),∴二次函数y=3(x-2)2-1的图象的顶点坐标是(2,-1).故选:D.【点睛】此题考查了二次函数的性质,二次函数为y=a(x-h)2+k顶点坐标是(h,k).2.C解析:C【解析】【分析】根据二次函数的图象可知抛物线开口向上,对称轴为x=﹣1,且过点(1,0),根据对称轴可得抛物线与x轴的另一个交点为(﹣3,0),把(1,0)代入可对①做出判断;由对称轴为x=﹣1,可对②做出判断;根据二次函数与一元二次方程的关系,可对③做出判断,根据根的判别式解答即可.【详解】由图象可知:抛物线开口向上,对称轴为直线x=﹣1,过(1,0)点,把(1,0)代入y=ax2+bx+c得,a+b+c=0,因此①正确;对称轴为直线x =﹣1,即:﹣2b a=﹣1,整理得,b =2a ,因此②不正确; 由抛物线的对称性,可知抛物线与x 轴的两个交点为(1,0)(﹣3,0),因此方程ax 2+bx +c =0的两根分别为﹣3和1;故③是正确的;由图可得,抛物线有两个交点,所以b 2﹣4ac >0,故④正确;故选C .【点睛】考查二次函数的图象和性质,抛物线通常从开口方向、对称轴、顶点坐标、与x 轴,y 轴的交点,以及增减性上寻找其性质.3.D解析:D【解析】【分析】根据题意分别用含x 式子表示第二天,第三天的票房数,将三天的票房相加得到票房总收入,即可得出答案.【详解】解:设增长率为x ,由题意可得出,第二天的票房为3(1+x),第三天的票房为3(1+x)2, 根据题意可列方程为233(1)3(1)10x x ++++=.故选:D .【点睛】本题考查的知识点是由实际问题抽象出一元二次方程,解题的关键是读懂题意,找出等量关系式. 4.B解析:B【解析】分析:直接利用二次函数图象的开口方向以及图象与x 轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c ,即二次函数的最大值为a+b+c ,故①正确;②当x=﹣1时,a ﹣b+c=0,故②错误;③图象与x 轴有2个交点,故b 2﹣4ac >0,故③错误;④∵图象的对称轴为x=1,与x 轴交于点A 、点B (﹣1,0),∴A (3,0),故当y >0时,﹣1<x <3,故④正确.故选B .点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A 点坐标是解题关键.5.B解析:B【解析】【分析】点E在以F为圆心的圆上运到,要使AE最大,则AE过F,根据等腰三角形的性质和圆周角定理证得F是BC的中点,从而得到EF为△BCD的中位线,根据平行线的性质证得CD⊥BC,根据勾股定理即可求得结论.【详解】解:点D在⊙C上运动时,点E在以F为圆心的圆上运到,要使AE最大,则AE过F,连接CD,∵△ABC是等边三角形,AB是直径,∴EF⊥BC,∴F是BC的中点,∵E为BD的中点,∴EF为△BCD的中位线,∴CD∥EF,∴CD⊥BC,BC=4,CD=2,故BD= 2216425+=+=,BC CD故选:B.【点睛】本题主要考查等边三角形的性质,圆周角定理,三角形中位线的性质以及勾股定理,熟练并正确的作出辅助圆是解题的关键.6.D解析:D【解析】【分析】如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE,在Rt△BCE中,利用勾股定理即可解决问题.【详解】如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴,∵CD=DB,∴AD=DC=DB=52,∵12•BC•AH=12•AB•AC,∴AH=125,∵AE=AB,DE=DB=DC,∴AD垂直平分线段BE,△BCE是直角三角形,∵12•AD•BO=12•BD•AH,∴OB=125,∴BE=2OB=245,在Rt△BCE中,75 ==.故选D.点睛:本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.7.B解析:B【解析】【分析】根据圆心距和两圆半径的之间关系可得出两圆之间的位置关系.【详解】∵⊙O的直径为4,∴⊙O的半径为2,∵圆心O到直线l的距离是2,∴根据圆心距与半径之间的数量关系可知直线l与⊙O的位置关系是相切.故选:B.【点睛】本题考查了直线和圆的位置关系的应用,理解直线和圆的位置关系的内容是解此题的关键,注意:已知圆的半径是r,圆心到直线的距离是d,当d=r时,直线和圆相切,当d>r时,直线和圆相离,当d<r时,直线和圆相交.8.A解析:A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A .【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.9.B解析:B【解析】【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFC ABCD SS =四边形, ∴1176824AGH EFC ABCD S S S +=+=四边形=7∶24, 故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.10.B解析:B【解析】【分析】本题要比较y1,y2,y3的大小,由于y1,y2,y3是抛物线上三个点的纵坐标,所以可以根据二次函数的性质进行解答:先求出抛物线的对称轴,再由对称性得A点关于对称轴的对称点A'的坐标,再根据抛物线开口向下,在对称轴右边,y随x的增大而减小,便可得出y1,y2,y3的大小关系.【详解】∵抛物线y=﹣(x+1)2+m,如图所示,∴对称轴为x=﹣1,∵A(﹣2,y1),∴A点关于x=﹣1的对称点A'(0,y1),∵a=﹣1<0,∴在x=﹣1的右边y随x的增大而减小,∵A'(0,y1),B(1,y2),C(2,y3),0<1<2,∴y1>y2>y3,故选:B.【点睛】本题考查了二次函数图象上点的坐标的特征,解题的关键是能画出二次函数的大致图象,据图判断.11.D解析:D【解析】分析:抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.详解:抛物线y=x2顶点为(0,0),抛物线y=(x﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x2向右平移2个单位,向下平移1个单位得到抛物线y=(x﹣2)2﹣1的图象.故选D.点睛:本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定平移方向.12.B解析:B【解析】【分析】【详解】解:∵抛物线和x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①正确;∵对称轴是直线x﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,∴4a+c>2b,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵b=2a,∴3b,2c<0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把(m,0)(m≠0)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,故选B.考点:二次函数图象与系数的关系二、填空题13.12【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△E解析:12【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出AF ABGF GD==2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB 的中位线,再利用三角形中位线的性质可求出AE 的长度,此题得解.【详解】∵四边形ABCD 为正方形,∴AB =CD ,AB ∥CD ,∴∠ABF =∠GDF ,∠BAF =∠DGF ,∴△ABF ∽△GDF ,∴AF AB GF GD==2,∴AF =2GF =4,∴AG =6. ∵CG ∥AB ,AB =2CG ,∴CG 为△EAB 的中位线,∴AE =2AG =12.故答案为:12.【点睛】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF 的长度是解题的关键.14.【解析】【分析】直接利用弧长公式进行计算.【详解】解:由题意得:=,故答案是:【点睛】本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键.解析:53π 【解析】【分析】直接利用弧长公式180n R l π=进行计算. 【详解】解:由题意得:605180l π==53π, 故答案是:53π 【点睛】本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键. 15.50【解析】连接AC ,根据圆内接四边形的性质求出,再利用圆周角定理求出,,计算即可.【详解】解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴∵DC=CB ∴∵AB 是直解析:50【解析】【分析】连接AC ,根据圆内接四边形的性质求出DAB ∠,再利用圆周角定理求出ACB ∠,CAB ∠,计算即可.【详解】解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴DAB 180DCB 80∠∠=︒-=︒∵DC=CB∴1CAB 402DAB ∠=∠=︒ ∵AB 是直径∴ACB 90∠=︒∴ABC 90CAB 50∠∠=︒-=︒故答案为:50.【点睛】本题考查的知识点有圆的内接四边形的性质以及圆周角定理,熟记知识点是解题的关键. 16.15【解析】【分析】先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.∵圆锥的底面半径为3cm ,高为4cm∴圆锥的母线长∴圆锥的侧面展开图的面积故填:.【点睛】解析:15π【解析】【分析】先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.【详解】∵圆锥的底面半径为3cm ,高为4cm∴圆锥的母线长5()cm ==∴圆锥的侧面展开图的面积()23515cmππ=⨯⨯=故填:15π.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长. 17.5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案解析:5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.18.或【解析】【分析】根据黄金分割比为计算出较长的线段长度,再求出较短线段长度即可,AC 可能为较长线段,也可能为较短线段.【详解】解:AB=10cm ,C 是黄金分割点,当AC>BC 时,则有解析:5 或1555【解析】【分析】根据黄金分割比为12计算出较长的线段长度,再求出较短线段长度即可,AC 可能为较长线段,也可能为较短线段.【详解】解:AB=10cm ,C 是黄金分割点,当AC>BC 时,则有AC=12AB=12×10=5, 当AC<BC 时,则有×10=5-,∴AC=AB-BC=10-(5 )=15-,∴AC 长为5 cm 或1555 cm. 故答案为:55 或1555【点睛】本题考查了黄金分割点的概念.注意这里的AC 可能是较长线段,也可能是较短线段;熟记黄金比的值是解题的关键.19.【解析】【分析】如图所示,由网格的特点易得△CEF≌△DBF,从而可得BF 的长,易证△BOF∽△AOD,从而可得AO与AB的关系,然后根据勾股定理可求出AB的长,进而可得答案.【详解】解:解析:817【解析】【分析】如图所示,由网格的特点易得△CEF≌△DBF,从而可得BF的长,易证△BOF∽△AOD,从而可得AO与AB的关系,然后根据勾股定理可求出AB的长,进而可得答案.【详解】解:如图所示,∵∠CEB=∠DBF=90°,∠CFE=∠DFB,CE=DB=1,∴△CEF≌△DBF,∴BF=EF=12BE=12,∵BF∥AD,∴△BOF∽△AOD,∴11248 BO BFAO AD===,∴89AO AB=,∵221417 AB=+=,∴817 AO=.故答案为:817【点睛】本题以网格为载体,考查了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述基本知识是解答的关键.20.50(1﹣x)2=32.【解析】由题意可得,50(1−x)²=32,故答案为50(1−x)²=32.解析:50(1﹣x )2=32.【解析】由题意可得,50(1−x)²=32,故答案为50(1−x)²=32.21.6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:.故答案为:6解析:6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:24120x x --=,解方程得:122,6x x =-=.故答案为:6.【点睛】本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键.22.-1或6【解析】【分析】由题意根据极差的公式即极差=最大值-最小值.可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x 是最大值,则x-(1)=5,所以x=6;当x 是最小值,解析:-1或6【解析】【分析】由题意根据极差的公式即极差=最大值-最小值.x可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x是最大值,则x-(1)=5,所以x=6;当x是最小值,则4-x=5,所以x=-1;故答案为-1或6.【点睛】本题考查极差的定义,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值,同时注意分类的思想的运用.23.【解析】【分析】根据众数的定义:一组数据中出现次数最多的数据解答即可.【详解】在数据:3,2,1,2,2,3中,2出现3次,出现的次数最多,∴这组数据的众数是2,故答案为:2.【点睛解析:【解析】【分析】根据众数的定义:一组数据中出现次数最多的数据解答即可.【详解】在数据:3,2,1,2,2,3中,2出现3次,出现的次数最多,∴这组数据的众数是2,故答案为:2.【点睛】此题考查的是求一组数据的众数,掌握众数的定义是解决此题的关键.24.【解析】【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.【详解】解:设BE=x,CF=y,则EC=5﹣x,解析:25 4【解析】【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.【详解】解:设BE=x,CF=y,则EC=5﹣x,∵AE⊥EF,∴∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,∴Rt△ABE∽Rt△ECF,∴ABEC=BECF,∴55x-=xy,∴y=﹣15x2+x=﹣15(x﹣52)2+54,∵﹣15<0,∴x=52时,y有最大值54,∴CF的最大值为54,∴DF的最小值为5﹣54=154,∴AF的最小值=22AD DF+=221554⎛⎫+ ⎪⎝⎭=254,故答案为254.【点睛】本题考查了几何动点问题与二次函数、相似三角形的综合问题,综合性较强,解题的关键是找出相似三角形,列出比例关系,转化为二次函数,从而求出AF 的最小值. 三、解答题 25.(1)(﹣1,4);(2)①278;②Q(﹣52,74). 【解析】【分析】(1)将点A 坐标代入抛物线表达式并解得:m=-1,即可求解;(2)①过点Q 作y 轴的平行线交AC 于点N ,先求出直线AC 的解析式,点Q(x ,﹣x 2﹣2x+3),则点N(x ,x+3),则△QAC 的面积S=12×QN×OA=﹣32x 2﹣92x ,然后根据二次函数的性质即可求解;②tan ∠OCB=OB CO =13,设HM=BM=x ,则CM=3x ,BC=BM+CM=4x=10,解得:x=104,CH=10x=52,则点H(0,12),同理可得:直线BH(Q)的表达式为:y=-12x+12,即可求解. 【详解】解:(1)将点A(﹣3,0)代入抛物线表达式并解得,0=﹣9-6m+3∴m =﹣1,故抛物线的表达式为:y =﹣x 2﹣2x+3=-(x+1)2+4…①,∴点P(﹣1,4),故答案为:(﹣1,4);(2)①过点Q 作y 轴的平行线交AC 于点N ,如图1,设直线AC 的解析式为y=kx+b ,将点A(﹣3,0)、C(0,3)的坐标代入一次函数表达式并解得,303k b b -+=⎧⎨=⎩,解得 13k b =⎧⎨=⎩, ∴直线AC 的表达式为:y =x+3,设点Q(x ,﹣x 2﹣2x+3),则点N (x ,x+3),△QAC 的面积S =12⨯QN×OA =12⨯(﹣x 2﹣2x+3﹣x ﹣3)×3=﹣32x 2﹣92x , ∵﹣32<0,故S 有最大值为:278; ②如图2,设直线BQ 交y 轴于点H ,过点H 作HM ⊥BC 于点M ,tan ∠OCB =OB CO =13,设HM =BM =x ,则CM =3x , BC =BM+CM =4x 10x =104, CH 10x =52,则点H(0,12), 同直线AC 的表达式的求法可得直线BH (Q )的表达式为:y =﹣12x+12…②, 联立①②并解得:﹣x 2﹣2x+3=﹣12x+12, 解得x =1(舍去)或﹣52, 故点Q(﹣52,74). 【点睛】 本题考查了待定系数法求二次函数和一次函数解析式,二次函数的图像与性质,锐角三角函数的定义,以及数形结合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.26.(1)2;(2)13x =,21x =【分析】(1)按照开立方,零指数幂,正整数指数幂的法则计算即可;(2)用因式分解法解一元二次方程即可.【详解】(1)解:原式=2112-+=(2)解:(3)(1)0x x --=30x -=或10x -=123,1x x ∴==【点睛】本题主要考查实数的混合运算和解一元二次方程,掌握实数混合运算的法则和因式分解法是解题的关键.27.(1)如图,BE 为所作;见解析;(2)小亮(CD )的影长为3m .【解析】 【分析】(1)根据光是沿直线传播的道理可知在小亮由B 处沿BO 所在的方向行走到达O 处的过程中,连接PA 并延长交直线BO 于点E ,则可得到小亮站在AB 处的影子;(2)根据灯的光线与人、灯杆、地面形成的两个直角三角形相似解答即可.【详解】(1)如图,连接PA 并延长交直线BO 于点E ,则线段BE 即为小亮站在AB 处的影子:(2)延长PC 交OD 于F ,如图,则DF 为小亮站在CD 处的影子,AB =CD =1.6,OB =2.4,BE =1.2,OD =6,∵AB ∥OP ,∴△EBA ∽△EOP ,∴,AB EB OP EO =即1.6 1.2,1.2 2.4OP =+ 解得OP =4.8,∵CD ∥OP ,∴△FCD ∽△FPO ,∴CD FD OP FO =,即1.64.86FD FD =+, 解得FD =3答:小亮(CD )的影长为3m .本题考查的是相似三角形的判定及性质,解答此题的关键是根据题意画出图形,构造出相似三角形,再根据相似三角形的性质解答.28.(1)见解析;(2)EFC ∆的面积为513;(3)53、5、15【解析】【分析】(1)先说明∠CEF=∠AFB 和90B C ∠=∠=,即可证明ABF ∆∽FCE ∆;(2)过点F 作FG DC ⊥交DC 与点G ,交AB 于点H ,则90EGF AHF ∠=∠=;再结合矩形的性质,证得△FGE ∽△AHF ,得到AH=5GF ;然后运用勾股定理求得GF 的长,最后运用三角形的面积公式解答即可;(3)分点E 在线段CD 上和DC 的延长线上两种情况,然后分别再利用勾股定进行解答即可.【详解】(1)解:∵矩形ABCD 中,∴90B C D ∠=∠=∠=由折叠可得90D EFA ∠=∠=∵90EFA C ∠=∠=∴90CEF CFE CFE AFB ∠+∠=∠+∠=∴CEF AFB ∠=∠在ABF ∆和FCE ∆中∵AFB CEF ∠=∠,90B C ∠=∠=∴ABF ∆∽FCE ∆(2)解:过点F 作FG DC ⊥交DC 与点G ,交AB 于点H ,则90EGF AHF ∠=∠= ∵矩形ABCD 中,∴90D ∠=由折叠可得:90D EFA ∠=∠=,1DE EF ==,5AD AF ==∵90EGF EFA ∠=∠=∴90GEF GFE AFH GFE ∠+∠=∠+∠=∴GEF AFH ∠=∠在FGE ∆和AHF ∆中∵,90GEF AFH EGF FHA ∠=∠∠=∠=∴FGE ∆∽AHF ∆ ∴EF GF FA AH = ∴15GF AH=∴5AH GF =在Rt AHF ∆中,90AHF ∠=∵222AH FH AF +=∴222(5)(5)5GF GF +-= ∴513GF = ∴EFC ∆的面积为155221313⨯⨯= (3)设DE=x ,以点E 、F 、C 为顶点的三角形是直角三角形,则:①当点E 在线段CD 上时,∠DAE<45°,∴∠AED>45°,由折叠性质得:∠AEF=∠AED>45°,∴∠DEF=∠AED+∠AEF>90°, ∴∠CEF<90°,∴只有∠EFC=90°或∠ECF=90°,a,当∠EFC=90°时,如图所示:由折叠性质可知,∠AFE=∠D=90°,∴∠AFE+∠EFC=90°,∴点A ,F ,C 在同一条线上,即:点F 在矩形的对角线AC 上,在Rt △ACD 中,AD=5,CD=AB=3,根据勾股定理得,34由折叠可知知,EF=DE=x ,AF=AD=5,∴34,在Rt △ECF 中,EF 2+CF 2=CE 2,∴x 2+34)2=(3-x )2,解得5(345)-5(345)-b,当∠ECF=90°时,如图所示: 点F 在BC 上,由折叠知,EF=DE=x ,AF=AD=5,在Rt△ABF中,根据勾股定理得,BF=22AF AB=4,∴CF=BC-BF=1,在Rt△ECF中,根据勾股定理得,CE2+CF2=EF2,(3-x)2+12=x2,解得x=53,即:DE=53;②当点E在DC延长线上时,CF在∠AFE内部,而∠AFE=90°,∴∠CFE<90°,∴只有∠CEF=90°或∠ECF=90°,a、当∠CEF=90°时,如图所示由折叠知,AD=AF=5,∠AFE=90°=∠D=∠CEF,∴四边形AFED是正方形,∴DE=AF=5;b、当∠ECF=90°时,如图所示:∵∠ABC=∠BCD=90°,∴点F在CB的延长线上,∴∠ABF=90°,由折叠知,EF=DE=x,AF=AD=5,在Rt△ABF中,根据勾股定理得,22AF AB-,∴CF=BC+BF=9,在Rt△ECF中,根据勾股定理得,CE2+CF2=EF2,∴(x-3)2+92=x2,解得x=15,即DE=15,故答案为345)3-、53、5、15.【点睛】本题属于相似形综合题,主要考查了相似三角形的判定和性质、折叠的性质、勾股定理等知识点,正确作出辅助线构造相似三角形和直角三角形是解答本题的关键.29.(1)见详解;(2)4 5【解析】【分析】(1)根据两角相等的两个三角形相似,即可证明△ADE∽△BFA;(2)利用三角形的面积比等于相似比的平方,即可解答.【详解】(1)证明:∵BF⊥AE于点F,四边形ABCD为正方形,∴△ADE和△BFA均为直角三角形,∵DC∥AB,∴∠DEA=∠FAB,∴△ADE∽△BFA;(2)解:∵AD=2,E为CD的中点,∴DE=1,∴2212=5+,∴2AE AB =, ∵△ADE ∽△BFA ,∴245BFA ADE S S ∆∆==, ∵S △ADE =12×1×2=1, ∴S △BFA =45S △ADE =45. 【点睛】本题主要考查三角形相似的性质与判定,熟记相似三角形的判定是解决第(1)小题的关键;第(2)小题中,利用相似三角形的面积比是相似比的平方是解决此题的关键.30.(1)2333y x x =-++;(2)①(2;②点E (2. 【解析】【分析】(1)抛物线的表达式为:y =a (x +1)(x ﹣5)=a (x 2﹣4x ﹣5),故﹣5a=3,解得:a=﹣ (2)①点A 关于函数对称轴的对称点为点B ,连接CB 交函数对称轴于点E ,则点E 为所求,即可求解;②t =AE,t =AEDE =AE +EH ,当A 、E 、H 共线时,t 最小,即可求解. 【详解】(1)抛物线的表达式为:y =a (x +1)(x ﹣5)=a (x 2﹣4x ﹣5),故﹣5a,解得:a故抛物线的表达式为:2y x x =+; (2)①函数的对称轴为:x =2,点A 关于函数对称轴的对称点为点B ,连接CB 交函数对称轴于点E ,则点E 为所求, 由点B 、C 的坐标得,BC 的表达式为:y=﹣3x+3, 当x =2时,y故答案为:(2;②t =AE +12DE ,过点D 作直线DH ,使∠EDH =30°,作HE ⊥DH 于点H ,则HE =12DE ,t =AE +12DE =AE +EH ,当A 、E 、H 共线时,t 最小, 则直线A (E )H 的倾斜角为:30°, 直线AH 的表达式为:y =3 (x +1) 当x =2时,y =3,故点E (2,3).【点睛】本题考查了二次函数的综合问题,掌握二次函数的性质以及解析式、对称的性质是解题的关键.31.DC=6;AB =4053, 【解析】【分析】如图,作EH ⊥AC 于H .解直角三角形分别求出DE ,EB ,BC ,CD ,再利用相似三角形的性质求出AE 即可解决问题.【详解】如图,作EH ⊥AC 于H .∵DE ⊥BD ,∴∠BDE =90°,∵tan ∠ABD =DE DB =12,BD =10, ∴DE =5,BE 22BD DE +22105+=5∵∠C =90°,cos ∠DBC =BC BD =45,∴BC =8,CD 6,∵EH ∥BC ,∴△AEH ∽△ABC , ∴AE AB =EC BC ,58,∴AE =3,∴AB =AE + 【点睛】本题考查解直角三角形的应用,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识32.(问题呈现)相等的弧所对的弦相等;同弧所对的圆周角相等;有两组边及其夹角分别对应相等的两个三角形全等;(理解运用)1;(变式探究)DB =CD +BA ;证明见解析;(实践应用).【解析】【分析】(问题呈现)根据圆的性质即可求解;(理解运用)CD =DB +BA ,即CD =6﹣CD +AB ,即CD =6﹣CD +4,解得:CD =5,即可求解;(变式探究)证明△MAB ≌△MGB (SAS ),则MA =MG ,MC =MG ,又DM ⊥BC ,则DC =DG ,即可求解;(实践应用)已知∠D 1AC =45°,过点D 1作D 1G 1⊥AC 于点G 1,则CG 1′+AB =AG 1,所以AG 1=12(6+8)=7.如图∠D 2AC =45°,同理易得AD 2. 【详解】 (问题呈现)①相等的弧所对的弦相等②同弧所对的圆周角相等③有两组边及其夹角分别对应相等的两个三角形全等故答案为:相等的弧所对的弦相等;同弧所定义的圆周角相等;有两组边及其夹角分别对应相等的两个三角形全等;(理解运用)CD =DB +BA ,即CD =6﹣CD +AB ,即CD =6﹣CD +4,解得:CD =5, BD =BC ﹣CD =6﹣5=1,。
2015-2016年安徽省阜阳市初三上学期期末数学试卷及参考答案

2015-2016学年安徽省阜阳市初三上学期期末数学试卷一、选择题(本题共10小题,每小题4分,共40分)1.(4分)方程x(x+3)=x+3的解是()A.x=0B.x1=0,x2=﹣3C.x1=1,x2=3D.x1=1,x2=﹣3 2.(4分)观察下列图形,是中心对称图形的是()A.B.C.D.3.(4分)把抛物线y=﹣x2先向左平移1个单位,再向下平移2个单位长度后,所得的函数表达式为()A.y=﹣(x+1)2+2B.y=﹣(x+1)2﹣2C.y=﹣(x﹣1)2+2D.y=﹣(x﹣1)2﹣24.(4分)如图,点B、D、C是⊙O上的点,∠BDC=130°,则∠BOC是()A.100°B.110°C.120°D.130°5.(4分)下列事件是必然事件的是()A.打开电视机正在播放广告B.投掷一枚质地均匀的硬币100次,正面向上的次数为50次C.任意一个一元二次方程都有实数根D.在平面上任意画一个三角形,其内角和是180°6.(4分)某机械厂七月份生产零件50万个,计划八、九月份共生产零件146万个,设八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=146B.50+50(1+x)+50(1+x)2=146C.50(1+x)+50(1+x)2=146D.50+50(1+x)+50(1+2x)=1467.(4分)10名学生的身高如下(单位:cm)159、169、163、170、166、165、156、172、165、162,从中任选一名学生,其身高超过165cm的概率是()A.B.C.D.8.(4分)若二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则b、k的值分别为()A.0,5B.0,1C.﹣4,5D.﹣4,19.(4分)如图,△ABC是一张三角形纸片,⊙O是它的内切圆,点D、E是其中的两个切点,已知AD=6cm,小明准备用剪刀沿着与⊙O相切的一条直线MN剪下一块三角形(△AMN),则剪下的△AMN的周长是()A.9cm B.12cm C.15cm D.18cm10.(4分)如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,将Rt△ABC绕点A逆时针旋转45°后得到△AB′C′,点B经过的路径为,图中阴影部分面积是()A.2πB.2C.4πD.4二、填空题(本题共4小题,每小题5分,共20分)11.(5分)点A(a,3)与点B(﹣4,b)关于原点对称,则a+b=.12.(5分)若圆锥的高是8cm,母线长是10cm,则这个圆锥的侧面积是cm2(结果保留π).13.(5分)如图,在⊙O的内接五边形ABCDE中,∠CAD=30°,则∠B+∠E=.14.(5分)如图,是抛物线y=ax2+bx+c(a≠0)图象的一部分,已知抛物线的对称轴是直线x=2,与x轴的一个交点是(﹣1,0),有下列结论:①abc<0,②4a+b=0,③抛物线与x轴的另一个交点是(5,0),④若点(﹣2,y1),(5,y2)都在抛物线上,则有y1<y2,请将正确选项的序号都填在横线上.三、(本题共两小题,每小题8分,共16分)15.(8分)用适当的方法解方程:x2=2x+35.16.(8分)如图,AB是⊙O的直径,AB⊥弦CD,垂足为E,∠A=27°,CD=8cm,BE=2cm.(1)求⊙O的半径,(2)求的长度(结果保留π).四、(本题共两小题,每小题8分,共16分)17.(8分)已知二次函数y=x2+bx+c的图象经过点(0,2)和(1,﹣1),求图象的顶点坐标和对称轴.18.(8分)已知关于x的方程x2﹣4x+3k﹣1=0有两个不相等的实数根.(1)求实数k的取值范围;(2)根据(1)中的结论,若k为正整数,求方程的两根之积.五、(本题共两小题,每小题10分,共20分)19.(10分)如图在边长为1个单位长度的小正方形组成的网格中,给出格点△ABC(顶点是网格线的交点)(1)请画出以A为旋转中心,将△ABC按逆时针方向旋转90°得到图形△A1B1C1,并写出各顶点坐标.(2)请画出△ABC向右平移4个单位长度后的图形△A2B2C2,并指出由△A1B1C1通过怎样的一次变换得到△A2B2C2?20.(10分)在一个不透明的口袋中装有红、白、黑三种颜色的小球若干个,它们只有颜色不同,其中有白球2个,黑球1个,已知从中任意摸出一个球是白球的概率为.(1)口袋中有多少个红球?(2)从口袋中一次摸出2个球,求摸得一红一白的概率(要求画出树状图或列表).六、(本题满分12分)21.(12分)如图,已知AB是⊙的直径,AC是弦,点P是BA延长线上一点,连接PC,BC.∠PCA=∠B(1)求证:PC是⊙O的切线;(2)若PC=6,PA=4,求直径AB的长.七、(本题满分12分)22.(12分)工人师傅用8米长的铝合金材料制作一个如图所示的矩形窗框,图中的①、②、③区域都是矩形,且BE=2AE,M,N分别是AD、EF的中点.(说明:图中黑线部分均需要使用铝合金材料制作,铝合金材料宽度忽略不计).(1)当矩形窗框ABCD的透光面积是2.25平方米时,求AE的长度.(2)当AE为多长时,矩形窗框ABCD的透光面积最大?最大面积是多少?八、(本题满分14分)23.(14分)如图1,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B,有人在直线AB上点C(靠点B 一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=4米,每个圆柱形桶的直径为0.5米,高为0.4米(网球的体积和圆柱形桶的厚度忽略不计).(1)在如图2建立的坐标下,求网球飞行路线的抛物线解析式;(2)若竖直摆放4个圆柱形桶时,则网球能落入桶内吗?说明理由;(3)若要网球能落入桶内,求竖直摆放的圆柱形桶的个数.2015-2016学年安徽省阜阳市初三上学期期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分)1.(4分)方程x(x+3)=x+3的解是()A.x=0B.x1=0,x2=﹣3C.x1=1,x2=3D.x1=1,x2=﹣3【解答】解:原方程可化为:x(x+3)﹣(x+3)=0即(x﹣1)(x+3)=0解得x1=1,x2=﹣3故选:D.2.(4分)观察下列图形,是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,是轴对称图形,故此选项错误;B、不是中心对称图形,不是轴对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、不是轴对称图形,也不是中心对称图形,故此选项错误,故选:C.3.(4分)把抛物线y=﹣x2先向左平移1个单位,再向下平移2个单位长度后,所得的函数表达式为()A.y=﹣(x+1)2+2B.y=﹣(x+1)2﹣2C.y=﹣(x﹣1)2+2D.y=﹣(x﹣1)2﹣2【解答】解:由“左加右减,上加下减”的原则可知,将抛物线y=﹣x2先向左平移1个单位,再向下平移2个单位长度,所得函数解析式为:y=﹣(x+1)2﹣2.故选:B.4.(4分)如图,点B、D、C是⊙O上的点,∠BDC=130°,则∠BOC是()A.100°B.110°C.120°D.130°【解答】解:在优弧上取点E,连接BE,CE,如图所示:∵∠BDC=130°,∴∠E=180°﹣∠BDC=50°,∴∠BOC=2∠E=100°.故选:A.5.(4分)下列事件是必然事件的是()A.打开电视机正在播放广告B.投掷一枚质地均匀的硬币100次,正面向上的次数为50次C.任意一个一元二次方程都有实数根D.在平面上任意画一个三角形,其内角和是180°【解答】解:打开电视机正在播放广告是随机事件,A不正确;投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,B不正确;任意一个一元二次方程都有实数根是随机事件,C不正确;在平面上任意画一个三角形,其内角和是180°是必然事件,D正确;故选:D.6.(4分)某机械厂七月份生产零件50万个,计划八、九月份共生产零件146万个,设八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=146B.50+50(1+x)+50(1+x)2=146C.50(1+x)+50(1+x)2=146D.50+50(1+x)+50(1+2x)=146【解答】解:根据题意得:八月份生产零件为50(1+x)(万个);九月份生产零件为50(1+x)2(万个),则x满足的方程是50(1+x)+50(1+x)2=146,故选:C.7.(4分)10名学生的身高如下(单位:cm)159、169、163、170、166、165、156、172、165、162,从中任选一名学生,其身高超过165cm的概率是()A.B.C.D.【解答】解:10名学生中,其身高超过165cm的有4人,所以从中任选一名学生,其身高超过165cm的概率是.故选:B.8.(4分)若二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则b、k的值分别为()A.0,5B.0,1C.﹣4,5D.﹣4,1【解答】解:∵y=(x﹣2)2+k=x2﹣4x+4+k=x2﹣4x+(4+k),又∵y=x2+bx+5,∴x2﹣4x+(4+k)=x2+bx+5,∴b=﹣4,k=1.故选:D.9.(4分)如图,△ABC是一张三角形纸片,⊙O是它的内切圆,点D、E是其中的两个切点,已知AD=6cm,小明准备用剪刀沿着与⊙O相切的一条直线MN剪下一块三角形(△AMN),则剪下的△AMN的周长是()A.9cm B.12cm C.15cm D.18cm【解答】解:如图所示:∵△ABC是一张三角形的纸片,⊙O是它的内切圆,点D是其中的一个切点,AD=6cm,∴设E、F分别是⊙O的切点,故DM=MF,FN=EN,AD=AE,∴△AMN的周长=AM+AN+MN=AD+AE=6+6=12(cm).故选:B.10.(4分)如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,将Rt△ABC绕点A逆时针旋转45°后得到△AB′C′,点B经过的路径为,图中阴影部分面积是()A.2πB.2C.4πD.4【解答】解:∵在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=1,∴BC=ACtan60°=2×=2,AB=4,∴S△ABC=AC•BC=2,根据旋转的性质知△ABC≌△AB′C′,则S△ABC=S△AB′C′,AB=AB′.∴S阴影=S扇形ABB′+S△ABC﹣S△AB′C′==2π.故选:A.二、填空题(本题共4小题,每小题5分,共20分)11.(5分)点A(a,3)与点B(﹣4,b)关于原点对称,则a+b=1.【解答】解:根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,∴a+(﹣4)=0,3+b=0,即:a=4且b=﹣3,∴a+b=1.12.(5分)若圆锥的高是8cm,母线长是10cm,则这个圆锥的侧面积是60πcm2(结果保留π).【解答】解:圆锥的底面圆的半径==6,所以这个圆锥的侧面积=×2π•6•10=60π(cm2).故答案为60π.13.(5分)如图,在⊙O的内接五边形ABCDE中,∠CAD=30°,则∠B+∠E=210°.【解答】解:如图,连接CE,∵五边形ABCDE是圆内接五边形,∴四边形ABCE是圆内接四边形,∴∠B+∠AEC=180°,∵∠CED=∠CAD=30°,∴∠B+∠E=180°+30°=210°.故答案为:210°.14.(5分)如图,是抛物线y=ax2+bx+c(a≠0)图象的一部分,已知抛物线的对称轴是直线x=2,与x轴的一个交点是(﹣1,0),有下列结论:①abc<0,②4a+b=0,③抛物线与x轴的另一个交点是(5,0),④若点(﹣2,y1),(5,y2)都在抛物线上,则有y1<y2,请将正确选项的序号都填在横线上②③.【解答】解:∵抛物线开口向上,∴a>0,b<0;由图象知c<0,∴abc>0,故①错误;∵抛物线的对称轴为x=2,∴﹣=2,b=﹣4a,∴4a+b=0,故②正确;∵抛物线y=ax2+bx+c与x轴有两个交点,对称轴是x=2,与x轴的一个交点是(﹣1,0),∴抛物线与x轴的另一个交点是(5,0);故③正确;∵对称轴方程为x=2,∴(﹣2,y1)可得(6,y1)∵(5,y2)在抛物线上,∴由抛物线的对称性及单调性知:y1>y2,故④错误;综上所述②③正确.故答案为:②③.三、(本题共两小题,每小题8分,共16分)15.(8分)用适当的方法解方程:x2=2x+35.【解答】解:移项得:x2﹣2x﹣35=0,(x﹣7)(x+5)=0,x﹣7=0,x+5=0,x1=7,x2=﹣5.16.(8分)如图,AB是⊙O的直径,AB⊥弦CD,垂足为E,∠A=27°,CD=8cm,BE=2cm.(1)求⊙O的半径,(2)求的长度(结果保留π).【解答】解:连接OC,如图所示:∵AB是⊙O的直径,弦CD⊥AB,∴CE=DE=CD=4cm,∵BE=2cm,∴OE=OC﹣2,∴OC2=42+(OC﹣2)2,∴OC=∴△COE为等腰直角三角形,∴OC=5,即⊙O的半径为5cm;(2)∵∠A=27°,∴∠BOC=54°,∴的长度==π,∵,∴的长度=π.四、(本题共两小题,每小题8分,共16分)17.(8分)已知二次函数y=x2+bx+c的图象经过点(0,2)和(1,﹣1),求图象的顶点坐标和对称轴.【解答】解:把点(0,2)和(1,﹣1)代入y=x2+bx+c得,解这个方程组得,所以所求二次函数的解析式是y=x2﹣4x+2;因为y=x2﹣4x+2=(x﹣2)2﹣2,所以顶点坐标是(2,﹣2),对称轴是直线x=2.18.(8分)已知关于x的方程x2﹣4x+3k﹣1=0有两个不相等的实数根.(1)求实数k的取值范围;(2)根据(1)中的结论,若k为正整数,求方程的两根之积.【解答】解:(1)∵方程x2﹣4x+3k﹣1=0有两个不相等的实数根,∴△=b2﹣4ac=16﹣4(3k﹣1)>0,∴k<;(2)∵k<且k为正整数,∴k=1,∴原方程变为x2﹣4x+2=0,∴方程的两根之积为=2.五、(本题共两小题,每小题10分,共20分)19.(10分)如图在边长为1个单位长度的小正方形组成的网格中,给出格点△ABC(顶点是网格线的交点)(1)请画出以A为旋转中心,将△ABC按逆时针方向旋转90°得到图形△A1B1C1,并写出各顶点坐标.(2)请画出△ABC向右平移4个单位长度后的图形△A2B2C2,并指出由△A1B1C1通过怎样的一次变换得到△A2B2C2?【解答】解:①如图所示,由图可知,A1(0,4)、B1(2,2)、C1(3,3);②如图所示,以点B1为圆心,顺时针旋转90°,得到△A2B2C2.20.(10分)在一个不透明的口袋中装有红、白、黑三种颜色的小球若干个,它们只有颜色不同,其中有白球2个,黑球1个,已知从中任意摸出一个球是白球的概率为.(1)口袋中有多少个红球?(2)从口袋中一次摸出2个球,求摸得一红一白的概率(要求画出树状图或列表).【解答】解:(1)设袋中有x个红球,据题意得=,解得x=1,∴袋中有红球1个.(2)画树状图如下:∵共有12种等可能的结果,其中一红一白的情况有4种,∴P(摸得一红一白)==.六、(本题满分12分)21.(12分)如图,已知AB是⊙的直径,AC是弦,点P是BA延长线上一点,连接PC,BC.∠PCA=∠B(1)求证:PC是⊙O的切线;(2)若PC=6,PA=4,求直径AB的长.【解答】(1)证明:连接OC,如图所示:∵AB是⊙的直径,∴∠ACB=90°,即∠1+∠2=90°,∵OB=OC,∴∠2=∠B,又∵∠PCA=∠B,∴∠PCA=∠2,∴∠1+∠PCA=90°,即PC⊥OC,∴PC是⊙O的切线;(2)解:∵PC是⊙O的切线,∴PC2=PA•PB,∴62=4×PB,解得:PB=9,∴AB=PB﹣PA=9﹣4=5.七、(本题满分12分)22.(12分)工人师傅用8米长的铝合金材料制作一个如图所示的矩形窗框,图中的①、②、③区域都是矩形,且BE=2AE,M,N分别是AD、EF的中点.(说明:图中黑线部分均需要使用铝合金材料制作,铝合金材料宽度忽略不计).(1)当矩形窗框ABCD的透光面积是2.25平方米时,求AE的长度.(2)当AE为多长时,矩形窗框ABCD的透光面积最大?最大面积是多少?【解答】解:(1)∵①、②、③号区域都是矩形,且BE=2AE,设AE=x米,∴AE=MN=DF=x米,BE=CF=2x米,∴BC=,∴•3x=2.25,解得:x1=,x2=,∴AE的长度是米或米;(2)设矩形ABCD的面积是y平方米,则y=3x•=﹣7x2+8x,当x=﹣=时,y=×4=,最大答:当AE为时,矩形窗框ABCD的透光面积最大,最大面积是.八、(本题满分14分)23.(14分)如图1,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B,有人在直线AB上点C(靠点B 一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=4米,每个圆柱形桶的直径为0.5米,高为0.4米(网球的体积和圆柱形桶的厚度忽略不计).(1)在如图2建立的坐标下,求网球飞行路线的抛物线解析式;(2)若竖直摆放4个圆柱形桶时,则网球能落入桶内吗?说明理由;(3)若要网球能落入桶内,求竖直摆放的圆柱形桶的个数.【解答】解:(1)∵网球飞行的最大高度OM=4m,∴OM所在直线是抛物线的对称轴,∵AB=4m,∴AO=BO=2m,∴A(﹣2,0),顶点M(0,4),故可设网球飞行路线的抛物线解析式为:y=ax2+4,把A(﹣2,0)代入得:4a+4=0,解得:a=﹣1,∴网球飞行路线的抛物线解析式为:y=﹣x2+4;(2)∵CD=0.5,AC=3且AO=2,∴OC=1,OD=1.5,即点Q的横坐标是1.5,点P的横坐标是1,∴当x=1时,y=3;当x=1.5时,y=1.75;若竖直摆放4个圆柱形桶,则桶高为4×0.4=1.6m,而4×0.4<1.75,且4×0.4<3,∴若竖直摆放4个圆柱形桶时,网球不能落入桶内;(3)设竖直摆放的圆柱形桶有m个时,网球能落入桶内,则1.75<0.4m<3,解得:4.375<m<7.5,∵m为整数,∴m的值为5或6或7,答:当竖直摆放5个或6个或7个圆形桶时,网球能落入桶内.。
太和县北城中学九年级二模数学试题及答案.doc

北城中学2016-2017学年度(下)九年级第二次质检数学试题一、选择题(共10题,每小题4分)1. 2的相反数是( )A.-2B.2C.±2D. 0.5错误!未找到引用源。
2.计算33•x x ( )A.x 5B.x 6C.x 8D.x 93.2015年6月份我省农产品实现出口额7312万美元,其中7312万用科学记数法表示为( )A. 0.7312×108B. 7.312×108C. 7.312×107D. 73.12×1064.下列几何体中,主视图是三角形的是( ) A. B. C. D.5.设n 为正整数,且n <51错误!未找到引用源。
<n +1,则n 的值为( )A.5B.6C.7D.86. 某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x (单位:mm )的数据分布如下表所示,则棉花纤维长度的数据在16≤x <32这个范围的频率为( ) 棉花纤维长度x频数 0≤x <81 8≤x <162 16≤x <248 24≤x <326 32≤x <40 3A.0.8B.0.7C.0.4D.0.27.如图,一边靠墙(墙有足够长),其他三边用20米长的篱笆围成一个矩形(ABCD )花园,这个花园的最大面积是( )平方米。
A .40B .50C .60D .以上都不对A B D C8.如图,△ABC 中,AD 是中线,BC=10,∠B=∠DAC,则线段AC 的长为( )A.4B.5C. 52D. 53 9. 已知抛物线y =ax 2+bx +c (a ≠0)在平面直角坐标系中的位置如图所示,则下列结论中正确的是( )A . a >0B . b <0C . c <0D . a +b +c >010.如图,矩形ABCD 中,AB=8,BC=6.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A.2错误!未找到引用源。
安徽省太和县北城中心学校2016届九年级上学期期末考试化学试卷

安徽省太和县北城中心学校2015-2016学年度第一学期九年级上学期期末考试-化学学校:___________姓名:___________班级:___________考号:___________一、单选题(本大题共10小题,共20.0分)1. 厨房是家庭中重要的组成部分。
以下在厨房发生的变化中,不属于化学变化的是()A.苹果腐烂B.榨取果汁C.面包发霉D.菜刀生锈2. 下列实验操作错误的是()A. B. C. D.3. 2014年3月22日是去年的世界水日,主题是“水与能源”(Water and Energy)”。
下列有关水的知识,其中正确的是()A.水是一种最常见的溶剂,自然界中的水中大多数为纯净物B.水中Ca 2+、Mg 2+的增多会引起水体的富营养化污染C.只有用蒸馏的方法才能降低水的硬度D.在水溶液中发生化学反应,反应速率比较快且充分4. 砷化镓(GaAs)是一种“LED”绿色节能光源材料,镓元素的相关信息如图。
下列有关镓的说法错误的是()A.相对原子质量为69.72g B.属于金属元素C.原子的核电荷数是31D.元素符号是Ga5. 玻璃工艺品如今做的越来越精美,小铭对它的制作过程产生了浓厚兴趣,通过查阅资料了解到玻璃雕刻过程中用到的是氢氟酸,发生的反应为4HF+SiO 2=SiF 4↑+2H 2O,则下列说法正确的是()A.该反应属于置换反应B.SiO 2中Si元素显-4价C.SiO 2属于金属氧化物D.该反应前后无元素化合价发生改变6. 红枣是一种非常可口的营养佳品。
已知某一品牌的红枣醋饮中含有一种酸(化学式:C 4H 6O 5),具有美容养颜,解酒护肝健胃的重要用途。
下列关于红枣醋饮说法中正确的是()A.该酸中含有3个氢分子B.该酸中碳元素的质量分数为最大C.该酸的相对分子质量为134D.该酸是由14个碳原子、10个氢原子和4个氧原子构成7. 下列选项符合图示从属关系的是()A.X是天然气Y是化石燃料B.X是溶液Y时乳浊液C.X是纯净物Y是化合物D.X是单质Y是金属8. 下列不能由金属和酸直接反应得到的物质是()A.氯化镁B.硫酸锌C.氯化亚铁D.硫酸铜9. 在天平的两个托盘上各放一个烧杯,杯中盛有相同的稀硫酸,此时天平平衡。
安徽省太和县北城中心学校2016届九年级上学期期末考试数学试卷

安徽省太和县北城中心学校2015-2016学年度第一学期九年级期末考试-数学学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共40.0分)1. 下列图形中,既是轴对称图形又是中心对称图形的有()A. 1个B. 2个C. 3个D. 4个2. 下列事件中,必然事件是()A. 任意掷一枚均匀的硬币,正面朝上B. 打开电视正在播放甲型H1N1流感的相关知识C. 某射击运动员射击一次,命中靶心D. 在只装有5个红球的袋中摸出1球,是红球3. 如果两个相似三角形的相似比是,那么这两个相似三角形的对应高的比是A. B. C. D.4. 若关于x的一元二次方程的常数项是0,则m的值是()A. 1B. 2C. 1或2D. 05. 在反比例函数上的两个点( x1,y1),( x2,y2),且x1>x2,则下列关系成立的是()A. y1> y2B. y1< y2C. y1=y2D. 不能确定6. 在Rt△OAB中,∠AOB=90°OA=3,OB=4,以点O为圆心,半径为作圆,则斜边AB 所在的直线与⊙O的位置关系是()A. 相交B. 相切C. 相离D. 无法确定7. 如图,若斜坡的坡度,则坡角的度数为()A. B. C. D.8. 如图,四个边长为2的小正方形拼成一个大正方形,A 、B 、O 是小正方形顶点,⊙O 的半径为2,P 是⊙O 上的点,且位于右上方的小正方形内,则∠APB 等于( )A. 30°B. 45°C. 60°D. 90° 9. 在同一坐标系中,一次函数与二次函数的图象可能是A.B. C. D. 10. 如图, A,B,C,D 为⊙O 的四等分点,动点从圆心出发,沿路线作匀速运动.设运动时间为,则下列图象中表示 与 之间函数关系最恰当的是A.B.C.D.二、填空题(本大题共4小题,共20.0分)11. 从一副扑克牌中取出1张红桃、2张黑桃共3张牌,将这3张牌洗匀后,从中任取1张牌恰好是黑桃的概率是 .12. 若二次函数,当时,y随x的增大而减小,则m的取值范围是 .13. 如图,,且,则.14. 抛物线上部分点的坐标对应值如下表:从上表可知,下列说法中正确的是.(填写序号)①函数的最大值为6;②抛物线与轴的一个交点为(3,0);③在对称轴右侧,随增大而减小;④抛物线的对称轴是直线;⑤抛物线开口向上.三、计算题(本大题共1小题,共8.0分)15.四、解答题(本大题共8小题,共82.0分)16. 已知一次函数与反比例函数的图象交于点A(-4,-2)和B( a, 4),(1)求反比例函数的解析式和点B的坐标;(2)根据图象回答:当x在什么范围时,一次函数的值大于反比例函数的值?.17. 如图,方格纸中每个小正方形的边长都是1个单位长度,△ABC在平面直角坐标系中的位置如图所示(1)将△ABC向上平移3个单位后,得到△A 1B 1C 1,画出△A 1B 1C 1,并直接写出点A 1的坐标(2)将△ABC绕点O顺时针旋转90 0,画出旋转后的△A 2B 2C 2,并求点B所经过的路径长18. 如图,△ABC内接于半圆,AB为直径,过点A作直线MN,若∠MAC=∠ABC (1)求证:MN是该圆的切线(2)设D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F,求证:FD=FG19. 在一次课外实践活动中,同学们要测量某公园人工湖两侧A、B两个凉亭之间的距离.现测得AC=300 m,BC=700 m,,请计算A、B两个凉亭之间的距离.20. 为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2两幅尚不完整的统计图.(1)本次抽测的男生有人,抽测成绩的众数是;(2)请你将图2中的统计图补充完整;(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名九年级男生中估计有多少人体能达标?21. 某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.(1)写出销售量件与销售单价元之间的函数关系式;(2)写出销售该品牌童装获得的利润元与销售单价元之间的函数关系式;(3)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?22. 在平面直角坐标系中,为坐标原点,二次函数的图像经过点A (4,0)、C(0,2).(1)试求这个二次函数的解析式,并判断点是否在该函数的图像上;(2)设所求函数图像的对称轴与x轴交于点D,点E在对称轴上,若以点C、D、E为顶点的三角形与△ABC相似,试求点E的坐标.23. 已知:正方形中,,绕点顺时针旋转,它的两边分别交(或它们的延长线)于点.当绕点旋转到时(如图1),易证.(1)当绕点旋转到时(如图2),线段和之间有怎样的数量关系?写出猜想,并加以证明.(2)当绕点旋转到如图3的位置时,线段和之间又有怎样的数量关系?请直接写出你的猜想.安徽省太和县北城中心学校2015-2016学年度第一学期九年级期末考试-数学【答案】1. B2. D3. D4. B5. D6. A7. B8. B9. C 10. C11.12.13. 9:1614. ②③④15.16. 解:(1)设反比例函数的解析式是,∵点A(-4,-2)在此反比例函数图象上,∴.∴k=8.∴反比例函数的解析式为.又点B( a,4)在此反比例函数图象上,∴,a=2.∴点B的坐标为(2,4).(2)观察图象,知:x>2或-4<x<0时,一次函数的值大于反比例函数的值.17. 解:(1)(2)由于,则18.19. 解:如图,过C点作CD垂直于AB交BA的延长线于点D在中,AC=300,在中,∵BC=700 ,AB=BD-AD=650-150=500答:A、B两个凉亭之间的距离为500m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年安徽省阜阳市太和县北城中学初三上学期期末数学试卷一、选择题(本大题共10小题,共40.0分)1.(4分)在实数0,﹣,﹣,|﹣2|中,最小的数是()A.﹣B.0C.﹣D.|﹣2|2.(4分)为了实现街巷硬化工程高质量“全覆盖”,我省今年1﹣4月公路建设累计投资92.7亿元,该数据用科学记数法可表示为()A.0.927×1010B.92.7×109C.9.27×1011D.9.27×1093.(4分)△ABC中,∠A、∠B都是锐角,且sinA=,cosB=,则△ABC的形状是()A.直角三角形B.钝角三角形C.锐角三角形D.不能确定4.(4分)若抛物线y=x2+2x+c的顶点在x轴上,则c的值为()A.1B.﹣1C.2D.45.(4分)已知点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=的图象上.下列结论中正确的是()A.y1>y2>y3B.y1>y3>y2C.y3>y1>y2D.y2>y3>y1 6.(4分)如图两个三角形是位似图形,它们的位似中心是()A.点P B.点O C.点M D.点N7.(4分)某水库大坝高20米,背水坝的坡度为1:,则背水面的坡长为()A.40米B.60米C.30米D.20米8.(4分)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:4B.1:3C.2:3D.1:29.(4分)如图,已知抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.下列判断:①当x>0时,y1>y2;②当x<0时,x值越大,M值越小;③使得M大于2的x值不存在;④使得M=1的x值是或.其中正确的是()A.①②B.①④C.②③D.③④10.(4分)已知函数y=,则使y=k成立的x值恰好有三个,则k的值为()A.0B.1C.2D.3二、填空题(本大题共4小题,共20.0分)11.(5分)因式分解:9a3b﹣ab=.12.(5分)若sin28°=cosα,则α=度.13.(5分)已知,则k的值是.14.(5分)如图,一直动点A在函数的图象上,AB⊥x轴于点B,AC ⊥y轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC,直线DE分别交于x轴于点P、Q,当时,图中阴影部分的面积等于.三、解答题(本大题共9小题,共90.0分)15.(10分)计算:+(﹣1)+()0.16.(10分)求不等式组的正整数解.17.(10分)如图,在正方形ABCD中,E,F分别是边AD,DC上的点,且AF ⊥BE.求证:AF=BE.18.(10分)如图,已知△ABC中,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°.求证:△ACF∽△BEC.19.(10分)一船在A处测得北偏东45°方向有一灯塔B,船向正东方向以每小时20海里的速度航行1.5小时到达C处时,又观测到灯塔B在北偏东15°方向上,求此时航船与灯塔相距多少海里?20.(10分)已知二次函数y=﹣x2+2x+m的图象与x轴有一个交点为A(3,0),另一个交点为B,且与y轴交于点C(1)求m的值;(2)求点B,点C的坐标.21.(10分)某菜农搭建了一个横截面为抛物线的大棚,尺寸如图:(1)如图建立平面直角坐标系,使抛物线对称轴为y轴,求该抛物线的解析式;(2)若需要开一个截面为矩形的门(如图所示),已知门的高度为1.60米,那么门的宽度最大是多少米(不考虑材料厚度)?(结果保留根号)22.(10分)如果一个图形经过分割,能成为若干个与自身相似的图形,我们称它为“能相似分割的图形”,如图所示的等腰直角三角形和矩形就是能相似分割的图形.(1)你能否再各举出一个“能相似分割”的三角形和四边形;(2)一般的三角形是否是“能相似分割的图形”?如果是请给出一种分割方案并画出图形,否则说明理由.23.(10分)某商场出售一种成本为20元的商品,市场调查发现,该商品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=﹣2x+80.设这种商品的销售利润为y(元).(1)求y与x之间的函数关系式;(2)在不亏本的前提下,销售价在什么范围内每天的销售利润随售价增加而增大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?2015-2016学年安徽省阜阳市太和县北城中学初三上学期期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,共40.0分)1.(4分)在实数0,﹣,﹣,|﹣2|中,最小的数是()A.﹣B.0C.﹣D.|﹣2|【解答】解:|﹣|=,,|﹣2|=2,∵,∴,∴最小的数是﹣,故选:C.2.(4分)为了实现街巷硬化工程高质量“全覆盖”,我省今年1﹣4月公路建设累计投资92.7亿元,该数据用科学记数法可表示为()A.0.927×1010B.92.7×109C.9.27×1011D.9.27×109【解答】解:将92.7亿=9270000000用科学记数法表示为:9.27×109.故选:D.3.(4分)△ABC中,∠A、∠B都是锐角,且sinA=,cosB=,则△ABC的形状是()A.直角三角形B.钝角三角形C.锐角三角形D.不能确定【解答】解:∵△ABC中,∠A、∠B都是锐角,sinA=,cosB=,∴∠A=∠B=30°.∴∠C=180°﹣∠A﹣∠B=180°﹣30°﹣30°=120°.故选:B.4.(4分)若抛物线y=x2+2x+c的顶点在x轴上,则c的值为()A.1B.﹣1C.2D.4【解答】解:根据题意得:△=b2﹣4ac=0,将a=1,b=2,c=c代入,得4﹣4c=0,所以c=1.故选:A.5.(4分)已知点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=的图象上.下列结论中正确的是()A.y1>y2>y3B.y1>y3>y2C.y3>y1>y2D.y2>y3>y1【解答】解:∵k2≥0,∴﹣k2≤0,﹣k2﹣1<0,∴反比例函数y=的图象在二、四象限,∵点(﹣1,y1)的横坐标为﹣1<0,∴此点在第二象限,y1>0;∵(2,y2),(3,y3)的横坐标3>2>0,∴两点均在第四象限y2<0,y3<0,∵在第四象限内y随x的增大而增大,∴0>y3>y2,∴y1>y3>y2.故选:B.6.(4分)如图两个三角形是位似图形,它们的位似中心是()A.点P B.点O C.点M D.点N【解答】解:∵位似图形的位似中心位于对应点连线所在的直线上,点M、N为对应点,所以位似中心在M、N所在的直线上,因为点P在直线MN上,所以点P为位似中心.故选:A.7.(4分)某水库大坝高20米,背水坝的坡度为1:,则背水面的坡长为()A.40米B.60米C.30米D.20米【解答】解:∵大坝高20米,背水坝的坡度为1:,∴水平距离=20×=20米.根据勾股定理可得背水面的坡长为40米.故选:A.8.(4分)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:4B.1:3C.2:3D.1:2【解答】解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴=,∵O为对角线的交点,∴DO=BO,又∵E为OD的中点,∴DE=DB,则DE:EB=1:3,∴DF:AB=1:3,∵DC=AB,∴DF:DC=1:3,∴DF:FC=1:2.故选:D.9.(4分)如图,已知抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.下列判断:①当x>0时,y1>y2;②当x<0时,x值越大,M值越小;③使得M大于2的x值不存在;④使得M=1的x值是或.其中正确的是()A.①②B.①④C.②③D.③④【解答】解:∵当x>0时,利用函数图象可以得出y2>y1;∴①错误;∵抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;∴当x<0时,根据函数图象可以得出x值越大,M值越大;∴②错误;∵抛物线y1=﹣2x2+2,直线y2=2x+2,与y轴交点坐标为:(0,2),当x=0时,M=2,抛物线y1=﹣2x2+2,最大值为2,故M大于2的x值不存在;∴使得M大于2的x值不存在,∴③正确;∵当﹣1<x<0时,使得M=1时,可能是y1=﹣2x2+2=1,解得:x1=,x2=﹣,当y2=2x+2=1,解得:x=﹣,由图象可得出:当x=>0,此时对应y1=M,∵抛物线y1=﹣2x2+2与x轴交点坐标为:(1,0),(﹣1,0),∴当﹣1<x<0,此时对应y2=M,故M=1时,x1=,x2=﹣,使得M=1的x值是或.∴④正确;故正确的有:③④.故选:D.10.(4分)已知函数y=,则使y=k成立的x值恰好有三个,则k的值为()A.0B.1C.2D.3【解答】解:如图,当y=k成立的x值恰好有三个,即直线y=k与两抛物线有三个交点,而当x=3,两函数的函数值都为3,即它们的交点为(3,3),所以k=3.故选:D.二、填空题(本大题共4小题,共20.0分)11.(5分)因式分解:9a3b﹣ab=ab(3a+1)(3a﹣1).【解答】解:原式=ab(9a2﹣1)=ab(3a+1)(3a﹣1).故答案为:ab(3a+1)(3a﹣1)12.(5分)若sin28°=cosα,则α=62度.【解答】解:∵sin28°=cosα,∴α=90°﹣28°=62°.13.(5分)已知,则k的值是2或﹣1.【解答】解:①a+b+c≠0时,∵,∴,∴k=2.②a+b+c=0时,a+b=﹣c∴k=﹣1故答案为:2或﹣1.14.(5分)如图,一直动点A在函数的图象上,AB⊥x轴于点B,AC ⊥y轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC,直线DE分别交于x轴于点P、Q,当时,图中阴影部分的面积等于.【解答】解:作DF⊥x轴于点F,EG⊥y轴于G,∴△QEG∽△DPF,∴==,设EG=4t,则PF=9t,∴A(4t,),∵AC=AE,AD=AB,∴AE=4t,AD=,DF=,PF=9t,∵△ADE∽△FPD,∴AE:DF=AD:PF,即4t:=:9t,即t2=,图中阴影部分的面积=×4t×4t+××=.故答案为:.三、解答题(本大题共9小题,共90.0分)15.(10分)计算:+(﹣1)+()0.【解答】解:原式=2+﹣1+1=3.16.(10分)求不等式组的正整数解.【解答】解:解不等式2x+1>0,得:x>﹣,解不等式x>2x﹣5,得:x<5,∴不等式组的解集为﹣<x<5,∵x是正整数,∴x=1、2、3、4.17.(10分)如图,在正方形ABCD中,E,F分别是边AD,DC上的点,且AF ⊥BE.求证:AF=BE.【解答】解:∵四边形ABCD是正方形,∴AB=BC,∠A=∠ABC=90°,∴∠CBM+∠ABF=90°,∵CE⊥BF,∴∠ECB+∠MBC=90°,∴∠ECB=∠ABF,在△ABF和△BCE中,,∴△ABF≌△BCE(ASA),∴BE=AF.18.(10分)如图,已知△ABC中,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°.求证:△ACF∽△BEC.【解答】证明:∵∠ACB=90°,AC=BC,∴∠A=∠B=45°,∴∠BEC=∠ACE+∠A=∠ACE+45°,∵∠ECF=45°,∴∠ACF=∠ACE+45°,∴△ACF∽△BEC.19.(10分)一船在A处测得北偏东45°方向有一灯塔B,船向正东方向以每小时20海里的速度航行1.5小时到达C处时,又观测到灯塔B在北偏东15°方向上,求此时航船与灯塔相距多少海里?【解答】解:过C作CD⊥AB,垂足为D,过C作CE⊥AC,交AB于E.Rt△ACD中,∠DAC=45°,AC=20×1.5=30∴CD=ACsin45°=30×=15(6分)Rt△BCD中,∠BCD=∠BCE+∠ECD=45°+15°=60°∴BC==30(海里)(11分)答:此时航船与灯塔相距30海里.(12分)20.(10分)已知二次函数y=﹣x2+2x+m的图象与x轴有一个交点为A(3,0),另一个交点为B,且与y轴交于点C(1)求m的值;(2)求点B,点C的坐标.【解答】解:(1)∵数y=﹣x2+2x+m的图象与x轴有一个交点为A(3,0),∴0=﹣9+6+m,解得m=3;(2)令y=﹣x2+2x+3=0,即x2﹣2x﹣3=0,解得x=﹣1或x=3,即可得B点的坐标为(﹣1,0),令x=0,解得y=3,即C点的坐标为(0,3).21.(10分)某菜农搭建了一个横截面为抛物线的大棚,尺寸如图:(1)如图建立平面直角坐标系,使抛物线对称轴为y轴,求该抛物线的解析式;(2)若需要开一个截面为矩形的门(如图所示),已知门的高度为1.60米,那么门的宽度最大是多少米(不考虑材料厚度)?(结果保留根号)【解答】解:(1)由图可设抛物线的解析式为:y=ax2+2,由图知抛物线与x轴正半轴的交点为(2,0),则:a×22+2=0,∴a=﹣,∴抛物线的解析式为y=﹣x2+2;(2)当y=1.60时,知1.6=﹣x2+2,解得:x=,所以门的宽度最大为2×=米.22.(10分)如果一个图形经过分割,能成为若干个与自身相似的图形,我们称它为“能相似分割的图形”,如图所示的等腰直角三角形和矩形就是能相似分割的图形.(1)你能否再各举出一个“能相似分割”的三角形和四边形;(2)一般的三角形是否是“能相似分割的图形”?如果是请给出一种分割方案并画出图形,否则说明理由.【解答】解:(1)“能相似分割”的三角形为直角三角形,(3分)“能相似分割”的四边形为一组底角是60°,腰与一底相等的等腰梯形.(6分)(2)如图,任意三角形都是“能相似分割的图形”,分割方案:顺次连接三角形三边中点,将三角形分成的四个三角形都和原三角形相似.(10分)23.(10分)某商场出售一种成本为20元的商品,市场调查发现,该商品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=﹣2x+80.设这种商品的销售利润为y(元).(1)求y与x之间的函数关系式;(2)在不亏本的前提下,销售价在什么范围内每天的销售利润随售价增加而增大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?【解答】解:(1)y=w(x﹣20)=(﹣2x+80)(x﹣20)=﹣2x2+120x﹣1600;(2)∵y=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∴售价在20﹣30元时,每天的销售利润随售价的增加而增加,售价为30元/千克时每天利润最大是200元.当y=150时可得方程﹣2x2+120x﹣1600=150,解这个方程,得x1=25,x2=35.根据题意,x2=35不合题意,应舍去.∴当销售价定为25元/千克时,该农户每天可获得销售利润150元.。