数学(一)极点冲刺智轩金卷【模拟一】

合集下载

【冲刺卷】九年级数学下期中第一次模拟试题带答案

【冲刺卷】九年级数学下期中第一次模拟试题带答案

【冲刺卷】九年级数学下期中第一次模拟试题带答案一、选择题1.如图,△ABC 的三个顶点A(1,2)、B(2,2)、C(2,1).以原点O 为位似中心,将△ABC 扩大得到△A 1B 1C 1,且△ABC 与△A 1B 1C 1的位似比为1 :3.则下列结论错误的是 ( )A .△ABC ∽△A 1B 1C 1B .△A 1B 1C 1的周长为6+32 C .△A 1B 1C 1的面积为3D .点B 1的坐标可能是(6,6)2.如图,以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB .则cos ∠AOB 的值等于( )A .B .C .D .3.在Rt ABC ∆中,90,2,1C AC BC ∠=︒==,则cos A 的值是( )A 25B 5C 5D .124.用放大镜观察一个五边形时,不变的量是( )A .各边的长度B .各内角的度数C .五边形的周长D .五边形的面积5.下列判断中,不正确的有( )A .三边对应成比例的两个三角形相似B .两边对应成比例,且有一个角相等的两个三角形相似C .斜边与一条直角边对应成比例的两个直角三角形相似D .有一个角是100°的两个等腰三角形相似6.下列命题是真命题的是( )A .如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B .如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C .如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:97.河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比1:3,则AC的长是( )A.10米B.53米C.15米D.103米8.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺9.若△ABC∽△A′B′C′且34ABA B='',△ABC的周长为15cm,则△A′B′C′的周长为()cm.A.18B.20 C.154D.80310.如图,将一个Rt△ABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平方向前移8cm(如箭头所示),则木桩上升了()A.8tan20°B.C.8sin20°D.8cos20°11.如图,是我们数学课本上采用的科学计算器面板,利用该型号计算器计算cos55°,按键顺序正确的是()A .B .C .D .12.在反比例函数4y x=的图象中,阴影部分的面积不等于4的是( ) A . B . C . D .二、填空题 13.已知反比例函数21k y x+=的图像经过点(2,1)-,那么k 的值是__. 14.如图,在同一时刻两根木杆在太阳光下的影子如图所示,其中木杆2AB m =,它的影子 1.6BC m =,木杆PQ 的影子有一部分落在了墙上, 1.2PM m =,0.8MN m =,则木杆PQ 的长度为______m .15.如图,矩形ABCD 中,AD=2,AB=5,P 为CD 边上的动点,当△ADP 与△BCP 相似时,DP=__.16.如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为________.(结果保留π)17.如图,l1∥l2∥l3,直线a、b与l1、l2、l3分别相交于点A、B、C和点D、E、F.若AB=3,DE=2,BC=6,则EF=______.18.在平面直角坐标系中,O为坐标原点,B在x轴上,四边形OACB为平行四边形,且∠AOB=60°,反比例函数y=kx(k>0)在第一象限内过点A,且与BC交于点F.当F为BC的中点,且S△AOF=123时,OA的长为__________.19.将一副三角板按如图1位置摆放,使得两块三角板的直角边AC和MD重合.已知AB="AC=8" cm,将△MED绕点A(M)逆时针旋转60°后(图2),两个三角形重叠(阴影)部分的面积是 cm2.20.已知线段a=2厘米,c=8厘米,则线段a和c的比例中项b是______厘米.三、解答题21.如图1,为放置在水平桌面l上的台灯,底座的高AB为5cm.长度均为20cm的连杆BC,CD与AB始终在同一水平面上.(1)旋转连杆BC ,CD ,使BCD ∠成平角,150ABC ∠=︒,如图2,求连杆端点D 离桌面l 的高度DE .(2)将(1)中的连杆CD 绕点C 逆时针旋转,使165BCD ∠=︒,如图3,问此时连杆端点D 离桌面l 的高度是增加了还是减少?增加或减少了多少?(精确到0.1cm ,参考数据:2 1.41≈,3 1.73≈)22.如图,在正方形ABCD 中,E 为边AD 上的点,点F 在边CD 上,且CF =3FD ,∠BEF =90°(1)求证:△ABE ∽△DEF ;(2)若AB =4,延长EF 交BC 的延长线于点G ,求BG 的长23.如图,直线y=12x+2与双曲线y=k x相交于点A (m ,3),与x 轴交于点C . (1)求双曲线的解析式;(2)点P 在x 轴上,如果△ACP 的面积为3,求点P 的坐标.24.已知:在四边形ABCD 中,对角线AC 、BD 相交于点E ,且AC ⊥BD ,作BF ⊥CD ,垂足为点F ,BF 与AC 交于点C ,∠BGE=∠ADE .(1)如图1,求证:AD=CD ;(2)如图2,BH 是△ABE 的中线,若AE=2DE ,DE=EG ,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE 面积的2倍.25.如图,在△ABC中,DE∥BC,23ADAB=,M为BC上一点,AM交DE于N.(1)若AE=4,求EC的长;(2)若M为BC的中点,S△ABC=36,求S△ADN的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据位似图的性质可知,位似图形也是相似图形,周长比等于位似比,面积比等于位似比的平方,对应边之比等于位似比,据此判断即可.【详解】A. △ABC∽△A1B1C1,故A正确;B. 由图可知,AB=2-1=1,BC=2-1=1,2,所以△ABC的周长为2,由周长比等于位似比可得△A1B1C1的周长为△ABC周长的3倍,即6+32B正确;C. S△ABC=1111=22⨯⨯,由面积比等于位似比的平方,可得△A1B1C1的面积为△ABC周长的9倍,即19=4.52⨯,故C错误;D. 在第一象限内作△A1B1C1时,B1点的横纵坐标均为B的3倍,此时B1的坐标为(6,6),故D正确;故选C.【点睛】本题考查位似三角形的性质,熟练掌握位似的定义,以及位似三角形与相似三角形的关系是解题的关键.解析:B【解析】【分析】根据作图可以证明△AOB是等边三角形,则∠AOB=60°,据此即可求解.【详解】连接AB,由图可知:OA=0B,AO=AB∴OA=AB=OB,即三角形OAB为等边三角形,∴∠AOB=60°,∴cos∠AOB=cos60°=.故选B.【点睛】本题主要考查了特殊角的三角函数值,正确理解△ABC是等边三角形是解题的关键.3.A解析:A【解析】【分析】根据勾股定理,可得AB的长,根据余弦函数等于邻边比斜边,可得答案.【详解】如图,在Rt△ABC中,∠C=90°,由勾股定理,得22=5AC BC+∴cosA=2555ACAB==,故选A.【点睛】本题考查了锐角三角函数的定义以及勾股定理,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.4.B【解析】解:∵用一个放大镜去观察一个三角形,∴放大后的三角形与原三角形相似,∵相似三角形的对应边成比例,∴各边长都变大,故此选项错误;∵相似三角形的对应角相等,∴对应角大小不变,故选项B正确;.∵相似三角形的面积比等于相似比的平方,∴C选项错误;∵相似三角形的周长得比等于相似比,∴D选项错误.故选B.点睛:此题考查了相似三角形的性质.注意相似三角形的对应边成比例,相似三角形的对应角相等,相似三角形的面积比等于相似比的平方,相似三角形的周长得比等于相似比.5.B解析:B【解析】【分析】由相似三角形的判定依次判断可求解.【详解】解:A、三边对应成比例的两个三角形相似,故A选项不合题意;B、两边对应成比例,且夹角相等的两个三角形相似,故B选项符合题意;C、斜边与一条直角边对应成比例的两个直角三角形相似,故C选项不合题意;D、有一个角是100°的两个等腰三角形,则他们的底角都是40°,所以有一个角是100°的两个等腰三角形相似,故D选项不合题意;故选B.【点睛】本题考查了相似三角形的判定,熟练运用相似三角形的判定是本题的关键.6.B解析:B【解析】【分析】根据相似三角形的性质分别对每一项进行分析即可.【详解】解:A、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;B、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;C、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;D、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;故选B.【点睛】此题考查了命题与定理,用到的知识点是相似三角形的性质,关键是熟练掌握有关性质和定理.解析:B【解析】【分析】Rt△ABC中,已知了坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.【详解】Rt△ABC中,BC=5米,tanA=1;∴AC=BC÷故选:B.【点睛】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.8.B解析:B【解析】【分析】根据同一时刻物高与影长成正比可得出结论.【详解】设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴1.5 150.5x=,解得x=45(尺),故选B.【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物髙与影长成正比是解答此题的关键.9.B解析:B【解析】∵△ABC∽△A′B′C′,∴34 ABC ABA B C A B''=''='VV的周长的周长,∵△ABC的周长为15cm,∴△A′B′C′的周长为20cm.故选B.10.A解析:A【解析】【分析】根据已知,运用直角三角形和三角函数得到上升的高度为:8tan20°.【详解】设木桩上升了h米,∴由已知图形可得:tan20°=8h , ∴木桩上升的高度h =8tan20°故选B. 11.C解析:C 【解析】【分析】【详解】利用如图所示的计算器计算2cos55°,按键顺序正确的是.故答案选C . 12.B解析:B【解析】【分析】根据反比例函数k y x=中k 的几何意义,过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|解答即可.【详解】解:A 、图形面积为|k|=4;B 、阴影是梯形,面积为6;C 、D 面积均为两个三角形面积之和,为2×(12|k|)=4. 故选B .【点睛】 主要考查了反比例函数k y x=中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12|k|. 二、填空题13.【解析】【分析】将点的坐标代入可以得到-1=然后解方程便可以得到k 的值【详解】∵反比例函数y =的图象经过点(2-1)∴-1=∴k=−;故答案为k =−【点睛】本题主要考查函数图像上的点满足其解析式可以解析:32k =- 【解析】 【分析】将点的坐标代入,可以得到-1=212k +,然后解方程,便可以得到k 的值. 【详解】∵反比例函数y =21k x +的图象经过点(2,-1), ∴-1=212k + ∴k =− 32; 故答案为k =−32.【点睛】本题主要考查函数图像上的点满足其解析式,可以结合代入法进行解答14.3【解析】【分析】先根据同一时刻物高与影长成正比求出QD 的影长再根据此影长列出比例式即可【详解】解:过N 点作ND⊥PQ 于D 又∵AB=2BC=16PM=12NM=08∴PQ=QD+DP=QD+NM=1解析:3【解析】【分析】先根据同一时刻物高与影长成正比求出QD 的影长,再根据此影长列出比例式即可.【详解】解:过N 点作ND ⊥PQ 于D ,BC DN AB QD∴= 又∵AB=2,BC=1.6,PM=1.2,NM=0.8, 1.5AB DN QD BC ⋅∴== ∴PQ=QD+DP=QD+NM=1.5+0.8=2.3(m ).故答案为:2.3.在运用相似三角形的知识解决实际问题时,要能够从实际问题中抽象出简单的数学模型,然后列出相关数据的比例关系式,从而求出结论.15.1或4或25【解析】【分析】需要分类讨论:△APD∽△PBC和△PAD∽△PBC根据该相似三角形的对应边成比例求得DP的长度【详解】设DP=x则CP=5-x本题需要分两种情况情况进行讨论①当△PAD解析:1或4或2.5.【解析】【分析】需要分类讨论:△APD∽△PBC和△PAD∽△PBC,根据该相似三角形的对应边成比例求得DP的长度.【详解】设DP=x,则CP=5-x,本题需要分两种情况情况进行讨论,①、当△PAD∽△PBC时,AD BC = DP CP∴225xx=-,解得:x=2.5;②、当△APD∽△PBC时,ADCP=DPBC,即25x-=2x,解得:x=1或x=4,综上所述DP=1或4或2.5【点晴】本题主要考查的就是三角形相似的问题和动点问题,首先将各线段用含x的代数式进行表示,然后看是否有相同的角,根据对应角的两边对应成比例将线段写成比例式的形式,然后分别进行计算得出答案.在解答这种问题的时候千万不能出现漏解的现象,每种情况都要考虑到位.16.24π【解析】解:由图可知圆柱体的底面直径为4高为6所以侧面积=4π×6=2 4π故答案为24π点睛:本题考查了立体图形的三视图和学生的空间想象能力圆柱体的侧面积公式根据主视图判断出圆柱体的底面直径与解析:24π【解析】解:由图可知,圆柱体的底面直径为4,高为6,所以,侧面积=4π×6=24π.故答案为24π.点睛:本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,根据主视图判断出圆柱体的底面直径与高是解题的关键.17.4【解析】【分析】利用平行线分线段成比例定理列出比例式求出EF结合图形计算即可【详解】∵∥∥∴又DE=2∴EF=4故答案为:4【点睛】本题考查的是平行线分线段成比例定理灵活运用定理找准对应关系是解题【解析】【分析】利用平行线分线段成比例定理列出比例式,求出EF ,结合图形计算即可.【详解】∵1l ∥2l ∥3l , ∴36DE AB EF BC == 又DE=2,∴EF=4,故答案为:4.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键. 18.8【解析】分析:过点A 作AH⊥OB 于点H 过点F 作FM⊥OB 于点M 设OA=x 在由已知易得:AH=OH=由此可得S△AOH=由点F 是平行四边形AOBC 的BC 边上的中点可得BF=BM=FM=由此可得S△B解析:8【解析】分析:过点A 作AH ⊥OB 于点H ,过点F 作FM ⊥OB 于点M ,设OA=x ,在由已知易得:,OH=12x ,由此可得S △AOH 2x 由点F 是平行四边形AOBC 的BC 边上的中点,可得BF=12x ,BM=14x ,FM=x ,由此可得S △BMF 2x ,由S △OAF =可得S △OBF =S △OMF =2x +,由点A 、F 都在反比例函数k y x =的图象上可得S △AOH =S △BMF ,由此即可列出关于x 的方程,解方程即可求得OA 的值. 详解:如下图,点A 作AH ⊥OB 于点H ,过点F 作FM ⊥OB 于点M ,设OA=x ,∵四边形AOBC 是平行四边形,∠AOB=60°,点F 是BC 的中点,S △OAF =∴,OH=12x ,BF=12x ,∠FBM=60°,S △OBF =∴S △AOH 2x ,BM=14x ,x ,∴S △BMF =2332x , ∴S △OMF =2363x +, ∵由点A 、F 都在反比例函数k y x =的图象上, ∴S △AOH =S △BMF , ∴23x =2363x +, 化简得:23192x =,解得:1288x x ==-,(不合题意,舍去),∴OA=8.故答案为:8.点睛:本题是一道考查“反比例函数的图象和性质及平行四边形的性质”的综合题,熟记“反比例函数的图象和性质及平行四边形的性质”是解答本题的关键.19.【解析】【分析】分析:设BCAD 交于点G 过交点G 作GF ⊥AC 与AC 交于点F 根据AC=8就可求出GF 的长从而求解【详解】解:设BCAD 交于点G 过交点G 作GF ⊥A C 与AC 交于点F 设FC=x 则GF=FC=解析:48-163【解析】【分析】分析:设BC ,AD 交于点G ,过交点G 作GF ⊥AC 与AC 交于点F ,根据AC=8,就可求出GF 的长,从而求解.【详解】解:设BC ,AD 交于点G ,过交点G 作GF ⊥AC 与AC 交于点F ,设FC=x ,则GF=FC=x ,∵旋转角为60°,即可得∠FAG=60°,∴AF=GFcot ∠3. 所以x+33x=8,则3.所以S △AGC =12×8×(12-43)=48-16320.4【解析】∵线段b 是ac 的比例中项∴解得b =±4又∵线段是正数∴b =4点睛:本题考查了比例中项的概念利用比例的基本性质求两条线段的比例中项的时候负数应舍去解析:4【解析】∵线段b 是a 、c 的比例中项,∴216b ac ==,解得b =±4,又∵线段是正数,∴b =4. 点睛:本题考查了比例中项的概念,利用比例的基本性质求两条线段的比例中项的时候,负数应舍去.三、解答题21.(1)39.6DE cm ≈;(2)下降了,约3.2cm .【解析】【分析】(1)如图2中,作BO ⊥DE 于O .解直角三角形求出OD 即可解决问题.(2)作DF ⊥l 于F ,CP ⊥DF 于P ,BG ⊥DF 于G ,CH ⊥BG 于H .则四边形PCHG 是矩形,求出DF ,再求出DF-DE 即可解决问题.【详解】(1)过点B 作BO DE ⊥,垂足为O ,如图2,则四边形ABOE 是矩形,1509060OBD =-=o o o ∠,∴sin 6040sin 60203DO BO =⋅=⨯=o o∴203539.6DE DO OE DO AB cm =+=+=+≈.(2)下降了.如图3,过点D 作DF l ⊥于点F ,过点C 作CP DF ⊥于点P ,过点B 作BG DF ⊥于点G ,过点C 作CH BG ⊥于点H ,则四边形PCHG 为矩形,∵60CBH ︒∠=,∴30BCH ︒∠=,又∵165BCD ︒∠=,∴45DCP ︒∠=,∴sin 60103CH BC ︒==*sin 45102DP CD ==,∴DF DP PG GF DP CH AB =++=++1021035=.∴下降高度:20351021035DE DF -=-103102=3.2cm ≈.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.22.(1)详见解析;(2)10 【解析】【分析】(1)由正方形的性质得出∠A =∠D =90°,AB =BC =CD =AD ,AD ∥BC ,证出∠ABE =∠DEF ,即可得出△ABE ∽△DEF ;(2)求出DF =1,CF =3,由相似三角形的性质得出AE AB DF DE =,解得DE =2,证明△EDF ∽△GCF ,得出DE DF CG CF= ,求出CG =6,即可得出答案. 【详解】(1)证明:∵四边形ABCD 为正方形,∴∠A =∠D =90°,AB =BC =CD =AD ,AD ∥BC ,∵∠BEF =90°,∵∠AEB +∠EBA =∠DEF +∠EBA =90°,∴∠ABE =∠DEF ,∴△ABE∽△DEF;(2)解:∵AB=BC=CD=AD=4,CF=3FD,∴DF=1,CF=3,∵△ABE∽△DEF,∴AE ABDF DE=,即441DEDE-=,解得:DE=2,∵AD∥BC,∴△EDF∽△GCF,∴DE DFCG CF=,即213CG=,∴CG=6,∴BG=BC+CG=4+6=10.【点睛】本题考查了相似三角形的判定及性质、正方形的性质,掌握相似三角形的判定和性质是解题的关键.23.(1)6yx=(2)(-6,0)或(-2,0).【解析】分析:(1)把A点坐标代入直线解析式可求得m的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;(2)设P(t,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于t 的方程,则可求得P点坐标.详解:(1)把A点坐标代入y=12x+2,可得:3=12m+2,解得:m=2,∴A(2,3).∵A点也在双曲线上,∴k=2×3=6,∴双曲线解析式为y=6x;(2)在y=12x+2中,令y=0可求得:x=﹣4,∴C(﹣4,0).∵点P在x轴上,∴可设P点坐标为(t,0),∴CP=|t+4|,且A(2,3),∴S△ACP=12×3|t+4|.∵△ACP的面积为3,∴12×3|t+4|=3,解得:t=﹣6或t=﹣2,∴P点坐标为(﹣6,0)或(﹣2,0).点睛:本题主要考查函数图象的交点,掌握函数图象的交点坐标满足每个函数解析式是解题的关键.24.(1)证明见解析;(2)△ACD、△ABE、△BCE、△BHG.【解析】分析:(1)由AC⊥BD、BF⊥CD知∠ADE+∠DAE=∠CGF+∠GCF,根据∠BGE=∠ADE=∠CGF得出∠DAE=∠GCF即可得;(2)设DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,据此知S△ADC=2a2=2S△ADE,证△ADE≌△BGE得BE=AE=2a,再分别求出S△ABE、S△ACE、S△BHG,从而得出答案.详解:(1)∵∠BGE=∠ADE,∠BGE=∠CGF,∴∠ADE=∠CGF,∵AC⊥BD、BF⊥CD,∴∠ADE+∠DAE=∠CGF+∠GCF,∴∠DAE=∠GCF,∴AD=CD;(2)设DE=a,则AE=2DE=2a,EG=DE=a,∴S△ADE=12AE×DE=12×2a×a=a2,∵BH是△ABE的中线,∴AH=HE=a,∵AD=CD、AC⊥BD,∴CE=AE=2a,则S△ADC=12AC•DE=12•(2a+2a)•a=2a2=2S△ADE;在△ADE和△BGE中,∵AED BEG DE GEADE BGE ∠∠⎧⎪⎨⎪∠∠⎩===,∴△ADE≌△BGE(ASA),∴BE=AE=2a,∴S△ABE=12AE•BE=12•(2a)•2a=2a2,S△ACE=12CE•BE=12•(2a)•2a=2a2,S△BHG=12HG•BE=12•(a+a)•2a=2a2,综上,面积等于△ADE面积的2倍的三角形有△ACD、△ABE、△BCE、△BHG.点睛:本题主要考查全等三角形的判定与性质,解题的关键是掌握等腰三角形的判定与性质及全等三角形的判定与性质.25.(1)2(2)8【解析】【分析】(1)首先根据DE∥BC得到△ADE和△ABC相似,求出AC的长度,然后根据CE=AC-AE求出长度;(2)根据△ABC的面积求出△ABM的面积,然后根据相似三角形的面积比等于相似比的平方求出△ADN 的面积.【详解】解:(1)∵DE ∥BC∴△ADE ∽△ABC ∴23AE AD AC AB == ∵AE=4∴AC=6 ∴EC=AC -AE=6-4=2(2)∵△ABC 的面积为36,点M 为BC 的中点∴△ABM 的面积为:36÷2=18 ∵△ADN 和△ABM 的相似比为23 ∴:4:9ADN ABM S S ∆∆=∴ADN S V =8考点: 相似三角形的判定与性质。

2022-2023年中考《数学》考前冲刺卷I(答案解析17)

2022-2023年中考《数学》考前冲刺卷I(答案解析17)

2022-2023年中考《数学》考前冲刺卷I(答案解析)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第I卷一.综合考点题库(共50题)1.如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A、B为圆心,以大于1/2AB长为半径作弧,两弧交于点P.若点C的坐标为(a,2a-3),则a的值为________.正确答案:3本题解析:3 2.在平面直角坐标系中,将抛物线y=x2﹣(m﹣1)x+m(m>1)沿y轴向下平移3个单位.则平移后得到的抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限正确答案:D本题解析:根据平移规律得到平移后抛物线的顶点坐标,然后结合m的取值范围判断新抛物线的顶点所在的象限即可.3.正确答案:4本题解析:暂无解析4.A.5πcmB.10πcmC.20πcmD.25πcm正确答案:B本题解析:暂无解析5.下列图案中,是轴对称图形的是A.AB.BC.CD.D正确答案:A本题解析:暂无解析6.在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为()A.B.C.D.正确答案:C本题解析:暂无解析7.计算1﹣3的结果是()A.2B.-2C.4D.-4正确答案:B本题解析:【分析】根据有理数的加减法法则计算即可判断.【解答】解:1﹣3=1+(﹣3)=﹣2.8. 如图,用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍,拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;……照这样拼图,则第n个图形需要___________根火柴棍.正确答案:2n+1本题解析:2n+19.小亮和小丽进行摸球试验.他们在一个不透明的空布袋内,放入两个红球,一个白球和一个黄球,共四个小球.这些小球除颜色外其它都相同.试验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球,记下颜色后放回,称为摸球一次.(1)小亮随机摸球10次,其中6次摸出的是红球,求这10次中摸出红球的频率;(2)若小丽随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是黄球的概率.正确答案:本题解析:暂无解析10.下列图形是轴对称图形的是()A.B.C.D.正确答案:A本题解析:暂无解析11.△ABC的三边长分别为2,3,4,另有一个与它相似的三角形DEF ,其最长边为12,则△DEF 的周长是A.54B.36C.27D.21正确答案:C本题解析:暂无解析12.如图,为测量建筑物CD的高度,在点A测得建筑物顶部D点的仰角是22°,再向建筑物CD前进30米到达B点,测得建筑物顶部D点的仰角为58°(A,B,C在同一直线上),求建筑物CD的高度.(结果保留整数)正确答案:本题解析:暂无解析13.我市的花果山景区大圣湖畔屹立着--座古塔一阿育王塔,是苏北地区现存最高和最古老的宝塔.小明与小亮要测量阿育王塔的高度,如图所示,小明在点A处测得阿育王塔最高点C 的仰角∠CAE =45° ,再沿正对阿育王塔方向前进至B处测得最高点C的仰角∠CBE=53°,AB=10m;小亮在点G处竖立标杆FG,小亮的所在位置点D、标杆顶F、最高点C 在一条直线上,FG =1.5m,GD = 2m.正确答案:本题解析:暂无解析14.一组数据4,6,x,7,10的众数是7,则这组数据的平均数是()A.5B.6.4C.6.8D.7 正确答案:C本题解析:【分析】先根据众数的定义求出x的值,再根据平均数的计算公式列式计算即可.【详解】解:∵数据4、6、x、7、10的众数是7,∵x=7,∵这组数据的平均数是(4+6+7+7+10)÷5=6.8;故答案为:C.【点睛】此题考查了众数和平均数,根据众数的定义求出x的值是本题的关键,众数是一组数据中出现次数最多的数.15.有理数-2的相反数是()A.2B.1/2C.-2D.-1/2正确答案:A本题解析:暂无解析16.我国古代数学名著《九章算术》中有这样-一个问题:“今有共买物,人出八,盈三;人出七,不足四.间人数、物价各几何?”其大意是:今有几个人共同出钱购买一件物品.每人出8钱,剩余3钱;每人出7钱,还缺4钱.问人数、物品价格各是多少?请你求出以上问题中的人数和物品价格.正确答案:本题解析:暂无解析17.﹣18的相反数是()A.18B.﹣18C.1/18D.-1/18正确答案:A本题解析:直接利用相反数的定义得出答案.﹣18的相反数是:18.18.如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,﹣1)对应点的坐标为()A.(0,0)B.(1,2)C.(1,3)D.(3,1)正确答案:D本题解析:【分析】利用平移规律进而得出答案.【解答】解:∵把∵ABC先向右平移3个单位,再向上平移2个单位得到∵DEF,顶点C(0,﹣1),∵C(0+3,﹣1+2),即C(3,1),19.如图,菱形OABC的顶点A,B,C在⊙O上,过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为1,则BD的长为()A.1B.2C.D.正确答案:D本题解析:暂无解析20.下列四个命题:①直径是圆的对称轴;②若两个相似四边形的相似比是1:3,则它们的周长比是1:3,面积比是1:6;③同一平面内垂直于同一直线的两条直线互相平行;④对角线相等且互相垂直的平行四边形是正方形.其中真命题有()A.①③B. ①④C.③④D. ②③④正确答案:C本题解析:暂无解析21.已知二次函数y=-x²+6x-5(1)求二次函数图象的顶点坐标.(2)当1≤x≤4时,函数的最大值和最小值分别为多少?(3)当t≤x≤t+3时,函数的最大值为m,最小值为n,若m-n =3,求t的值正确答案:本题解析:暂无解析22.若∠A=23°,则∠A余角的大小是()A.57°B.67°C.77°D.157°正确答案:B本题解析:根据∵A的余角是90°﹣∵A,代入求出即可.【解答】解:∵∵A=23°,∵∵A的余角是90°﹣23°=67°.23.如图,已知经过原点的抛物线y=2x²+mx与x轴交于另一点A(2,0).(1)求m的值和抛物线顶点M的坐标;(2)求直线AM的解析式.正确答案:解(1)∵抛物线y=2x²+mx过点A(2,0),∵2×2²+2m=0,解得m=-4,∵y=2x²-4x,∵y=2(x—1)²—2∵顶点M的坐标是(1,-2).(2)设直线AM的解析式为y=kx+b(k≠0),∵图象过A(2,0),M(1,-2),∵直线AM的解析式为y=2x-4.本题解析:暂无解析24.一酒精消毒瓶如图I,AB为喷嘴,△BCD为按压柄,CE为伸缩连杆,BE和EF为导管,其示意图如图2,∠DBE=∠BEF =108°,BD = 6 cm,BE=4cm.当按压柄△BCD按压到底时,BD 转动到BD',此时BD'//EF(如图3).(1)求点D转动到点D'的路径长.(2)求点D到直线EF的距离〔结果精确到0.1cm) 正确答案:本题解析:暂无解析25.下列四个几何体中,俯视图与其他三个不同的是()A.B.C.D.正确答案:A本题解析:暂无解析26.小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.(1)求y与x之间的函数关系式;(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1﹣y2)与(y2﹣y3)的大小:y1﹣y2y2﹣y3.正确答案:本题解析:27.如图,有一个半径为2的圆形时钟,其中每个刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为A.AB.BC.CD.D正确答案:B本题解析:暂无解析28.如图,数轴上的点A、B分别对应实数a、b,下列结论中正确的是A.a>bB.|a|>|b|C.-aD.a+b>0正确答案:B本题解析:暂无解析29.随着手机的日益普及,学生使用手机给学校管理和学生发展带来诸多不利影响,为了保护学生视力,防止学生沉迷网络和游戏,让学生在学校专心学习,促进学生身心健康发展,教育部办公厅于2021年1月15日颁发了《教育部办公厅关于加强中小学生手机管理工作的通知》,为贯彻《通知》精神、某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图.(其中A表示“一等奖”,B表示“二等奖”,C表示“三等奖”,D表示“优秀奖”)请你根据统计图中所提供的信息解答下列问题:(1)获奖总人数为______人,m=_______;(2)请将条形统计图补充完整;(3)学校将从获得一等奖的4名同学(其中有一名男生,三名女生)中随机抽取两名参加全市的比赛,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.正确答案:本题解析:暂无解析30.王刚同学在学习了解直角三角形及其应用的知识后,尝试利用所学知识测量河对岸大树AB的高度,他在点C处测得大树顶端A的仰角为45°,再从C点出发沿斜坡走2√10米到达斜坡上D点,在点D处测得树顶端A的仰角为30°,若斜坡CF的坡比为i=1:3(点E,C,H 在同一水平线上).(1)求王刚同学从点C到点D的过程中上升的高度;(2)求大树AB的高度(结果保留根号).正确答案:本题解析:暂无解析31.某矩形人行道由相同的灰色正方形地砖与相同的白色等媵直角三角形她砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列. . [观察思考]:当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形坛砖有2块时,等腰直角三角形地砖有8块(如图3);以此类推[规律总结](1)若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加___块(2)若一条这样的人行道一共有n (n 为正整数)块正方形地砖,则等腰直角三角形地砖的块数为___(用含n的代数式表示)[问题解决].(3)现有 2021块等腰直角三角形地砖,若按此规律再注一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形增砖多少块?正确答案:本题解析:暂无解析32.如图,在6×4的方格纸ABCD中,请按要求画格点线段(端点在格点上),且线段的端点均不与点A,B,C,D重合.正确答案:本题解析:【分析】(1)根据题意画出线段即可;(2)根据题意画出线段即可.33.两个直角三角板如图摆放,其中∠BAC一∠EDF=90°,∠E=45°,∠C=30°,AB与DF交于点M.若BC∥EF,则之∠BMD的大小为()A.60°B.67.5°C.75°D.82.5°正确答案:C本题解析:暂无解析34.下列运算正确的是____A.B.C.D.正确答案:D本题解析:暂无解析35.下列各数中,最小的数是()A.-3B.0C.1D.2正确答案:A本题解析:暂无解析36.如图,在△ABC中,D是边BC上的一点,以AD为直径的⊙O交AC于点E,连接DE.若⊙O与BC相切,∠ADE=55°,则∠C的度数为.正确答案:55°本题解析:【分析】由直径所对的圆周角为直角得∵AED=90°,由切线的性质可得∵ADC=90°,然后由同角的余角相等可得∵C=∵ADE=55°.【解答】解:∵AD为∵O的直径,∵∵AED=90°,∵∵ADE+∵DAE=90°;∵∵O与BC相切,∵∵ADC=90°,∵∵C+∵DAE=90°,∵∵C=∵ADE,∵∵ADE=55°,∵∵C=55°.故答案为:55°.37.如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D ,连接BD,则∠D的大小为()A.55°B.65°C.60°D.75°正确答案:B本题解析:连接CD,根据圆内接四边形的性质得到∵CDB=180°﹣∵A=130°,根据垂径定理得到OD∵BC,求得BD =CD,根据等腰三角形的性质即可得到结论.38.在数学兴趣小组活动中,小亮进行数学探究活动.(1)△ABC是边长为3的等边三角形,E是边AC上的一点,且AE=1,小亮以BE为边作等边三角形BEF,如图1.求 CF的长;(2)△AB C是边长为3的等边三角形,E是边AC上的一个动点,小亮以BE为边作等边三角形BEF,如图⒉在点E从点C到点A 的运动过程中,求点F所经过的路径长;(3)△ABC是边长为3的等边三角形,M是高CD 上的一个动点,小亮以BM为边作等边三角形BMN,如图3.在点M从点C到点D的运动过程中,求点Ⅳ所经过的路径长;(4)正方形ABCD的边长为3,E是边CB上的一个动点,在点E从点C到点B的运动过程中,小亮以B为顶点作正方形BFGH ,其中点F,G都在直线AE上,如图4.当点E到达点B时,点F、G,H 与点B重合.则点H所经过的路径长为_▲_,点G所经过的路径长为_▲.正确答案:本题解析:暂无解析39.A.B.C.D.正确答案:B本题解析:暂无解析40.如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线,交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE的面积为1,则BC的长为()A.B.5C.D.10正确答案:A本题解析:暂无解析41.将一张矩形纸片折叠成如图所示的图形,若∠CAB=30°,则∠ACB的度数是()A.45°B.55°C.65°D.75°正确答案:D本题解析:暂无解析42.如图,O为坐标原点,直线l⊥y轴,垂足为M,反比例函数y=k/x(k≠0)的图象与l 交于点A(m,3),△AOM的面积为6(1)求m、k的值;(2)在x轴正半轴上取一点B,使OB=OA,求直线AB的函数表达式.正确答案:本题解析:暂无解析43.为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星(A,B,C,D.E是正五边形的五个顶点),则图中二A的度数是__度正确答案:36本题解析:暂无解析44.A.40°B.50°C.60°D.70°正确答案:D本题解析:暂无解析45.为了做好防疫工作,学校准备购进一批消毒液.已知2瓶A型消毒液和3瓶B型消毒液共需41元,5瓶A型消毒液和2瓶B型消毒液共需53元.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且B型消毒液的数量不少于A型消毒液数量的⅓,请设计出最省钱的购买方案,并求出最少费用正确答案:本题解析:暂无解析46.已知点P(a,b)在直线y=-3x-4上,且2a-5b≤0,则下列不等式一定成立的是(▲)A.B.C.D.正确答案:D本题解析:暂无解析47.如图,已知线段AB,分别以A,B为圆心,大于1/2 AB同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A.AB平分∠CADB.CD平分∠ACBC.AB⊥CDD.AB=CD正确答案:D本题解析:【分析】根据作图判断出四边形ACBD是菱形,再根据菱形的性质:菱形的对角线平分一组对角、菱形的对角线互相垂直平分可得出答案.【解答】解:由作图知AC=AD=BC=BD,∵四边形ACBD是菱形,∵AB平分∵CAD、CD平分∵ACB、AB∵CD,不能判断AB=CD,48.如图,将矩形ABCD沿着GE、EC、GF翻折,使得点A、B、D恰好都落在点O处,且点G、O、C在同一条直线上,同时点E、O、F在另一条直线上小炜同学得出以下结论:其中正确的是A.①②③B.①③④C.①④⑤D.②③④正确答案:B本题解析:暂无解析49.如图,已知在矩形ABCD中,AB=1,BC=√3,点P是AD边上的5个动点,连结BP,点C关于直线BP的对称点为C₁,当点p运动时,点C₁也随之运动.若点P从点A运动到点D,则线段CC₁扫过的区域的面积是A.πB.C.D.2π正确答案:B本题解析:暂无解析50.下列数轴表示正确的是()A.B.C.D.正确答案:D 本题解析:【分析】数轴的三要素:原点、正方向、单位长度,据此判断.【详解】解:A、不符合数轴右边的数总比左边的数大的特点,故表示错误;B、不符合数轴右边的数总比左边的数大的特点,故表示错误;C、没有原点,故表示错误;D、符合数轴的定定义,故表示正确;故选D.【点睛】本题考查了数轴的概念:规定了原点、正方向和单位长度的直线叫做数轴,注意数轴的三要素缺一不可.。

【冲刺卷】九年级数学下期中第一次模拟试卷(含答案)

【冲刺卷】九年级数学下期中第一次模拟试卷(含答案)

【冲刺卷】九年级数学下期中第一次模拟试卷(含答案) 一、选择题1.已知一次函数y1=x-1和反比例函数y2=2x的图象在平面直角坐标系中交于A、B两点,当y1>y2时,x的取值范围是( )A.x>2B.-1<x<0C.x>2,-1<x<0D.x<2,x>02.如图,△ABC的三个顶点A(1,2)、B(2,2)、C(2,1).以原点O为位似中心,将△ABC 扩大得到△A1B1C1,且△ABC 与△A1B1C1的位似比为1 :3.则下列结论错误的是 ( )A.△ABC∽△A1B1C1B.△A1B1C1的周长为6+32C.△A1B1C1的面积为3D.点B1的坐标可能是(6,6)3.已知反比例函数y=﹣6x,下列结论中不正确的是()A.函数图象经过点(﹣3,2)B.函数图象分别位于第二、四象限C.若x<﹣2,则0<y<3D.y随x的增大而增大4.在反比例函数y=1kx-的每一条曲线上,y都随着x的增大而减小,则k的值可以是()A.-1B.1C.2D.35.在函数y=21ax+(a为常数)的图象上有三个点(﹣1,y1),(﹣14,y2),(12,y3),则函数值y1、y2、y3的大小关系是()A.y2<y1<y3B.y3<y2<y1C.y1<y2<y3D.y3<y1<y2 6.如图,河堤横断面迎水坡AB的坡比是1:3,堤高BC=12m,则坡面AB的长度是()A.15m B.203m C.24m D.103m7.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交CD于点F,交AD的延长线于点E,若AB=4,BM=2,则△DEF的面积为()A.9B.8C.15D.14.58.如图,一张矩形纸片ABCD的长BC=xcm,宽AB=ycm,以宽AB为边剪去一个最大的正方形ABEF,若剩下的矩形ECDF与原矩形ABCD相似,则xy的值为()A.512-B.512+C.2D.212+9.如图,在平行四边形中,点在边上, 与相交于点,且,则与的周长之比为()A.1 : 2B.1 : 3C.2 : 3D.4 : 910.若△ABC∽△A′B′C′且34ABA B='',△ABC的周长为15cm,则△A′B′C′的周长为()cm.A.18B.20 C.154D.80311.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5m,EF=0.25m,目测点D到地面的距离DG=1.5m,到旗杆的水平距离DC=20m,则旗杆的高度为( )A .105 mB .(105 1.5)+ mC .11.5mD .10m12.若270x y -=. 则下列式子正确的是( )A .72x y =B .27x y =C .27x y =D .27x y = 二、填空题13.如图,在▱ABCD 中,EF ∥AB ,DE :EA=2:3,EF=4,则CD 的长为___________.14.如图,在平行四边形ABCD 中,AB =12,AD =8,∠ABC 的平分线交CD 于点F ,交AD 的延长线于点E ,CG ⊥BE ,垂足为G ,若EF =2,则线段CG 的长为_____.15.在ABC ∆中,若45B ∠=o ,102AB =,55AC =,则ABC ∆的面积是______.16.已知线段AB 的长为10米,P 是AB 的黄金分割点(AP >BP ),则AP 的长_____米.(精确到0.01米)17.如图所示,将一副三角板摆放在一起,组成四边形ABCD ,∠ABC =∠ACD =90°,∠ADC =60°,∠ACB =45°,连接BD ,则tan ∠CBD 的值为_____.18.小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm 的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm ),请你帮小华算出圆盘的半径是_____cm .19.如图,已知AD AE =,请你添加一个条件,使得ADC AEB △≌△,你添加的条件是_____.(不添加任何字母和辅助线)20.近视眼镜的度数(y 度)与镜片焦距(x 米)呈反比例,其函数关系式为120.y x=如果近似眼镜镜片的焦距0.3x =米,那么近视眼镜的度数y 为______. 三、解答题21.如图,在Rt ABC V 中,90BAC ∠=o ,AD BC ⊥于点D ,求证:2AD CD BD =⋅.22.如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A(-2,1),B(-1,4),C(-3,2).(1)以原点O 为位似中心,位似比为1∶2,在y 轴的左侧,画出△ABC 放大后的图形△A 1B 1C 1,并直接写出C 1点的坐标;(2)如果点D(a ,b)在线段AB 上,请直接写出经过(1)的变化后点D 的对应点D 1的坐标.23.如图,点P 是菱形ABCD 的对角线BD 上一点,连接CP 并延长,交AD 于点E ,交BA 的延长线于点F .(1)求证:2PC PE PF =g ;(2)若菱形边长为8,2PE =,6EF =,求FB 的长.24.如图,已知点D 是的边AC 上的一点,连接,,. 求证:∽;求线段CD 的长.25.赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,则学校旗杆的高度为________米.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】因为一次函数和反比例函数交于A 、B 两点,可知x-1=2x,解得x=-1或x=2,进而可得A 、B 两点的坐标,据此,再结合函数解析式画图,据图可知当x>2时,以及当-1<x<0时,y 1>y 2.【详解】解方程x −1=2x,得 x =−1或x =2,那么A 点坐标是(−1,−2),B 点坐标是(2,1),如右图,当x >2时, 12y y >,以及当−1<x <0时, 12y y >.故选C.【点睛】本题考查了反比例函数与一次函数交点问题,解题的关键是能根据解析式画出函数的图象,并能根据图象解決问题2.C解析:C【解析】【分析】根据位似图的性质可知,位似图形也是相似图形,周长比等于位似比,面积比等于位似比的平方,对应边之比等于位似比,据此判断即可.【详解】A. △ABC ∽△A 1B 1C 1,故A 正确;B. 由图可知,AB=2-1=1,BC=2-1=1,2,所以△ABC 的周长为2,由周长比等于位似比可得△A 1B 1C 1的周长为△ABC 周长的3倍,即6+32B 正确;C. S △ABC =1111=22⨯⨯,由面积比等于位似比的平方,可得△A 1B 1C 1的面积为△ABC 周长的9倍,即19=4.52⨯,故C 错误; D. 在第一象限内作△A 1B 1C 1时,B 1点的横纵坐标均为B 的3倍,此时B 1的坐标为(6,6),故D 正确;故选C.【点睛】本题考查位似三角形的性质,熟练掌握位似的定义,以及位似三角形与相似三角形的关系是解题的关键.3.D解析:D【解析】【分析】根据反比例函数的性质及图象上点的坐标特点对各选项进行逐一分析即可.【详解】A、∵当x=﹣3时,y=2,∴此函数图象过点(﹣3,2),故本选项正确;B、∵k=﹣6<0,∴此函数图象的两个分支位于第二、四象限,故本选项正确;C、∵当x=﹣2时,y=3,∴当x<﹣2时,0<y<3,故本选项正确;D、∵k=﹣6<0,∴在每个象限内,y随着x的增大而增大,故本选项错误;故选:D.【点睛】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.4.A解析:A【解析】【分析】利用反比例函数的增减性,y随x的增大而减小,则求解不等式1-k>0即可.【详解】∵反比例函数y=1−kx图象的每一条曲线上,y随x的增大而减小,∴1−k>0,解得k<1.故选A.【点睛】此题考查反比例函数的性质,解题关键在于根据其性质求出k的值.5.A解析:A【解析】【分析】先根据反比例函数的解析式判断出反比例函数的图象所在的象限及增减性,再根据各点横坐标的值判断出y1,y2,y3的大小关系即可.【详解】∵反比例函数的比例系数为a2+1>0,∴图象的两个分支在一、三象限,且在每个象限y随x的增大而减小.∵﹣114-<<0,∴点(﹣1,y1),(14-,y2)在第三象限,∴y2<y1<0.∵12>0,∴点(12,y3)在第一象限,∴y3>0,∴y2<y1<y3.故选A.【点睛】本题考查了反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.6.C解析:C【解析】【分析】直接利用坡比的定义得出AC的长,进而利用勾股定理得出答案.【详解】解:Rt△ABC中,BC=12cm,tanA=1∴AC=BC÷tanA=cm,∴AB24cm.故选:C.【点睛】此题主要考查了解直角三角形的应用,正确掌握坡比的定义是解题关键.7.A解析:A【解析】【分析】由勾股定理可求AM的长,通过证明△ABM∽△EMA,可求AE=10,可得DE=6,由平行线分线段成比例可求DF的长,即可求解.【详解】解:∵AB=4,BM=2,∴AM===,∵四边形ABCD是正方形,∴AD∥BC,∠B=∠C=90°,∴∠EAM=∠AMB,且∠B=∠AME=90°,∴△ABM∽△EMA,∴BM AM AM AE==∴AE=10,∴DE=AE﹣AD=6,∵AD∥BC,即DE∥MC,∴△DEF∽△CMF,∴DE DF MC CF=,∴642DFCF=-=3,∵DF+CF=4,∴DF=3,∴S△DEF=12DE×DF=9,故选:A.【点睛】本题考查了相似三角形的判定与性质,正方形的性质,勾股定理;熟练掌握相似三角形的性质,并能进行推理计算是解决问题的关键.8.B解析:B【解析】【分析】根据相似多边形对应边的比相等,可得到一个方程,解方程即可求得.【详解】∵四边形ABCD是矩形,∴AD=BC=xcm,∵四边形ABEF是正方形,∴EF=AB=ycm,∴DF=EC=(x﹣y)cm,∵矩形FDCE与原矩形ADCB相似,∴DF:AB=CD:AD,即:x y y y x -=∴x y故选B.【点睛】本题考查了相似多边形的性质、矩形的性质、翻折变换的性质;根据相似多边形对应边的比相等得出方程是解决本题的关键.9.C解析:C【解析】【分析】根据已知可得到相似三角形,从而可得到其相似比,再根据相似三角形的周长比等于相似比就可得到答案.【详解】∵四边形ABCD是平行四边形,∴DC ∥AB ,CD=AB .∴△DFE ∽△BFA ,∵DE :EC=1:2,∴EC :DC=CE :AB=2:3,∴C △CEF :C △ABF =2:3.故选C .10.B解析:B【解析】∵△ABC ∽△A ′B ′C ′,∴34ABC AB A B C A B ''=''='V V 的周长的周长, ∵△ABC 的周长为15cm ,∴△A ′B ′C ′的周长为20cm .故选B .11.C解析:C【解析】【分析】确定出△DEF 和△DAC 相似,根据相似三角形对应边成比例求出AC ,再根据旗杆的高度=AC+BC 计算即可得解.【详解】解:∵∠FDE=∠ADC ,∠DEF=∠DCA=90°,∴△DEF ∽△DAC , ∴CDE CD EF A = , 即:0.50.2520AC = , 解得AC=10,∵DF 与地面保持平行,目测点D 到地面的距离DG=1.5米,∴BC=DG=1.5米,∴旗杆的高度=AC+BC=10+1.5=11.5米.故选:C .【点睛】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例,准确确定出相似三角形是解题的关键.12.A解析:A【解析】【分析】直接利用比例的性质分别判断即可得出答案.【详解】∵2x -7y =0,∴2x =7y .A .72x y =,则2x =7y ,故此选项正确; B .27x y =,则xy =14,故此选项错误; C .27x y =,则2y =7x ,故此选项错误; D .27x y =,则7x =2y ,故此选项错误. 故选A .【点睛】本题考查了比例的性质,正确将比例式变形是解题的关键.二、填空题13.【解析】【分析】【详解】解:∵EF∥AB∴△DEF∽△DAB∴EF:AB=DE :DA=DE :(DE+EA )=2:5∴AB=10∵在▱ABCD 中AB=CD∴CD=10故答案为:10【点睛】本题考查①相解析:【解析】【分析】【详解】解:∵EF ∥AB,∴△DEF ∽△DAB,∴EF :AB=DE :DA=DE :(DE+EA )=2:5,∴AB=10,∵在▱ABCD 中AB=CD .∴CD=10.故答案为:10【点睛】本题考查①相似三角形的判定;②相似三角形的性质;③平行四边形的性质.14.2【解析】【分析】首先证明CF=BC=12利用相似三角形的性质求出BF 再利用勾股定理即可解决问题【详解】解:∵四边形ABCD 是平行四边形∴AB=CD =12AE∥BCAB∥CD∴∠CFB=∠FBA∵B解析:【解析】【分析】首先证明CF=BC=12,利用相似三角形的性质求出BF ,再利用勾股定理即可解决问题.【详解】解:∵四边形ABCD 是平行四边形,∴AB =CD =12,AE ∥BC ,AB ∥CD ,∴∠CFB =∠FBA ,∵BE 平分∠ABC ,∴∠ABF =∠CBF ,∴∠CFB =∠CBF ,∴CB =CF =8,∴DF =12﹣8=4,∵DE ∥CB ,∴△DEF ∽△CBF , ∴EF BF =DF CF , ∴2BF =48, ∴BF =4,∵CF =CB ,CG ⊥BF ,∴BG =FG =2,在Rt △BCG 中,CG =故答案为【点睛】本题考查平行四边形的性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.15.75或25【解析】【分析】过点作于点通过解直角三角形及勾股定理可求出的长进而可得出的长再利用三角形的面积公式即可求出的面积【详解】解:过点作垂足为如图所示在中;在中∴∴或∴或25故答案为:75或25解析:75或25【解析】【分析】过点A 作AD BC ⊥于点D ,通过解直角三角形及勾股定理可求出AD ,BD ,CD 的长,进而可得出BC 的长,再利用三角形的面积公式即可求出ABC ∆的面积.【详解】解:过点A 作AD BC ⊥,垂足为D ,如图所示.在Rt ABD ∆中,sin 10AD AB B =⋅=,cos 10BD AB B =⋅=;在Rt ACD ∆中,10AD =,AC =∴5CD ==,∴15BC BD CD =+=或5BC BD CD =-=, ∴1752ABC S BC AD ∆=⋅=或25. 故答案为:75或25.【点睛】本题考查了解直角三角形、勾股定理以及三角形的面积,通过解直角三角形及勾股定理,求出AD,BC的长度是解题的关键.16.18【解析】【分析】根据黄金分割定义:列方程即可求解【详解】解:设AP为x米根据题意得整理得x2+10x﹣100=0解得x1=5﹣5≈618x2=﹣5﹣5(不符合题意舍去)经检验x=5﹣5是原方程的解析:18【解析】【分析】根据黄金分割定义:AP BPAB AP=列方程即可求解.【详解】解:设AP为x米,根据题意,得x10 10x x -=整理,得x2+10x﹣100=0解得x1=5﹣5≈6.18,x2=﹣55(不符合题意,舍去)经检验x=55是原方程的根,∴AP的长为6.18米.故答案为6.18.【点睛】本题考查了黄金分割的概念,熟练掌握黄金比是解答本题的关键.17.【解析】【分析】如图所示连接BD过点D作DE垂直于BC的延长线于点E构造直角三角形将∠CBD置于直角三角形中设CE为x根据特殊直角三角形分别求得线段CDACBC从而按正切函数的定义可解【详解】解:如解析:31 2【解析】【分析】如图所示,连接BD,过点D作DE垂直于BC的延长线于点E,构造直角三角形,将∠CBD置于直角三角形中,设CE为x,根据特殊直角三角形分别求得线段CD、AC、BC,从而按正切函数的定义可解.【详解】解:如图所示,连接BD,过点D作DE垂直于BC的延长线于点E,∵在Rt△ABC中,∠ACB=45°,在Rt△ACD中,∠ACD=90°∴∠DCE=45°,∵DE⊥CE∴∠CEB=90°,∠CDE=45°∴设DE=CE=x,则CD2x,在Rt△ACD中,∵∠CAD=30°,∴tan∠3CDAC,则AC6x,在Rt△ABC中,∠BAC=∠BCA=45°∴BC3,∴在Rt△BED中,tan∠CBD=DEBE(13)x+31-31-.【点睛】本题考查了用定义求三角函数,同时考查了特殊角的三角函数值,如何作辅助线,是解题的关键.18.10【解析】【分析】如图先利用垂径定理得BD=6再利用勾股定理建立方程求解即可得出结论【详解】如图记圆的圆心为O连接OBOC交AB于D∴OC⊥ABBD=AB由图知AB=16﹣4=12cmCD=2cm解析:10【解析】【分析】如图,先利用垂径定理得,BD=6,再利用勾股定理建立方程求解即可得出结论.【详解】如图,记圆的圆心为O ,连接OB ,OC 交AB 于D ,∴OC ⊥AB ,BD=12AB , 由图知,AB=16﹣4=12cm ,CD=2cm ,∴BD=6,设圆的半径为r ,则OD=r ﹣2,OB=r ,在Rt △BOD 中,根据勾股定理得,OB 2=AD 2+OD 2,∴r 2=36+(r ﹣2)2,∴r=10cm ,故答案为10.【点睛】本题考查了垂径定理的应用,勾股定理,正确添加辅助线构造出直角三角形是解本题的关键.19.或或【解析】【分析】根据图形可知证明已经具备了一个公共角和一对相等边因此可以利用ASASASAAS 证明两三角形全等【详解】∵∴可以添加此时满足SAS ;添加条件此时满足ASA ;添加条件此时满足AAS 故解析:AB AC =或ADC AEB ∠=∠或ABE ACD ∠=∠.【解析】【分析】根据图形可知证明ADC AEB V V ≌已经具备了一个公共角和一对相等边,因此可以利用ASA 、SAS 、AAS 证明两三角形全等.【详解】∵A A ∠∠= ,AD AE =,∴可以添加AB AC = ,此时满足SAS ;添加条件ADC AEB ∠∠= ,此时满足ASA ;添加条件ABE ACD ∠∠=,此时满足AAS ,故答案为:AB AC =或ADC AEB ∠∠=或ABE ACD ∠∠=;【点睛】本题考查了全等三角形的判定,是一道开放题,解题的关键是牢记全等三角形的判定方法.20.400【解析】分析:把代入即可算出y 的值详解:把代入故答案为400点睛:此题主要考查了反比例函数的定义本题实际上是已知自变量的值求函数值的问题比较简单解析:400【解析】分析:把0.3x =代入120y x =,即可算出y 的值. 详解:把0.3x =代入120x, 400y =,故答案为400.点睛:此题主要考查了反比例函数的定义,本题实际上是已知自变量的值求函数值的问题,比较简单.三、解答题21.见解析【解析】【分析】根据相似三角形的判定方法证明Rt △ABD ∽Rt △ADC ,即可得到BD :AD=AD :CD , 再利用比例性质可得.【详解】∵BD AC ⊥,∴ADB CDB 90∠∠==o ,∴BAD 90∠∠+=o B∵90BAC ∠=o∴90B C ∠+∠=o∴BAD ∠∠=C∴Rt ABD Rt CAD ∽V V ,∴BD :AD=AD :CD ,∴2AD CD BD =⋅.【点睛】考查了直角三角形性质的应用,判定三角形相似是解题的关键.22.(1)图见解析,C 1(-6,4);(2)D 1(2a ,2b).【解析】【分析】(1)连接OB 并延长,使BB 1=OB ,连接OA 并延长,使AA 1=OA ,连接OC 并延长,使CC 1=OC ,确定出△A 1B 1C 1,并求出C 1点坐标即可;(2)根据A 与A 1坐标,B 与B 1坐标,以及C 与C 1坐标的关系,确定出变化后点D 的对应点D 1坐标即可.【详解】(1)根据题意画出图形,如图所示:则点C 1的坐标为(-6,4);(2)变化后D 的对应点D 1的坐标为:(2a ,2b ).【点睛】运用了作图-位似变换,画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.23.(1)见解析;(2) 16=FB .【解析】【分析】(1)可由相似三角形AEP FAP ∆∆∽对应边成比例进行求解,也可由平行线分线段成比例定理进行求解,两者均可;(2)由题中已知线段的长度,结合(1)中的结论,再由平行线分线段成比例,即可得出结论.【详解】(1)证明:Q 四边形ABCD 是菱形,DC DA ∴=,ADP CDP ∠=∠,//DC AB ,又DP Q 是公共边,DAP DCP ∴∆≅∆,PA PC ∴=,DAP DCP ∠=∠,由//DC FA 得,F DCP ∠=∠,F DAP ∴∠=∠,又EPA APF ∠=∠QAEP FAP ∴∆∆∽,∴PA:PF=PE :PA ,2PA PE PF ∴=g2PC PE PF ∴=g .(2)2PE =Q ,6EF =,8PF ∴=,2PC PE PF =Q g ,216PC ∴=,4PC ∴=//DC FB Q ∴FB PF DC PC=, 又8DC =, ∴884FB = 16FB ∴=.【点睛】本题主要考查了全等三角形的判定及性质以及菱形的性质和相似三角形的判定及性质问题,能够熟练掌握.24.(1)参见解析;(2)5.【解析】【分析】(1)利用两角法证得两个三角形相似;(2)利用相似三角形的对应线段成比例求得CD 长.【详解】(1)∵∠ABD =∠C ,∠A =∠A (公共角),∴△ABD ∽△ACB ;(2)由(1)知:△ABD ∽△ACB ,∵相似三角形的对应线段成比例 ,∴=,即=, 解得:CD =5.25.10【解析】试题分析:根据相似的性质可得:1:1.2=x :9.6,则x=8,则旗杆的高度为8+2=10米. 考点:相似的应用。

【冲刺卷】七年级数学下期中第一次模拟试题带答案

【冲刺卷】七年级数学下期中第一次模拟试题带答案

【冲刺卷】七年级数学下期中第一次模拟试题带答案一、选择题1.点(),A m n 满足0mn =,则点A 在( )A .原点B .坐标轴上C .x 轴上D .y 轴上2.若点(),P a b 在第四象限,则( )A .0a >,0b >B .0a <,0b <C .0a <,0b >D .0a >,0b <3.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A (﹣2,1)和B (﹣2,﹣3),那么第一架轰炸机C 的平面坐标是( )A .(2,﹣1)B .(4,﹣2)C .(4,2)D .(2,0)4.如图,点E 在AB 的延长线上,则下列条件中,不能判定AD BC ∥的是( )A .180D DCB ∠+∠=︒B .13∠=∠C .24∠∠=D .CBE DAE ∠=∠5.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5{152x y x y =+=- B .5{1+52x y x y =+= C .5{2-5x y x y =+= D .-5{2+5x y x y == 6.如图,数轴上表示2、5的对应点分别为点C ,B ,点C 是AB 的中点,则点A 表示的数是( )A .5B .25-C .45D 527.同学们喜欢足球吗?足球一般是用黑白两种颜色的皮块缝制而成的,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为( )A .16块,16块B .8块,24块C .20块,12块D .12块,20块8.在平面直角坐标系中,将点(0,1)A 做如下的连续平移,第1次向右平移得到点1(1,1)A , 第2次向下平移得到点()21,1A -,第3次向右平移得到点()341A -,第4次向下平移得到点()44,5?·····A -按此规律平移下去,则15A 的点坐标是( )A .()64,55-B .()65,53-C .()66,56-D .()67,58-9.如果a >b ,那么下列各式中正确的是( )A .a ﹣2<b ﹣2 B.22ab p C .﹣2a <﹣2b D .﹣a >﹣b10.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )A .20°B .30°C .40°D .50°11.已知关于x 的不等式组3211230x x x a --⎧≤-⎪⎨⎪-<⎩恰有3个整数解,则a 的取值范围为( )A .12a <≤B .12a <<C .12a ≤<D .12a ≤≤ 12.已知两个不等式的解集在数轴上如右图表示,那么这个解集为( )A .≥-1B .>1C .-3<≤-1D .>-3二、填空题13.有下列命题:①无理数是无限不循环小数;②平方根与立方根相等的数有1和0;③若a ⊥b ,b ⊥c ,则a ⊥c ;④邻补角是互补的角;⑤无理数包括正无理数、零、负无理数.其中正确的有___个.14.在平面直角坐标系中,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a),(b ,3),则a 2-2b 的值为______.15.已知AB ∥x 轴,A (-2,4),AB =5,则B 点横纵坐标之和为______.16.比较大小:-________-3.17.若点P (a +3,2a +4)在y 轴上,则点P 到x 轴的距离为________.18.如图,将边长为6cm 的正方形ABCD 先向上平移3cm ,再向右平移1cm ,得到正方形A ′B ′C ′D ′,此时阴影部分的面积为______cm 2.19.在整数20200520中,数字“0”出现的频率是_________.20.一个棱长为8cm 的正方体容器装满水,现将这个容器中的水倒入一个高度为32cm π的圆柱形玻璃杯中,恰好装满,则这个圆柱形玻璃杯的底面半径为______cm . 三、解答题21.2020年的寒假是“不同寻常”的一个假期.在这个超长假期里,某中学随机对本校部分同学进行“抗疫有我,在家可以这么做”的问卷调查:A 扎实学习、B 经典阅读、C 分担劳动、D 乐享健康,(每位同学只能选一个),并根据调查结果绘制如下两幅不完整的统计图.根据统计图提供信息,解答问题:(1)本次一共调查了_______名同学;(2)请补全条形统计图;在扇形统计图中A 所对应的圆心角为 度;(3)若该校共有1600名同学,请你估计选择A 有多少名同学?22.计算:(1311689-(2)2012( 3.14)||4π-+--- 23.解方程组: (1)2338y x x y =-⎧⎨-=⎩(2) 743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 24.已知实数x ,y满足0x =.(1)求实数x ,y 的值;(2)求代数式y x 的值. 25.已知关于 x 的不等式组 32112x x x +>⎧⎪⎨≤⎪⎩ (1)求该不等式组的解集;(2)若 a ,b 都是该不等式组的正整数解,且 a b >,求 22a b - 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】应先判断出所求的点的横纵坐标的可能值,进而判断点所在的位置.【详解】∵点A (m ,n )满足mn=0,∴m=0或n=0,∴点A 在x 轴或y 轴上.即点在坐标轴上.故选:B .【点睛】本题主要考查了平面直角坐标系中点在坐标轴上时点的坐标的特点:横坐标或纵坐标为0.2.D解析:D【解析】【分析】根据第四象限内点的横坐标大于零,纵坐标小于零,可得答案.【详解】由点P (a ,b )在第四象限内,得a >0,b <0,故选:D .【点睛】此题考查各象限内点的坐标,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.A解析:A【解析】【分析】根据A (﹣2,1)和B (﹣2,﹣3)的坐标以及与C 的关系进行解答即可.【详解】解:因为A (﹣2,1)和B (﹣2,﹣3),所以建立如图所示的坐标系,可得点C 的坐标为(2,﹣1).故选:A .【点睛】考查坐标问题,关键是根据A (﹣2,1)和B (﹣2,﹣3)的坐标以及与C 的关系解答.4.C解析:C【解析】【分析】根据平行线的判定方法一一判断即可:A.同旁内角互补,两直线平行;B 、C 内错角相等,两直线平行;D.同位角相等,两直线平行,再根据结果是否能判断//AD BC ,即可得到答案.【详解】解:A. Q 180D DCB ∠+∠=︒,∴//AD BC ,此项正确,不合题意;B. Q 13∠=∠,∴//AD BC ,此项正确,不合题意;C. ∵∠2=∠4,∴CD ∥AB ,∴不能判定//AD BC ,此项错误,符合题意;D. Q CBE DAE ∠=∠,∴//AD BC ,此项正确,不合题意.故选:C.【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.5.A解析:A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.6.C解析:C【解析】【分析】首先可以求出线段BC的长度,然后利用中点的性质即可解答.【详解】∵表示2C,B,,∵点C是AB的中点,则设点A的坐标是x,则∴点A表示的数是故选C.【点睛】本题主要考查了数轴上两点之间x1,x2的中点的计算方法.7.D解析:D【解析】试题分析:根据题意可知:本题中的等量关系是“黑白皮块32块”和因为每块白皮有3条边与黑边连在一起,所以黑皮只有3y块,而黑皮共有边数为5x块,依此列方程组求解即可.解:设黑色皮块和白色皮块的块数依次为x ,y . 则, 解得,即黑色皮块和白色皮块的块数依次为12块、20块.故选D .8.A解析:A【解析】【分析】根据题中条件可得到奇数次时,平移的方向和单位长度;偶数次时,平移的方向和单位长度的规律,按照该规律即可得解.【详解】解:由题意得第1次向右平移1个单位长度,第2次向下平移2个单位长度,第3次向右平移3个单位长度,第4次向下平移4个单位长度,……根据规律得第n 次移动的规律是:当n 为奇数时,向右平移n 个单位长度,当n 为偶数时,向下平移n 个单位长度,∴15A 的横坐标为0+1+3+5+7+9+11+13+15=64纵坐标为1-(2+4+6+8+10+12+14)=-55∴15A ()64,55-故选A .【点睛】本题考查了坐标与图形变化——平移. 解题的关键是分析出题目的规律,找出题目中点的坐标的规律.9.C解析:C【解析】A.不等式的两边都减2,不等号的方向不变,故A 错误;B.不等式的两边都除以2,不等号的方向不变,故B 错误;C.不等式的两边都乘以−2,不等号的方向改变,故C 正确;D.不等式的两边都乘以−1,不等号的方向改变,故D 错误.故选C.10.C解析:C【解析】【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°−50°=40°. 故选C.【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键.11.A解析:A【解析】【分析】先根据一元一次不等式组解出x 的取值范围,再根据不等式组只有三个整数解,求出实数a 的取值范围即可.【详解】3211230x x x a --⎧≤-⎪⎨⎪-<⎩①②, 解不等式①得:x≥-1,解不等式②得:x<a , ∵不等式组3211230x x x a --⎧≤-⎪⎨⎪-<⎩有解, ∴-1≤x<a ,∵不等式组只有三个整数解,∴不等式的整数解为:-1、0、1,∴1<a≤2,故选:A【点睛】本题考查一元一次不等式组的整数解,解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12.A解析:A【解析】>-3 ,≥-1,大大取大,所以选A二、填空题13.2【解析】【分析】根据无理数平方根和立方根的概念两直线的位置关系邻补角的概念分别判断后即可得到答案【详解】解::①无理数是无限不循环小数本说法正确;②平方根与立方根相等的数是0本说法错误;③若a b解析:2【解析】【分析】根据无理数、平方根和立方根的概念、两直线的位置关系、邻补角的概念分别判断后即可得到答案.【详解】解::①无理数是无限不循环小数,本说法正确;②平方根与立方根相等的数是0,本说法错误;a,本说法错误;③若a⊥b,b⊥c,则∥c④邻补角是互补的角,本说法正确;⑤无理数包括正无理数、负无理数,本说法错误;故答案为:2.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫假命题.14.-1【解析】【分析】根据点A和点B的坐标以及对应点的坐标确定出平移的方法从而求出ab的值再代入代数式进行计算即可【详解】解:∵A(10)A1(2a)B(02)B1(b3)∴平移方法为向右平移1个单位解析:-1【解析】【分析】根据点A和点B的坐标以及对应点的坐标确定出平移的方法,从而求出a、b的值,再代入代数式进行计算即可.【详解】解:∵A(1,0),A1(2,a),B(0,2),B1(b,3),∴平移方法为向右平移1个单位,向上平移1个单位,∴a=0+1=1,b=0+1=1,∴a2-2b=1²-2×1=-1;故答案为:-1.【点睛】本题考查了坐标与图形变化,注意到平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.15.-3或7【解析】【分析】由AB∥x轴可知B点的纵坐标和A点的纵坐标相同再根据线段AB的长度为5B点在A点的坐标或右边分别求出B点的坐标即可得到答案【详解】解:∵AB∥x轴∴B点的纵坐标和A点的纵坐标解析:-3或7【解析】【分析】由AB∥x轴可知B点的纵坐标和A点的纵坐标相同,再根据线段AB的长度为5,B点在A点的坐标或右边,分别求出B点的坐标,即可得到答案.【详解】解:∵AB∥x轴,∴B点的纵坐标和A点的纵坐标相同,都是4,又∵A(-2,4),AB 5,∴当B点在A点左侧的时候,B(-7,4),此时B点的横纵坐标之和是-7+4=-3,当B点在A点右侧的时候,B(3,4),此时B点的横纵坐标之和是3+4=7;故答案为:-3或7.【点睛】本题考查了与坐标轴平行的线上点的坐标特征以及分情况讨论的思想,要注意根据B点位置的不确定得出两种情况分别求解.16.<【解析】【分析】由3<10<4可得到结果【详解】因为3<10<4|-10|>|-3|所以-10<-3故答案为:<【点睛】考核知识点:实数的大小比较估计无理数大小是关键解析:<【解析】【分析】由可得到结果.【详解】因为, |-|>|-3|所以-<-3.故答案为:<【点睛】考核知识点:实数的大小比较.估计无理数大小是关键.17.2【解析】【分析】点在y轴上则横坐标为0可求得a的值然后再判断点到x轴的距离即可【详解】∵点P(a+32a+4)在y轴上∴a+3=0解得:a=-3∴P(0-2)∴点P到x轴的距离为:2故答案为:2【解析:2【解析】【分析】点在y轴上,则横坐标为0,可求得a的值,然后再判断点到x轴的距离即可.【详解】∵点P(a+3,2a+4)在y轴上∴a+3=0,解得:a=-3∴P(0,-2)∴点P到x轴的距离为:2故答案为:2【点睛】本题考查坐标点与坐标轴的关系,注意,点到坐标轴的距离一定是非负的.18.15【解析】【分析】由题意可知阴影部分为长方形根据平移的性质求出阴影部分长方形的长和宽即可求得阴影部分的面积【详解】∵边长为6cm的正方形ABCD先向上平移3cm∴阴影部分的宽为6-3=3cm∵向右解析:15【解析】【分析】由题意可知,阴影部分为长方形,根据平移的性质求出阴影部分长方形的长和宽,即可求得阴影部分的面积.【详解】∵边长为6cm的正方形ABCD先向上平移3cm,∴阴影部分的宽为6-3=3cm,∵向右平移1cm,∴阴影部分的长为6-1=5cm,∴阴影部分的面积为3×5=15cm2.故答案为15.【点睛】本题主要考查了平移的性质及长方形的面积公式,解决本题的关键是利用平移的性质得到阴影部分的长和宽.19.5【解析】【分析】直接利用频率的定义分析得出答案【详解】解:∵在整数20200520中一共有8个数字数字0有4个故数字0出现的频率是故答案为:【点睛】此题主要考查了频率的求法正确把握定义是解题关键解析:5【解析】【分析】直接利用频率的定义分析得出答案.【详解】解:∵在整数20200520中,一共有8个数字,数字“0”有4个,故数字“0”出现的频率是1.2故答案为:12. 【点睛】 此题主要考查了频率的求法,正确把握定义是解题关键.20.4【解析】【分析】首先根据题意设这个圆柱形玻璃杯的底面半径为rcm 再根据水的体积不变来列出等式解出r 值即可【详解】解:设这个圆柱形玻璃杯的底面半径为rcm 依题意可得:∴∴r 取正值4;故答案为:4【点解析:4【解析】【分析】首先根据题意设这个圆柱形玻璃杯的底面半径为rcm ,再根据水的体积不变来列出等式,解出r 值即可.【详解】解:设这个圆柱形玻璃杯的底面半径为rcm , 依题意可得:23328r ππ⋅=,∴232512r =, 216r ∴=,∴r 取正值4;故答案为:4.【点睛】本题主要考查了算术平方根的性质和应用,以及圆柱、正方体体积的求法,要熟练掌握相关内容.三、解答题21.(1)200;(2)补全图形见解析,108 ;(3)选择A 有480名同学.【解析】【分析】(1)由B 组的信息可得总人数,(2)先求解C 组所占总体的百分比,再求A 组所占总体的百分比,进而求出A 所对的圆心角,,A D 两组的人数,补全条形图即可.(3)由A 组所占总体的百分比估计总体即可得到答案.【详解】解:(1)由题意得:本次一共调查了5628%200÷=(名),故答案为:200.(2)C Q 组占总体的44100%22%,200⨯= A ∴组占总体的128%20%22%30%,---=A ∴所对的圆心角为:30%360108,⨯︒=︒A ∴组人数为:20030%60⨯=(名),D 组人数为:20020%40⨯= (名),补全条形图如下:故答案为:108.(3)该校共有1600名同学,估计选择A 有:160030%480⨯=(名)答:选择A 的大概有480名同学.【点睛】本题考查的是统计调查的知识,考查了从条形图与扇形图中获取信息,以及利用样本来估计总体,掌握相关知识点是解题的关键.22.(1)53;(2)1. 【解析】【分析】 (1)由题意利用算术平方根和立方根的性质进行运算即可;(2)根据题意利用负指数幂与零指数幂的运算法则以及去绝对值的方法进行运算即可.【详解】解:(1311689- 1423=-- 53= (2)2012( 3.14)||4π-+--- 11144=+- 1=【点睛】本题考查实数的混合运算,熟练掌握算术平方根和立方根的性质和负指数幂与零指数幂的运算法则以及去绝对值的方法是解题的关键.23.(1)57x y =⎧⎨=⎩;(2)6024x y =⎧⎨=-⎩ 【解析】【分析】(1)2338y x x y =-⎧⎨-=⎩①②,由①得2x-y=3③,②-③可求得x ,将x 值代入①可得y 值,即可求得方程组的解. (2)743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①②,先将①×12去分母,将分式方程化为整式方程,得3x+4y=84③,将②×6,由分式方程化为整式方程,得2x+3y=48④,③和④再利用加减消元法即可求解方程组的解.【详解】(1)2338y x x y =-⎧⎨-=⎩①② 由①,得2x-y=3③②-③,得x=5将x=5代入①,得2×5-y=3∴y=7故方程组的解为:57x y =⎧⎨=⎩故答案为:57x y =⎧⎨=⎩(2)743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①② ①×12,得3x+4y=84③②×6,得2x+3y=48④③×2,得6x+8y=168⑤④×3,得6x+9y=144⑥⑤-⑥,得y=-24将y=-24代入①,得874x -= ∴x=60故方程组的解为:6024x y =⎧⎨=-⎩故答案为:6024x y =⎧⎨=-⎩【点睛】本题考查了一元二次方程的解法—加减消元法,将方程组中的各个方程化简成标准形式,方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等,把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程,解这个一元一次方程,求出一个未知数的值;24.(1)y=-2;(2)19 【解析】【分析】(1)根据非负数的性质求出x ,y 的值即可;(2)把x ,y 的值代入即可解答.【详解】解:(1)∵0x =且x∴0x =0=解得:x 2y =-(2)当x =2y =-时,219y x -===. 【点睛】本题考查了非负数的性质,掌握非负数的性质是解答本题的关键.25.(1)12x -<≤;(2)3【解析】【分析】(1)分别求出两个不等式的解集,再求出其公共解集即可;(2)根据(1)中解集及a ,b 取值条件确定a ,b 的值,再进行代值计算即可.【详解】解:(1)32112x x x +>⎧⎪⎨≤⎪⎩①②, 由①得:1x >-,由②得:2x ≤,所以不等式组的解集为:12x -<≤,故答案为:12x -<≤;(2)由(1)知,不等式的解集为12x -<≤,∵a ,b 都是该不等式组的正整数解,且a b >,∴21a b =⎧⎨=⎩, ∴2222213a b =--=,故答案为:3.【点睛】本题考查解一元一次不等式组及根据不等式组解集取正整数解,熟练掌握解不等式组的方法及正整数的定义是解题关键.。

【冲刺卷】数学中考一模试题带答案

【冲刺卷】数学中考一模试题带答案

【冲刺卷】数学中考一模试题带答案一、选择题1.如图是由5个相同大小的正方体搭成的几何体,则它的俯视图是()A.B.C.D.2.如图是某个几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥3.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A.154B.14C.1515D.4174.某商店有方形、圆形两种巧克力,小明如果购买3块方形和5块圆形巧克力,他带的钱会差8元,如果购买5块方形和3块圆形巧克力,他带的钱会剩下8元.若他只购买8块方形巧克力,则他会剩下()元A.8B.16C.24D.325.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣56.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.7.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣348.如图,在矩形ABCD中,AD=3,M是CD上的一点,将△ADM沿直线AM对折得到△ANM,若AN平分∠MAB,则折痕AM的长为()A.3 B.23C.32D.69.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算()A.甲B.乙C.丙D.一样10.均匀的向一个容器内注水,在注水过程中,水面高度h与时间t的函数关系如图所示,则该容器是下列中的()A.B.C.D.11.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.12.8×200=x+40解得:x=120答:商品进价为120元.故选:B.【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.二、填空题13.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.14.如图,矩形ABCD 中,AB=3,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为____________.15.如图,Rt AOB ∆中,90AOB ∠=︒,顶点A ,B 分别在反比例函数()10y x x=>与()50y x x-=<的图象上,则tan BAO ∠的值为_____.16.如图,在Rt △AOB 中,OA=OB=32,⊙O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),则切线PQ 的最小值为 .17.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是 . 18.如图,将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,如果AB 2BC 3=,那么tan ∠DCF 的值是____.19.分解因式:2x 2﹣18=_____.20.若a b =2,则222a b a ab--的值为________.三、解答题21.如图,AD 是ABC ∆的中线,AE BC ∥,BE 交AD 于点F ,F 是AD 的中点,连接EC .(1)求证:四边形ADCE 是平行四边形;(2)若四边形ABCE 的面积为S ,请直接写出图中所有面积是13S 的三角形.22.某公司推出一款产品,经市场调查发现,该产品的日销售量y (个)与销售单价x (元)之间满足一次函数关系.关于销售单价,日销售量,日销售利润的几组对应值如下表:销售单价x (元) 85 95 105 115 日销售量y (个) 175 125 75 m 日销售利润w (元)87518751875875(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y 关于x 的函数解析式(不要求写出x 的取值范围)及m 的值; (2)根据以上信息,填空:该产品的成本单价是 元,当销售单价x= 元时,日销售利润w 最大,最大值是 元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?23.小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:?1322x x+=--.(1)她把这个数“?”猜成5,请你帮小华解这个分式方程;(2)小华的妈妈说:“我看到标准答案是:方程的增根是2x=,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?24.距离中考体育考试时间越来越近,某校想了解初三年级1500名学生跳绳情况,从中随机抽查了20名男生和20名女生的跳绳成绩,收集到了以下数据:男生:192、166,189,186,184,182,178,177,174,170,188,168,205,165,158,150,188,172,180,188女生:186,198,162,192,188,186,185,184,180,180,186,193,178,175,172,166,155,183,187,184.根据统计数据制作了如下统计表:两组数据的极差、平均数、中位数、众数如表所示:(1)请将上面两个表格补充完整:a=____,b=_____,c=_____;(2)请根据抽样调查的数据估计该校初三年级学生中考跳绳成绩能得满分(185个及以上)的同学大约能有多少人?(3)体育组的江老师看了表格数据后认为初三年级的女生跳绳成绩比男生好,请你结合统计数据,写出支持江老师观点的理由.25.已知:如图,△ABC为等腰直角三角形∠ACB=90°,过点C作直线CM,D为直线CM上一点,如果CE=CD且EC⊥CD.(1)求证:△ADC≌△BEC;(2)如果EC⊥BE,证明:AD∥EC.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】从上边看第一列是一个小正方形,第二列是一个小正方形,第三列是两个小正方形,故选:B.【点睛】本题考查了简单几何体的三视图,从上边看上边看得到的图形是俯视图.2.A解析:A【解析】试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选A.考点:由三视图判定几何体.3.A解析:A【解析】∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC224115,则cos B=BCAB15,故选A 4.D 解析:D 【解析】【分析】设每块方形巧克力x元,每块圆形巧克力y元,根据小明身上的钱数不变得出方程3x+5y-8=5x+3y+8,化简整理得y-x=8.那么小明最后购买8块方形巧克力后他身上的钱会剩下(5x+3y+8)-8x,化简得3(y-x)+8,将y-x=8代入计算即可.【详解】解:设每块方形巧克力x元,每块圆形巧克力y元,则小明身上的钱有(3x+5y-8)元或(5x+3y+8)元.由题意,可得3x+5y-8=5x+3y+8,,化简整理,得y-x=8.若小明最后购买8块方形巧克力,则他身上的钱会剩下:(5x+3y+8)-8x=3(y-x)+8=3×8+8=32(元).故选D.【点睛】本题考查了二元一次方程的应用,分析题意,找到关键描述语,得出每块方形巧克力与每圆方形巧克力的钱数之间的关系是解决问题的关键.5.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0007=7×10﹣4故选C.【点睛】本题考查科学计数法,难度不大.6.B解析:B【解析】试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.考点:简单组合体的三视图.7.B解析:B【解析】【分析】【详解】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.8.B解析:B【解析】【分析】根据折叠的性质可得∠MAN=∠DAM,再由AN平分∠MAB,得出∠DAM=∠MAN=∠NAB,最后利用三角函数解答即可.【详解】由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴==故选:B.【点睛】本题考查了矩形的性质及折叠的性质,解题的关键是利用折叠的性质求得∠MAN=∠DAM, 9.C解析:C【解析】试题分析:设商品原价为x,表示出三家超市降价后的价格,然后比较即可得出答案.解:设商品原价为x,甲超市的售价为:x(1﹣20%)(1﹣10%)=0.72x;乙超市售价为:x(1﹣15%)2=0.7225x;丙超市售价为:x(1﹣30%)=70%x=0.7x;故到丙超市合算.故选C.考点:列代数式.10.D解析:D【解析】【分析】由函数图象可得容器形状不是均匀物体分析判断,由图象及容积可求解.【详解】根据图象折线可知是正比例函数和一次函数的函数关系的大致图象;切斜程度(即斜率)可以反映水面升高的速度;因为D几何体下面的圆柱体的底圆面积比上面圆柱体的底圆面积小,所以在均匀注水的前提下是先快后慢;故选D.【点睛】此题主要考查了函数图象,解决本题的关键是根据用的时间长短来判断相应的函数图象.11.B解析:B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.12.无二、填空题13.5【解析】【分析】根据题意运用待定系数法建立适当的函数解析式代入求值即可解答【详解】以左边树与地面交点为原点地面水平线为x轴左边树为y 轴建立平面直角坐标系由题意可得A(025)B(225)C(051解析:5【解析】【分析】根据题意,运用待定系数法,建立适当的函数解析式,代入求值即可解答.【详解】以左边树与地面交点为原点,地面水平线为x轴,左边树为y轴建立平面直角坐标系,由题意可得A(0,2.5),B(2,2.5),C(0.5,1)设函数解析式为y=ax2+bx+c把A. B. C三点分别代入得出c=2.5同时可得4a+2b+c=2.5,0.25a+0.5b+c=1解得a=2,b=−4,c=2.5.∴y=2x2−4x+2.5=2(x−1)2+0.5.∵2>0∴当x=1时,y min=0.5米.14.【解析】试题解析:∵四边形ABCD是矩形∴OB=ODOA=OCAC=BD∴OA=OB ∵AE垂直平分OB∴AB=AO∴OA=AB=OB=3∴BD=2OB=6∴AD=【点睛】此题考查了矩形的性质等边三角解析:33【解析】试题解析:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD2222BD AB-=-=6333【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.15.【解析】【分析】过作轴过作轴于于是得到根据反比例函数的性质得到根据相似三角形的性质得到求得根据三角函数的定义即可得到结论【详解】过作轴过作轴于则∵顶点分别在反比例函数与的图象上∴∵∴∴∴∴∴∴故答案5【解析】【分析】过A 作AC x ⊥轴,过B 作BD x ⊥轴于D ,于是得到90BDO ACO ∠=∠=︒,根据反比例函数的性质得到52BDO S ∆=,12AOC S ∆=,根据相似三角形的性质得到25BOD OAC S OB S OA ∆∆⎛⎫== ⎪⎝⎭,求得5OB OA =,根据三角函数的定义即可得到结论. 【详解】过A 作AC x ⊥轴,过B 作BD x ⊥轴于,则90BDO ACO ∠=∠=︒,∵顶点A ,B 分别在反比例函数()10y x x =>与()50y x x -=<的图象上, ∴52BDO S ∆=,12AOC S ∆=, ∵90AOB ∠=︒,∴90BOD DBO BOD AOC ∠+∠=∠+∠=︒,∴DBO AOC ∠=∠,∴BDO OCA ∆∆:,∴252512BODOAC S OB S OA ∆∆⎛⎫=== ⎪⎝⎭, ∴5OB OA=, ∴tan 5OB BAO OA ∠==, 故答案为:5.【点睛】本题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.16.【解析】试题分析:连接OPOQ∵PQ 是⊙O 的切线∴OQ⊥PQ 根据勾股定理知PQ2=OP2﹣OQ2∴当PO⊥AB 时线段PQ 最短此时∵在Rt△AOB 中OA=OB=∴AB=OA=6∴OP=AB=3∴解析:22【解析】试题分析:连接OP、OQ,∵PQ是⊙O的切线,∴OQ⊥PQ.根据勾股定理知PQ2=OP2﹣OQ2,∴当PO⊥AB时,线段PQ最短.此时,∵在Rt△AOB中,OA=OB=,∴AB=OA=6.∴OP=AB=3.∴.17.3【解析】试题解析:根据概率公式摸出黑球的概率是1-02-05=03考点:概率公式解析:3.【解析】试题解析:根据概率公式摸出黑球的概率是1-0.2-0.5=0.3.考点:概率公式.18.【解析】【分析】【详解】解:∵四边形ABCD是矩形∴AB=CD∠D=90°∵将矩形ABCD沿CE折叠点B恰好落在边AD的F处∴CF=BC∵∴∴设CD =2xCF=3x∴∴tan∠DCF=故答案为:【点5【解析】【分析】【详解】解:∵四边形ABCD是矩形,∴AB=CD,∠D=90°,∵将矩形ABCD沿CE折叠,点B恰好落在边AD的F处,∴CF=BC,∵AB2BC3=,∴CD2CF3=.∴设CD=2x,CF=3x,∴22DF=CF CD5x-.∴tan∠DCF=DF5x5=CD2x2=.【点睛】本题考查翻折变换(折叠问题),翻折对称的性质,矩形的性质,勾股定理,锐角三角函数定义.19.2(x+3)(x﹣3)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(x2﹣9)=2(x+3)(x﹣3)故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合解析:2(x+3)(x﹣3)【解析】【分析】原式提取2,再利用平方差公式分解即可.【详解】原式=2(x2﹣9)=2(x+3)(x﹣3),故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.20.【解析】分析:先根据题意得出a=2b再由分式的基本性质把原式进行化简把a=2b代入进行计算即可详解:∵=2∴a=2b原式==当a=2b时原式==故答案为点睛:本题考查的是分式的化简求值熟知分式的基本解析:3 2【解析】分析:先根据题意得出a=2b,再由分式的基本性质把原式进行化简,把a=2b代入进行计算即可.详解:∵ab=2,∴a=2b,原式=()()() a b a b a a b+--=a b a +当a=2b时,原式=22b bb+=32.故答案为32.点睛:本题考查的是分式的化简求值,熟知分式的基本性质是解答此题的关键.三、解答题21.(1)见解析;(2)ABD ∆,ACD ∆,ACE ∆,ABE ∆【解析】【分析】(1)首先证明△AFE ≌△DFB 可得AE=BD ,进而可证明AE=CD ,再由AE ∥BC 可利用一组对边平行且相等的四边形是平行四边形可得四边形ADCE 是平行四边形;(2)根据面积公式解答即可.【详解】证明:∵AD 是△ABC 的中线,∴BD=CD ,∵AE ∥BC ,∴∠AEF=∠DBF ,在△AFE 和△DFB 中,AEF DBF AFE BFD AF DF ===∠∠⎧⎪∠∠⎨⎪⎩,∴△AFE ≌△DFB (AAS ),∴AE=BD ,∴AE=CD ,∵AE ∥BC ,∴四边形ADCE 是平行四边形;(2)∵四边形ABCE 的面积为S ,∵BD=DC ,∴四边形ABCE 的面积可以分成三部分,即△ABD 的面积+△ADC 的面积+△AEC 的面积=S , ∴面积是12S 的三角形有△ABD ,△ACD ,△ACE ,△ABE . 【点睛】此题主要考查了平行四边形的判定,全等三角形的判定和性质.等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.22.(1)25;(2)80,100,2000;(3)该产品的成本单价应不超过65元.【解析】分析:(1)根据题意和表格中的数据可以求得y 关于x 的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w 的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.详解;(1)设y 关于x 的函数解析式为y=kx+b , 8517595125k b k b +⎧⎨+⎩==,得5600k b ==-⎧⎨⎩, 即y 关于x 的函数解析式是y=-5x+600,当x=115时,y=-5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85-a),得a=80,w=(-5x+600)(x-80)=-5x2+1000x-48000=-5(x-100)2+2000,∴当x=100时,w取得最大值,此时w=2000,(3)设科技创新后成本为b元,当x=90时,(-5×90+600)(90-b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.点睛:本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.x=;(2)原分式方程中“?”代表的数是-1.23.(1)0【解析】【分析】(1)“?”当成5,解分式方程即可,(2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答.【详解】x-得(1)方程两边同时乘以()2()+-=-x5321x=解得0x=是原分式方程的解.经检验,0(2)设?为m,x-得方程两边同时乘以()2()321+-=-m xx=是原分式方程的增根,由于2x=代入上面的等式得所以把2()m+-=-3221m=-1所以,原分式方程中“?”代表的数是-1.【点睛】本题考查了分式方程解法和增根的定义及应用.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.24.(1)a=6,b=179,c=188;(2)600;(3)详见解析.【解析】(1)依据中位数以及众数的定义即可将上面两个表格补充完整;(2)依据样本中能得满分(185个及以上)的同学所占的比例,即可估计该校初三年级学生中考跳绳成绩能得满分的人数;(3)依据两组数据的极差和平均数的大小,即可得到结论.【详解】(1)满足185≤x<190的数据有:186,188,186,185,186,187.∴a=6,20名男生的跳绳成绩排序后最中间的两个数据为178和180,∴b=(178+180)=179,20名男生的跳绳成绩中出现次数最多的数据为188,∴c=188,故答案为:6;179;188;(2)∵20名男生和20名女生的跳绳成绩中,185个及以上的有16个,∴该校初三年级学生中考跳绳成绩能得满分(185个及以上)的同学大约能有1500×=600(人);(3)理由:初三年级的女生跳绳成绩的极差较小,而平均数较大.【点睛】本题考查了用样本估计总体,中位数,众数,正确的理解题意是解题的关键.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.25.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据两锐角互余的关系可得∠ACD=∠BCE,利用SAS即可证明△ADC≌△BEC;(2)由△ADC≌△BEC可得∠ADC=∠E=90°,根据平行线判定定理即可证明AD//EC.【详解】(1)∵EC⊥DM,∴∠ECD=90°,∴∠ACB=∠DCE=90°,∴∠ACD+∠ACE=90°,∠BCE+∠ACE=90°,∴∠ACD=∠BCE,∵CD=CE,CA=CB,∴△ADC≌△BEC(SAS).(2)由(1)得△ADC≌△BEC,∵EC⊥BE,∴∠ADC=∠E=90°,∴AD⊥DM,∵EC⊥DM,∴AD∥EC.本题考查全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.。

【冲刺卷】高一数学上期中一模试卷带答案

【冲刺卷】高一数学上期中一模试卷带答案

【冲刺卷】高一数学上期中一模试卷带答案一、选择题1.设集合{1,2,3,4}A =,{}1,0,2,3B =-,{|12}C x R x =∈-≤<,则()A B C =A .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4}2.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( ) A .1,04⎛⎫-⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .13,24⎛⎫⎪⎝⎭3.若35225a b ==,则11a b +=( ) A .12B .14C .1D .24.函数()log a x xf x x=(01a <<)的图象大致形状是( )A .B .C .D .5.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-≤≤⋂=Z ,则A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,, 6.若函数()(),1231,1xa x f x a x x ⎧>⎪=⎨-+≤⎪⎩是R 上的减函数,则实数a 的取值范围是( )A .2,13⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤⎥⎝⎦D .2,3⎛⎫+∞⎪⎝⎭7.已知函数224()(log )log (4)1f x x x =++,则函数()f x 的最小值是A .2B .3116C .158D .18.函数sin21cos xy x=-的部分图像大致为A .B .C .D .9.函数()f x 的图象如图所示,则它的解析式可能是( )A .()212xx f x -=B .()()21xf x x =-C .()ln f x x =D .()1xf x xe =-10.已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)11.已知()()2,11,1x x f x f x x ⎧<⎪=⎨-≥⎪⎩,则()2log 7f =( )A .7B .72C .74D .7812.若函数2()sin ln(14)f x x ax x =⋅+的图象关于y 轴对称,则实数a 的值为( ) A .2B .2±C .4D .4±二、填空题13.下列各式:(1)122[(2)]2--= (2)已知2log 13a〈 ,则23a 〉 . (3)函数2xy =的图象与函数2x y -=-的图象关于原点对称;(4)函数()f x 21mx mx ++的定义域是R ,则m 的取值范围是04m <≤; (5)函数2ln()y x x =-+的递增区间为1,2⎛⎤-∞ ⎥⎝⎦.正确的...有________.(把你认为正确的序号全部写上) 14.己知函数()f x 是定义在R 上的周期为2的奇函数,01x <<时,()4xf x =,5()(2019)2f f -+的值是____.15.已知函数f(x)=log a x +x -b(a >0,且a≠1).当2<a <3<b <4时,函数f(x)的零点为x 0∈(n ,n +1),n ∈N *,则n= .16.已知1240x x a ++⋅>对一切(],1x ∞∈-上恒成立,则实数a 的取值范围是______. 17.用max{,,}a b c 表示,,a b c 三个数中的最大值,设{}2()max ln ,1,4(0)f x x x x x x =--->,则()f x 的最小值为_______.18.函数()()log 2a f x ax =-在[]0,1上是x 的减函数,则实数a 的取值范围是______. 19.已知实数0a ≠,函数2,1()2,1x a x f x x a x +<⎧=⎨--≥⎩若()()11f a f a -=+,则a 的值为___________.20.函数2()log 1f x x =-的定义域为________.三、解答题21.已知函数()()()lg 2lg 2f x x x =++-. (1)求函数()f x 的定义域;(2)若不等式f ()x m >有解,求实数m 的取值范围.22.某企业生产A ,B 两种产品,根据市场调查与预测,A 产品的利润与投资成正比,其关系如图1,B 产品的利润与投资的算术平方根成正比,其关系如图2,(注:利润与投资单位:万元)(1)分别将A ,B 两种产品的利润表示为投资的函数关系,并写出它们的函数关系式; (2)该企业已筹集到10万元资金,全部投入到A ,B 两种产品的生产,怎样分配资金,才能使企业获得最大利润,其最大利润约为多少万元(精确到1万元). 23.已知函数()2x f x =,1()22xg x =+.(1)求函数()g x 的值域;(2)求满足方程()()0f x g x -=的x 的值.24.已知函数()22f x ax ax b =-+()0a >在[]2,3上的值域为[]1,4.(1)求a ,b 的值;(2)设函数()()f xg x x=,若存在[]2,4x ∈,使得不等式()22log 2log 0g x k x -≥成立,求k 的取值范围.25.已知函数f (x )=log a (x+1)-log a (1-x ),a>0且a ≠1. (1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明; (3)当a>1时,求使f (x )>0的解集.26.设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,tan a b A =,且B 为钝角. (1)证明:2B A π-=; (2)求sin sin A C +的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:由题意首先进行并集运算,然后进行交集运算即可求得最终结果. 详解:由并集的定义可得:{}1,0,1,2,3,4A B ⋃=-, 结合交集的定义可知:(){}1,0,1A B C ⋃⋂=-. 本题选择C 选项.点睛:本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力.2.C解析:C 【解析】 【分析】先判断函数()f x 在R 上单调递增,由104102f f ⎧⎛⎫< ⎪⎪⎪⎝⎭⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,利用零点存在定理可得结果.【详解】因为函数()43xf x e x =+-在R 上连续单调递增,且114411221143204411431022f e e f e e ⎧⎛⎫=+⨯-=-<⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=+⨯-=-> ⎪⎪⎝⎭⎩, 所以函数的零点在区间11,42⎛⎫⎪⎝⎭内,故选C.【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.3.A解析:A 【解析】 【分析】由指数式与对数式的转化,结合换底公式和对数的运算,即可求解. 【详解】由题意3225,5225a b==根据指数式与对数式的转化可得35log 225,log 225a b == 由换底公式可得lg 2252lg15lg 2252lg15,lg 3lg 3lg 5lg 5a b ==== 由对数运算化简可得11lg 3lg 52lg152lg15a b +=+ lg3lg52lg15+=lg1512lg152== 故选:A 【点睛】本题考查了指数式与对数式的转化,对数的运算及换底公式的应用,属于中档题.4.C解析:C 【解析】 【分析】确定函数是奇函数,图象关于原点对称,x >0时,f (x )=log a x (0<a <1)是单调减函数,即可得出结论. 【详解】由题意,f (﹣x )=﹣f (x ),所以函数是奇函数,图象关于原点对称,排除B 、D ; x >0时,f (x )=log a x (0<a <1)是单调减函数,排除A . 故选C .【点睛】本题考查函数的图象,考查函数的奇偶性、单调性,正确分析函数的性质是关键.5.B解析:B 【解析】试题分析:依题意{}{}2,1,0,1,1,0,1,2,3,M N =--=-∴{}1,0,1M N ⋂=-. 考点:集合的运算6.C解析:C 【解析】 【分析】由题意结合分段函数的解析式分类讨论即可求得实数a 的取值范围. 【详解】当1x >时,x a 为减函数,则01a <<,当1x ≤时,一次函数()231a x -+为减函数,则230a -<,解得:23a >, 且在1x =处,有:()12311a a -⨯+≥,解得:34a ≤, 综上可得,实数a 的取值范围是23,34⎛⎤⎥⎝⎦.本题选择C 选项. 【点睛】对于分段函数的单调性,有两种基本的判断方法:一保证各段上同增(减)时,要注意上、下段间端点值间的大小关系;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断.7.B解析:B 【解析】 【分析】利用对数的运算法则将函数()()()224log log 41f x x x =++化为()2221log 1log 12x x +++,利用配方法可得结果.【详解】化简()()()224log log 41f x x x =++()2221log 1log 12x x =+++22211131log log 224161616x x ⎛⎫=++-≥-= ⎪⎝⎭,即()f x 的最小值为3116,故选B.【点睛】本题主要考查对数的运算法则以及二次函数配方法求最值,属于中档题. 求函数最值常见方法有,①配方法:若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域;②换元法;③不等式法;④单调性法;⑤图象法.8.C解析:C 【解析】 由题意知,函数sin 21cos xy x =-为奇函数,故排除B ;当πx =时,0y =,故排除D ;当1x =时,sin 201cos 2y =>-,故排除A .故选C . 点睛:函数图像问题首先关注定义域,从图像的对称性,分析函数的奇偶性,根据函数的奇偶性排除部分选择项,从图像的最高点、最低点,分析函数的最值、极值,利用特值检验,较难的需要研究单调性、极值等,从图像的走向趋势,分析函数的单调性、周期性等.9.B解析:B 【解析】 【分析】根据定义域排除C ,求出()1f 的值,可以排除D ,考虑()100f -排除A . 【详解】根据函数图象得定义域为R ,所以C 不合题意;D 选项,计算()11f e =-,不符合函数图象;对于A 选项, ()10010099992f -=⨯与函数图象不一致;B 选项符合函数图象特征.故选:B 【点睛】此题考查根据函数图象选择合适的解析式,主要利用函数性质分析,常见方法为排除法.10.C解析:C 【解析】分析:首先根据g (x )存在2个零点,得到方程()0f x x a ++=有两个解,将其转化为()f x x a =--有两个解,即直线y x a =--与曲线()y f x =有两个交点,根据题中所给的函数解析式,画出函数()f x 的图像(将(0)x e x >去掉),再画出直线y x =-,并将其上下移动,从图中可以发现,当1a -≤时,满足y x a =--与曲线()y f x =有两个交点,从而求得结果.详解:画出函数()f x 的图像,xy e =在y 轴右侧的去掉,再画出直线y x =-,之后上下移动,可以发现当直线过点A 时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点, 即方程()f x x a =--有两个解, 也就是函数()g x 有两个零点, 此时满足1a -≤,即1a ≥-,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.11.C解析:C 【解析】 【分析】根据函数的周期性以及分段函数的表达式,结合对数的运算法则,代入即可得到结论. 【详解】2222log 4log 7log 83=<<=,20log 721∴<-<,()()2log 72227log 7log 7224f f -∴=-==. 故选:C . 【点睛】本题主要考查函数值的计算,根据分段函数的表达式以及函数的周期性进行转化是解决本题的关键.12.B解析:B 【解析】 【分析】根据图象对称关系可知函数为偶函数,得到()()f x f x =-,进而得到ax +=.【详解】()f x 图象关于y 轴对称,即()f x 为偶函数 ()()f x f x ∴=-即:()sin ln sin lnsin lnx ax x ax x ⋅+=-⋅=⋅ax ∴+=恒成立,即:222141x a x +-=24a ∴=,解得:2a =± 本题正确选项:B 【点睛】本题考查根据函数的奇偶性求解参数值的问题,关键是能够明确恒成立时,对应项的系数相同,属于常考题型.二、填空题13.(3)【解析】(1)所以错误;(2)当时恒成立;当时综上或所以错误;(3)函数上任取一点则点落在函数上所以两个函数关于原点对称正确;(4)定义域为当时成立;当时得综上所以错误;(5)定义域为由复合函解析:(3) 【解析】(1)(1122212---⎛⎫⎡⎤== ⎪⎢⎥⎣⎦⎝⎭,所以错误;(2)2log 1log 3aa a <=,当1a >时,恒成立;当01a <<时,023a <<,综上,023a <<或1a >,所以错误; (3)函数2xy =上任取一点(),x y ,则点(),x y --落在函数2x y -=-上,所以两个函数关于原点对称,正确;(4)定义域为R ,当0m =时,成立;当0m >时,240m m ∆=-≤,得04m <≤,综上,04m ≤≤,所以错误;(5)定义域为()0,1,由复合函数的单调性性质可知,所求增区间为10,2⎛⎫ ⎪⎝⎭,所以错误;所以正确的有(3)。

高考精英数学之冲刺点题篇参考答案及评分标准

高考精英数学之冲刺点题篇参考答案及评分标准

网络课程内部讲义高考精英数学之冲刺点题篇参考答案及评分标准教师:苗金利 “在线名师”→ 资料室 免费资料任你下载2010届高考数学冲刺模拟(一)参考答案及评分标准一. 选择题:每小题5分,共60分. BBAA C BCA 二. 填空题:每小题5分,共20分.9.4123π+; 10.-2; 11. 12; 12.30 13.5 14.1 三. 解答题:解答应写出文字说明,证明过程或演算步骤.共80分.15.解:(Ⅰ)设数列{}n a 的公比为q (q ∈R),依题意可得2(54a +)4a =6a +, (2分) 即2(244q +)344q q =+,整理得,2(1)(2)0q q +−=(4分)∵q ∈R ,∴q =2,11a =. ∴数列{}n a 的通项公式12n n a −=(6分)(Ⅱ)由(Ⅰ)知12n n a −=,∴21nn S =−∴2121212121n n n nn a S ++==+−− (10分) ∵n ≥1,∴21n −≥1,∴2121n +−≤3 ∴当1n =时,21n na S +有最大值3 . (12分) 16.解:(Ⅰ)∵平面BDEF ⊥平面ABCD ,ED ⊥BD ,∴ED ⊥平面ABCD (2分) 连接AC 交BD 于点O ,连接FO ,∵正方形ABCD 2,∴AC =BD =2; 在直角梯形BDEF 中,∵EF = ED =1,O 为BD 中点,∴FO ∥ED ,且1FO =; 易求得2AF CF ==,3AE CE =, 由勾股定理知CF ⊥EF ,AF ⊥EF由2AF CF ==AC = 2可知CF ⊥AF .EF ∩AF=F ,∴CF ⊥平面AEF∵点P 为线段EF 上任意一点,∴AP ⊂平面AEF ∴CF ⊥AP (6分) (Ⅱ)取AF 中点M ,AE 中点N ,连接BM 、MN 、BN ,∵AB =AF =BF 2,∴BM ⊥AF ,又MN ∥EF ,AF ⊥EF ∴MN ⊥AF ∴∠BMN 是二面角B AF E −−的平面角.(9分)PACD EOFMN QNQ ⊥BQ ,可求得222114BN NQ BQ =+=,在△BMN 中,由余弦定理求得,cos ∠BMN 63= 二面角B AF E −−的余弦值为63(14分)(向量方法,未证明ED ⊥平面ABCD 直接建系,而后续部分全部正确的扣2分) 17.解:(Ⅰ)125; 25% (2分)(Ⅱ) 解:设取到醉酒驾车的人数为随机变量ξ,则ξ可能取到的值有0,1,2262815(0)28C p C ξ=== ,1162283(1)7C C p C ξ⋅===,22281(2)28C p C ξ===. 则分布列如下12E ξ=,实际意义:在抽取的两人中平均含有0.5个醉酒驾车人员. (8分)(Ⅲ)p 1=−620.90.750.70⋅≈(12分) 一句话倡议:答案开放,教师酌情给分(14分)18.解: (Ⅰ)112211(,).(,),(,).P x y Q x y M x y −设∵AP AQ λ=∴121(1)x x λ+=+,12y y λ=,∴22212y y λ=2114y x =2224y x =212x x λ=∴2221(1)x x λλ+=+,2(1)(1)x λλλ−=−∵1λ≠,∴211x x λλ==,, (3分)又(10)F ,,∴11221(1)(1)(1)MF x y y y FQ λλλλλ=−=−=−= ,,,∴直线MQ 经过抛物线C 的焦点F (5分)(Ⅱ)由(Ⅰ)知21121,,1x x x x λλ===得,2212121616y y x x ⋅==,120y y >,124y y =,则2221212()()PQ x x y y =−+−2222121212122()x x y y x x y y =+++−+ 211(4()12λλλλ=+++−21(2)16λλ=++− (9分)ξ 0 1 2 P152837128 “在线名师”→ 资料室 免费资料任你下载11[,32λ∈,151023λλ⎡⎤+∈⎢⎥⎣⎦,,当1103λλ+=,即13λ=时,2PQ 有最大值1129 PQ 的最大值为473,(11分)此时(323)Q ±,, 3PQ k =PQ 3230y ±=(14分)19.解:(Ⅰ)依题意知()f x 的定义域为(0,)+∞ (1分) 当0a =时,2212121()2ln ,()x f x x f x x x x x −′=+=−= 令()0f x ′=,解得12x = 当102x <<时,()0f x ′<;当12x >时,()0f x ′>又∵1()2ln 22f =− ∴()f x 的极小值为22ln 2−,无极大值 (4分)(Ⅱ)222212(2)1()2a ax a x f x a x x x −+−−′=−+= (5分)当2a <−时,112a −<,令()0f x ′<,得1102x x a <<−或>,令()0f x ′>得112x a −<<当20a −<<时,得112a −>,令()0f x ′<得102x <<或1x a >−;令()0f x ′>得112x a <<−;当2a =−时,22(21)()0x f x x −′=−≤ 综上所述,当2a <−时,()f x 的递减区间为1(0,a −和1(,)2+∞,递增区间为11(),2a −;当2a =−时,()f x 在(0,)+∞单调递减;当20a −<<时,()f x 的递减区间为1(0,)2和1(,)a −+∞,递增区间为11(,)2a−.(8分)(Ⅲ)由(Ⅱ)可知,当(3,2)a ∈−−时,()f x 在区间[1,3]上单调递减. 当1x =时,()f x 取最大值;当3x =时,()f x 取最小值;12()()(1)(3)f x f x f f −≤−1(12)[(2)ln 36]3a a a =+−−++ 24(2)ln 33a a =−+−(10分)∵12(ln 3)2ln 3()()m a f x f x +−>−恒成立,∴2(ln 3)2ln 34(2)ln 33m a a a +−>−+− 整理得243ma a >−,∵0a <,∴243m a<−恒成立,∵32a −<<−, ∴132384339a −<−<−,∴m ≤133−(14分) “在线名师”→ 答疑室 随时随地提问互动在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.20.解:(Ⅰ)∵AD 平分∠EAC ,∴∠EAD =∠DAC . ∵四边形AFBC 内接于圆,∴∠DAC =∠FBC .∵∠EAD =∠F AB =∠FCB ,∴∠FBC =∠FCB ,∴FB =FC . (4分) (Ⅱ)∵∠F AB =∠FCB =∠FBC ,∠AFB =∠BFD , ∴ΔFBA ∽ΔFDB . ∴FB FAFD FB=, ∴FB 2=F A ·FD . (8分)(Ⅲ)∵AB 是圆的直径,∴∠ACB =90°∵∠EAC =120°,∴∠DAC =12∠EAC =60° (12分) 21.解:(Ⅰ)将C 转化普通方程为:2213x y +=将l 转化为直角坐标方程为:40x y +−=(5分)(Ⅱ)在2213x y +=上任取一点A)3sin αα,,则点A 到直线的距离为3cos sin 42sin(60)42d ααα+−+−==,它的最大值为3. (12分)22. 解:(Ⅰ)y =1421213323243x x x x x x x x ⎧−−≤−⎪⎪⎪+−−=−−<<⎨⎪+≥⎪⎪⎩,,,,做出函数213y x x =+−−的图像,它与直线4y =的交点为(-8,4)和(2,4). 213x x +−−≤4的解集为[-8,2].(7分)(Ⅱ)由213y x x =+−−的图像可知当12x =−时,min 7()2f x =−.∴存在x 使得()f x a +≤0成立⇔-a ≥min ()f x ⇔a ≤72(12分)3 21−xy4=O “在线名师”→ 资料室 免费资料任你下载2010届高考数学冲刺模拟(二)参考答案及评分标准一.选择题:BBCD BACD解析:1:在第二象限角内通过余弦函数线cos α>cos β找出α、β的终边位置关系,再作出判断,得B 。

数学冲刺班中考试题及答案

数学冲刺班中考试题及答案

数学冲刺班中考试题及答案中考临近,许多学生都在寻找有效的复习方法和资料。

数学冲刺班就是其中一种帮助学生快速提高成绩的方式。

以下是一份数学冲刺班中考试题及答案,供同学们参考和练习。

一、选择题1. 下列哪个数是无理数?A. 2.5B. 3.14C. πD. √2答案:C2. 如果一个三角形的两边长分别为3和4,且这两边夹角为90°,那么第三边的长度是多少?A. 5B. 6C. 7D. 8答案:A二、填空题1. 已知一个圆的半径为5,那么这个圆的面积是_________(答案:25π)。

2. 如果一个多项式f(x) = x^2 - 5x + 6,那么f(2)的值是_________(答案:0)。

三、解答题1. 解不等式:2x + 5 > 3x - 2。

首先,将不等式中的项进行整理,得到2x - 3x > -2 - 5,即-x > -7。

解得x < 7。

2. 已知一个直角三角形的两个直角边分别为6和8,求斜边的长度。

根据勾股定理,斜边的长度为√(6^2 + 8^2) = √(36 + 64) =√100 = 10。

四、证明题1. 证明:对于任意一个直角三角形,其斜边的平方等于两个直角边的平方和。

设直角三角形的两个直角边分别为a和b,斜边为c。

根据勾股定理,我们有c^2 = a^2 + b^2。

这就是需要证明的结论。

五、应用题1. 一个农场主想要围成一个矩形的鸡舍,他有120米的围栏。

如果鸡舍的长是宽的两倍,那么鸡舍的长和宽各是多少?设鸡舍的宽为x米,那么长为2x米。

根据题意,我们有2(x + 2x) = 120,解得x = 15,所以宽为15米,长为30米。

结束语通过以上的数学冲刺班中考试题及答案,同学们可以检验自己的数学知识掌握情况,同时也能够对中考的题型有一个大致的了解。

希望同学们能够通过不断的练习,提高自己的数学解题能力,为中考做好充分的准备。

祝所有考生中考顺利,取得优异的成绩!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2
(15) (本题满分
xf x¢ + yf y¢ æ 1 ö f ( 0, 0 ) = 2009 ,试求极限 I = lim+ ç dxdy 。 ÷ òò e ®0 è 2p ø e 2 £ x 2 + y 2 £1 x 2 + y 2
(16 )(本题满分 10 分)设 f ( x ) 连续,且对任意实数 x 及正常数 T ,均有 òx
( A ) A + E =1 ( C ) r ( E - A) =2 ( B ) 2 E + A为正定矩阵 ( D ) Ax = 0的解空间的维数为1
T 对应的单位特征向量为 x1 , x2 , 则与 A + x1x1 相似的是 ( 6 ) 2 阶实对称矩阵 A 具有相异的特征值 l1 ,l2 ,

*
= _____
(14 ) 设 ( X 1 , X 2 ) 是来自整体 X ~ N ( 0, s 2 ) 的样本,则
X1 + X 2 满足的分布为 _________ 。 X1 - X 2
2
2009 智轩考研数学一极点冲刺金卷 //
得分 评卷人 三、解答题:15~23 小题,共 94 分。请将解答写在在答题纸指定位置上。解答应写出文字 说明、证明过程或演算步骤。 10 分)设 f ( x, y ) 在单位圆 x + y £ 1 上有连续的偏导数,且在其边界上取值为 0,
沿 v = 2 xy + z 2 的梯度方向的方向导数为最大。
1 ì1 - x 2 , x < 0 18 (本题满分 10 分)如果 f x = ,求 ò f é ( ) ( ) í ë f ( x )ù ûdx 。 -2 1 + x , x ³ 0 î
4
2009 智轩考研数学一极点冲刺金卷 //
7
0£ x£ 1 2
(
)
ì x, ï ï (11) 设 f ( x ) 以 2 为周期且为偶函数, f ( x ) = í ï 2 - 2 x, ï î
S ( x) =
1 < x £1 2
,其付氏级数的和函数为 S ( x ) ,且
a0 ¥ 5ù é + å an cos np ( -¥ < x < +¥ ) ,则当 x Î ê -3, - ú 时, S ( x ) = _____________ 。 2 n =1 2û ë
的可去间断点的个数是
( A) (C )
0 2
( B) 1 ( D) 3
【 】
1 ì ï x arctan x , x ¹ 0 ,则 f ( x ) 在 x = 0 处 ( 3) 设 f ( x ) = í ï0, x=0 î
( A ) 不连续 ( C ) 可导但f ¢ ( x ) 在x = 0处不连续
x x é ë f ( 3x ) + f ( 2 x )ù û ln ( 3 + 2 - 1) ,则 lim = __________ 。 ( 9 ) 已知函数 f ( x ) 在原点处与 y = sin x 相切, x ®0 ( 3x + 2x - 2 ) tan x
(10 )
ò
p 2 p 2
é sin 2 x ù 2 ln x + 1 + x + dx = _____________ 。 ê 1 + e- x ú ë û
5
2009 智轩考研数学一极点冲刺金卷 //
ì( a + 3) x1 + x2 + 2 x3 = 0 3 1 2 ï ( 21) (本题满分 11 分)已知 í2ax1 + ( a - 1) x2 + x3 = 0 有非零解, A = 1 a -2 正定,求当 ï 2 -2 9 î( a - 3) x1 - 3x2 + ax3 = 0
2009 智轩考研数学一极点冲刺金卷 // 绝密★启用前 2009 年全国硕士研究生入学统一考试
数学(一)试卷【模拟一】
考生注意:本试卷共二十三题,满分 150 分,考试时间为 180 分钟。 一、选择题:1~8 小题,每小题 4 分,共 32 分。在每小题给出的四个选项中,只有一个符 得分 评卷人 合要求,请将所选项前的字母填在答题纸指定位置上,本卷为题后的括号里。
x +T
ò f ( t ) dt 。 f ( t )dt = 4 ,求 lim
0 x ®+¥
x
x
3
2009 智轩考研数学一极点冲刺金卷 //
(17 ) (本题满分 10 分)在曲面 x 2 + y 2 + z 2 = 1 上求一点 M ( x0 , y0 , z0 ) ,使函数 u = x 2 - y 2 + 4 z 2 在点 M 处
y +1 4z - 4 = ; x + 1 = y - 1 = z 相交,则 l _____________ 。 l 5
(12 ) 两直线 x - 1 =
(13) 已知 A, B 为 3 阶相似矩阵,
l1 = 1, l2 = 2 为 A 的两个特征值, B = 2 ,则
( A+ E)
0
-1
0
( 2B )
(19 ) (本题满分 10 分)求解微分方程: ( x 2 ln x ) y¢¢ - xy¢ + y = 0 。
é a b cù é1 0 2 ù ú ê ú -1 ( 20 ) (本题满分 11 分)已知 A = ê ê -3 3 -1ú 与 B = ê0 2 0 ú 相似,求可逆矩阵 P ,使 P AP = B 。 ê ê ë -15 8 -6 ú û ë0 4 -1ú û
X T X = 2 时 X T AX 的最大值。
( 22 ) (本题满分 11 分)设 X ~ E ( l ) , Y = ï í
ìX , ï î- X ,
X £1 X >1
,求
( a ) P { X + Y = 0} ; ( b ) 分布函数 FY ( y ) 。
6
2009 智轩考研数学一极点冲刺金卷 //ຫໍສະໝຸດ 率为 【 】( A) (C )
1 2 1 4
(B)
1 3 1 ( D) 5
1] 均匀分布,则 E ( 8) 设 X ,Y 相互独立,且都服从 [ -1,
X -Y =
【 】
( A) (C )
得分 评卷人
0 2 3
( B)
1 3 4 ( D) 3
二、填空题:9~14 小题,每小题 4 分,共 24 分。请将答案写在在答题纸指定位置上。
(1) 极限 I = ( x, ylim )®( 0,0 )
1 12 1 (C ) 6
tan
(
x 2 + y 2 - sin x 2 + y 2 + 1 - 1 2
)
(x
2
+ y2
)
3
的值是
【 】
-1
( A)
(B)
1 6 ln 2 1 ( D) 12 ln 2
【 】
( 2) f ( x ) =
x ( x + 2) sin p x
( B ) 连续但不可导 ( D ) 可导且f ¢ ( x ) 在x = 0处连续
y - x 2 x 2 dy 的值为
【 】
( 4 ) 设 L : 为 x 2 + y 2 = 2 正向一周,则 I = òL ydx +
( A) (C )
0 - 2p
( B ) 2p ( D) -p
【 】
( 5) 设 A 为四阶实对称矩阵,满足 A3 - A = 0 ,且正负惯性指数均为 1,则

1
2009 智轩考研数学一极点冲刺金卷 //
( A) (C )
él1 ù ê l2 ú ë û él1 + 1 ù ê l2 ú ë û
( B)
él1 + 1 ù ê l2 + 1ú ë û él ù ( D) ê 1 l2 + 1ú ë û
( 7 ) 设 10 件产品中有 4 件不合格,从中任取 2 件,已知两件中有一件是不合格品,则另一件也是不合格品的概
( 23) (本题满分 11 分)设 X 1 , X 2 ,L , X n ( n > 7 ) 相互独立同分布, P { X i = 2} = p,
P { X i = 0} = 1 - p
X = 2 X 1 X 2 X 3 X 4 + 3 X 5 X 6 X 7 ,求 ( a ) X 的概率分布; ( b ) 求 X i - X 与 X j - X ( i ¹ j ) 的相关系数。
相关文档
最新文档