基于DSP的正弦波信号发生器

合集下载

基于DSP的正弦信号发生器的设计

基于DSP的正弦信号发生器的设计

软件设计
正弦波子程序流程图 :
软件设计
调幅和调相流程图: 调幅和调相流程图:
汇报内容
• • • • • • 背景 正弦波信号发生器的几种实现方法比较 正弦波信号发生器的数字实现 硬件设计 软件设计 结论
结论
文中分析了正弦波的产生原理,并给出了硬 件电路和软件编写流程;设计了一个更好的 实现人机对话的正弦波信号发生器,给出了 显示和键盘的接口电路。该设计改进了传统 的需要用软件界面来输入幅值和频率值的方 法,更方便的实现调节输出波形的幅值和频 率值。
正弦波信号发生的数字实现 产生正弦波的方法有两种:
查表法。 优点:处理速度快;调频调相容易。 不足:要得到较高的精度,存储空间足够大以存放 查找表。 适用:对精度要求不高的场合。 泰勒级数展开法。 优点:需要的存储单元很少;精度高;展开的级数 越多,失真度就越小;调频调相易。 不足:处理速度慢。
正弦波信号发生的数字实现
硬件设计
DSP与LCD显示和键盘连接电路: DSP与LCD显示和键盘连接电路: 显示和键盘连接电路
硬件设计
键盘电路:
汇报内容
• • • • • • 背景 正弦波信号发生器的几种实现方法比较 正弦波信号发生器的数字实现 硬件设计 软件设计 结论
软件设计
主程序流程图: 主程序流程图:
设计采用采用模块化思路来编写,包括主程序、 设计采用采用模块化思路来编写,包括主程序、正 采用模块化思路来编写 弦波产生程序、调幅和调相子程序等功能子程序。 弦波产生程序、调幅和调相子程序等功能子程序。
性差,波形精度不够高且用较多硬件等。
正弦波信号发生器的几种实现方法比较
基于DSP的正弦波信号发生器:
组成:DSP处理芯片、 D/A转换器等。 优点:可程控调幅、调频,调节精度高,实

基于DSP设计正弦信号发生器

基于DSP设计正弦信号发生器

基于DSP设计正弦信号发生器一.设计目的设计一个基于DSP的正弦信号发生器二.设计内容利用基于CCS开发环境中的C54X汇编语言来实现正弦信号发生装置。

三.设计原理一般情况,产生正弦波的方法有两种:查表法和泰勒级数展开法。

查表法是使用比较普遍的方法,优点是处理速度快,调频调相容易,精度高,但需要的存储器容量很大。

泰勒级数展开法需要的存储单元少,具有稳定性好,算法简单,易于编程等优点,而且展开的级数越多,失真度就越小。

本文采用了泰勒级数展开法。

一个角度为θ的正弦和余弦函数,可以展开成泰勒级数,取其前5项进行近似得:式中:x为θ的弧度值,x=2πf/fs(fs是采样频率;f是所要发生的信号频率。

正弦波的波形可以看作由无数点组成,这些点与x轴的每一个角度值相对应,可以利用DSP处理器处理大量重复计算的优势来计算x轴每一点对应的y的值(在x轴取N个点进行逼近)。

整个系统软件由主程序和基于泰勒展开法的SIN子程序组成,相应的软件流程图如图。

三.总体方案设计本设计采用TMS320C54X系列的DSP作为正弦信号发生器的核心控制芯片。

通过计算一个角度的正弦值和余弦值程序可实现正弦波,其步骤如下:1.利用sinx和cosx子程序,计算0°~45°(间隔为0.5°)的正弦和余弦值2.利用sin(2x)=2sin(x)cos(x)公式,计算0°~90°的正弦值(间隔为1°)3.通过复制,获得0°~359°的正弦值4.将0°~359°的正弦值重复从PA口输出,便可得到正弦波四.软件操作DSP 集成开发环境 CCS是 Code Composer Studio 的缩写,即代码设计工作室。

它是 TI 公司推出的集成可视化 DSP 软件开发工具。

DSP CCS 内部集成了以下软件工具:◆ DSP 代码产生工具(包括 DSP 的 C 编译器、汇编优化器、汇编器和链接器)◆ CCS 集成开发环境(包括编辑、建立和调试 DSP 目标程序)◆ 实时基础软件 DSP/BIOS (必须具有硬件开发板)◆ RTDX、主机接口和 API(必须具有硬件开发板)在 CCS 下,用户可以对软件进行编辑、编译、调试、代码性能测试(profile)和项目管理等工作。

DSP课程设计正弦信号发生器的设计(精)

DSP课程设计正弦信号发生器的设计(精)

太原理工大学 DSP课程设计设计题目:正弦信号发生器的设计班级:电信0801班姓名:凌天一、设计目的1、通过实验掌握DSP的软件开发过程2、学会运用汇编语言进行程序设计3、学会用CCS仿真模拟DSP芯片,通过CCS软件平台上应用C54X汇编语言来实现正弦信号发生装置。

二、设计原理本实验产生正弦波的方法是泰勒级数展开法。

泰勒级数展开法需要的存储单元少,具有稳定性好,算法简单,易于编程等优点,而且展开的级数越多,失真度就越小。

求一个角度的正弦值取泰勒级数的前5项,得近似计算式:x3x5x7x9sin(x)=x-+-+3!5!7!9!2222xxxx =x1-1-1-1-(三、总体方案设计 2⨯3(4⨯5(6⨯7(8⨯9))))本实验是基于CCS开发环境的。

CCS是TI公司推出的为开发TMS320系列DSP 软件的集成开发环境,是目前使用最为广泛的DSP开发软件之一。

它提供了环境配置、源文件编译、编译连接、程序调试、跟踪分析等环节,并把软、硬件开发工具集成在一起,使程序的编写、汇编、程序的软硬件仿真和调试等开发工作在统一的环境中进行,从而加速软件开发进程。

通过CCS软件平台上应用C54X汇编语言来实现正弦信号发生装置。

总体思想是:正弦波的波形可以看作由无数点组成,这些点与x轴的每一个角度值相对应,可以利用DSP处理器处理大量重复计算的优势来计算x轴每一点对应的y的值(在x轴取N个点进行逼近)。

整个系统软件由主程序和基于泰勒展开法的SIN子程序组成,相应的软件流程图如图。

四、设计内容1、设置在Family下选择C55xx,将看到所有C55xx的仿真驱动,包括软件仿真和硬件仿真;在Platform下选择Simulator,在Available Factory Boards中只显示软件仿真驱动,选中相应的驱动;双击C55xx Rev4.0 CPU Functional Simulator,可以在My System下看到所加入的驱动;点击Save & Quit,将保存设置退出Setup CCStudio v3.1并启动运行CCStudio。

基于DSP的信号发生器

基于DSP的信号发生器

基于DSP的信号发生器——正弦信号院系:班级:学号:姓名:老师:2015年12月15日一、DSP简介数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。

数字信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。

因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现。

而数字信号处理的输出经常也要变换到模拟域,这是通过数模转换器实现的。

20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。

数字信号处理是一种通过使用数学技巧执行转换或提取信息,来处理现实信号的方法,这些信号由数字序列表示。

在过去的二十多年时间里,信号处理已经在通信等领域得到极为广泛的应用。

图1是数字信号处理系统的简化框图。

此系统先将模拟信号转换为数字信号,经数字信号处理后,再转换成模拟信号输出。

其中抗混叠滤波器的作用是将输入信号x(t)中高于折叠频率的分量滤除,以防止信号频谱的混叠。

随后,信号经采样和A/D转换后,变成数字信号x(n)。

数字信号处理器对x(n)进行处理,得到输出数字信号y(n),经D/A转换器变成模拟信号。

此信号经低通滤波器,滤图1数字信号处理系统简化框图数字信号处理是以众多学科为理论基础的,它所涉及的范围极其广泛。

例如,在数学领域,微积分、概率统计、随机过程、数值分析等都是数字信号处理的基本工具,与网络理论、信号与系统、控制论、通信理论、故障诊断等也密切相关。

近来新兴的一些学科,如人工智能、模式识别、神经网络等,都与数字信号处理密不可分。

可以说,数字信号处理是把许多经典的理论体系作为自己的理论基础,同时又使自己成为一系列新兴学科的理论基础。

二、信号发生器简介信号源有很多种分类方法,其中一种方法可分为混和信号源和逻辑信号源两种。

其中混和信号源主要输出模拟波形,逻辑信号源输出数字波形。

基于DSP的正弦信号发生器

基于DSP的正弦信号发生器

基于DSP的正弦信号发生器1.正弦信号在各种科学和工程领域中广泛应用,如通信系统、音频处理、医学诊断等。

因此,制作一个能够生成正弦信号的设备是非常必要的。

传统的方法是使用模拟电路,但这种方法需要用到很多电子元器件,难以控制和调整。

同时,传统的模拟电路还容易受到电磁干扰、温度等环境因素的影响,导致输出的信号失真。

因此,数字信号处理(DSP)技术逐渐成为生成正弦波信号的常见方法,能够实现高精度、低失真的输出。

2. 设计概述本文介绍一种基于DSP的正弦信号发生器的设计。

该设计采用TMS320C5505数字信号处理芯片和信号解调电路,通过软件和硬件设计,实现了一个高精度、低失真的正弦信号发生器。

2.1 硬件设计本设计采用了TMS320C5505数字信号处理器集成电路作为主控芯片。

该芯片具有低功耗、高性能、灵活性和易于开发等优点。

除此之外,还需要电源模块、时钟模块、信号解调模块等。

2.2 软件设计本设计采用了C语言进行程序设计。

使用Code Composer Studio作为开发环境,将程序编译后烧录到芯片中。

代码的主要实现过程为:1.生成一个只包含一周期正弦波形的信号2.将该信号送入DA(Digital to Analog)转换器,使其变为模拟信号3.经过信号解调器后输出到外部接口信号的生成采用的是Taylor级数展开,可以实现高精度的波形生成。

信号解调电路主要是由低通滤波器、防干扰电路和放大电路等模块组成。

3. 实验结果经过实验测试,本设计输出的正弦波信号的频率可以在0~10kHz范围内任意设定。

信号的失真率小于0.1%。

同时,本设计还支持正弦波的相位调节和幅度调节等功能。

通过外部的控制,可以实现信号的精准控制和调节。

4.本文介绍了一种基于DSP的正弦信号发生器的设计,通过使用数字信号处理技术,实现了高精度、低失真的正弦波信号的生成。

该设计具有灵活性和可扩展性,可以为各种科学和工程领域提供高精度的正弦信号源。

基于DSP的正弦波信号发生器(汇编语言)

基于DSP的正弦波信号发生器(汇编语言)

正弦波信号发生器一、实验目的1.了解用泰勒级数展开法计算角度正弦值和余弦值;2.了解产生正弦信号的方法;3.熟悉使用汇编语言编写较复杂的程序;4.熟悉在CCS 环境下计算角度正弦值和余弦值及产生正弦波的方法;二、实验原理泰勒级数展开法是根据泰勒展开式进行计算来实现正弦信号,它能精确地计算出一个角度的正弦和余弦值,且只需要较小的存储空间。

正弦函数和余弦函数可以展开成泰勒级数,其表达式:递推公式: sin()2cos()sin[(1)]sin[(2)]cos()2cos()sin[(1)]cos[(2)]nx x n x n x nx x n x n x =---=--- 由递推公式可以看出,在计算正弦和余弦值时,需要已知cos(x )、sin(n -1)x 、sin(n -2)x 和cos(n -2)x 。

用这种方法求少数点还可以,如产生连续正弦波、余弦波,则积累误差太大,不可取。

下面主要用泰勒级数展开法求正弦和余弦值,以及产生正弦波的方法。

三、实验内容与步骤1.用泰勒级数展开法计算sin(x)的值;(1)在 CCS 中新建项目:sinx.pjt ,建立文件sinx.asm 、vectors.asm 和sinx.cmd 。

并将此三个文件加入到项目中。

******************************************************* 用泰勒级数开展开式计算一个角度的正弦值 **sin(x)=x(1-x*x/2*3(1-x*x/4*5(1-x*x/6*7(1-x*x/8*9))))*******************************************************.title "sinx.asm".mmregs .def startSTACK: .usect "STACK",10start: STM #STACK+10,SPLD #d_x,DPST #6487H,d_x ;x-->d_x CALLsin_start end:B end sin_start:35792222sin()3!5!7!9! 111123456789(((())))x x x x x x x x x x x =-+-+=----⨯⨯⨯⨯24682222cos()12!4!6!8! 11112345678((()))x x x x x x x x x =-+-+=----⨯⨯⨯.def sin_startd_coeff .usect "coeff",4.datatable: .word 01C7H ;c1=1/(8*9).word 030BH ;c2=1/(6*7).word 0666H ;c3=1/(4*5).word 1556H ;c4=1/(2*3)d_x .usect "sin_vars",1d_squr_x .usect "sin_vars",1d_temp .usect "sin_vars",1d_sinx .usect "sin_vars",1c_1 .usect "sin_vars",1.textSSBX FRCTSTM #d_coeff,AR5RPT #3MVPD #table,*AR5+STM #d_coeff,AR3STM #d_x,AR2STM #c_1,AR4ST #7FFFH,c_1SQUR *AR2+,A ;A=x^2ST A,*AR2 ;(AR2)=x^2||LD *AR4,B ;B=1MASR *AR2+,*AR3+,B,A ;A=1-x^2/72,T=x^2MPYA A ;A=T*A=x^2(1-x^2/72)STH A,*AR2 ;(d_temp)=x^2(1-x^2/72)MASR *AR2-,*AR3+,B,A ;A=1-x^2/42(1-x^2/72),T=x^2(1-x^2/72)MPYA *AR2+ ;B=x^2(1-x^2/42(1-x^2/72))ST B,*AR2 ;(d_temp)=x^2(1-x^2/42(1-x^2/72))||LD *AR4,B ;B=1MASR *AR2-,*AR3+,B,A ;A=1-x^2/20(1-x^2/42(1-x^2/72))MPYA *AR2+ ;B=x^2(1-x^2/20(1-x^2/42(1-x^2/72)))ST B,*AR2 ;(d_temp)=B||LD *AR4,B ;B=1MASR *AR2-,*AR3+,B,A ;A=1-x^2/6(1-x^2/20(1-x^2/42(1-x^2/72)))MPYA d_x ;B=x(1-x^2/6(1-x^2/20(1-x^2/42(1-x^2/72))))STH B,d_sinx ;sin(theta)RET.end*******************************************************中断向量文件vectors.asm******************************************************.title "vectors.asm".ref start.sect ".vectors"B start.end*******************************************************链接命令文件******************************************************vectors.objsinx.obj-O sinx.out-m sinx.map-estartMEMORY{PAGE 0:EPROM: org=0090H,len=0F70HVECS: org=0080H,len=0010HPAGE 1:SPRAM: org=1000H,len=1000HDARAM: org=2000H,len=2000H}SECTIONS{.text :>EPROM PAGE 0.data :>EPROM PAGE 0STACK :>SPRAM PAGE 1sin_vars :>DARAM PAGE 1coeff :>DARAM PAGE 1.vectors :>VECS PAGE 0}(2)编译、链接项目文件sinx.pjt。

基于DSP控制的正弦波和三角波发生器的设计毕业论文 精品

基于DSP控制的正弦波和三角波发生器的设计毕业论文 精品

毕业设计题目名称基于DSP控制的正弦波和三角波发生器的设计学院电气信息工程学院专业/班级自动化09102学生学号指导教师(职称)葛延津(教授)严海领(助教)摘要信号发生器发展到今天,在电子测试、电子设计、模拟仿真、通信工程中,扮演着一个相当重要的角色,有着相当广泛的应用,极大加快了电子测试与设计工作中的效率,在电子技术和信号仿真应用中已发挥了巨大的作用。

本文主要介绍了以TMS320VC5402 DSP为主的信号发生器的设计情况。

这是一个以DSP为核心来实现信号发生器的系统,该系统具有结构简单灵活,抗干扰能力强、产生频率较高、应用广泛等特点。

该系统的组成核心TMS320VC5402 DSP芯片是TI公司生产的16位定点处理芯片,它有运算速度快、具有可编程特性、接口灵活和外围电路丰富等特点。

选择该芯片作为设计信号发生器的核心芯片,能够提高信号发生器所产生信号的频率,使信号发生器有更加广泛的应用。

本设计的硬件部分是有该DSP芯片和D/A转换芯片TLC7528组成,DSP芯片用于产生各种波形,D/A转换芯片用于把数字信号转换为模拟信号。

在以上硬件的基础上,通过软件编程来实现三角波、正弦波等波形。

关键词:DSP;D/A转换器;信号发生器;波形AbstractSignal generator to today, in the electronic testing, electronic design, simulation, communications engineering, plays a very important role, has a very wide range of applications, greatly accelerate the efficiency of the electronic test and design work in the electronics technology and signal simulation applications has played a huge role. This paper describes the design to TMS320VC5402 DSP-based signal generator. This is a core DSP signal generator system, the system structure is simple and flexible, anti-interference ability, resulting in a higher frequency, widely used features.The System is comprised core TMS320VC5402 DSP chip is produced by TI 16-bit fixed-point processing chip, computing speed, programmable features, flexible interface and peripheral circuits rich features. Select the chip to chip as the core of the design of the signal generator, it is possible to improve the signal generator to produce the signal frequency, the signal generator has a broader application. The design of the hardware part is composed of the DSP chip and the D / A converter chip TLC7528 DSP chip for generating various waveforms, D / A converter chip used to convert digital signals to analog signals. On the basis of the above hardware, by software programming to achieve the waveform of the triangular wave, sine wave, etc..Keywords: DSP; D / A converter; signal generator; waveform目录第一章绪论.................................................... - 1 -1.1选题的背景............................................. - 1 -1.2选题的目的及意义....................................... - 1 - 第二章整体方案................................................ - 2 - 第三章硬件系统设计............................................ - 3 -3.1 系统的组成及实现功能................................... - 3 -3.2 硬件系统设计思想....................................... - 3 -3.3 硬件电路方案及电路原理设计 ............................ - 3 -3.4 相关电路介绍........................................... - 4 -3.4.1 核心电路芯片TMS320VC5402...................... - 4 -3.4.2 D/A 转换器TLC7528............................. - 10 -3.4.3 电源电路和晶振电路 ............................. - 14 - 第四章软件系统设计........................................... - 17 -4.1 ICETEK—B2.0说明............................. - 17 -4.2 三角波的设计方案..................................... - 18 - 4.3 正弦波的设计方案...................................... - 21 - 4.4 软件系统.............................................. - 25 - 第五章总结展望............................................... - 28 - 结束语........................................................ - 29 -致谢......................................................... - 30 - 参考文献...................................................... - 31 - 附录......................................................... - 32 -第一章绪论1.1选题的背景信号发生器,主要作为激励信号或仿真信号,广泛应用于电子设计、生物医疗、环保、机械运动、新型材料等各个领域。

基于DSP的音频信号发生器的设计及实现

基于DSP的音频信号发生器的设计及实现

基于DSP的音频信号发生器的设计及实现摘要本课题介绍了基于DSP芯片TMS320C5402实现正弦信号发生器的设计原理和实现方法。

使用TMS320C5402作为数据处理器,AT89C51作为控制器引导并控制DSP芯片。

采用直接数字合成(DDS)技术,在DSP上建立一个信号发生器,可产生指定频率(音频范围)的正弦波、方波等信号。

该信号发生器所产生的正弦波波形清晰、稳定性好,调频、调幅功能均由软件实现。

本设计主要实现正弦音频信号发生器,该系统由DDS模块、单片机控制模块、语音提示、输出运算放大模块、D/A转换模块、幅度控制模块组成。

这里介绍一种采用DSP实现的正弦信号发生器,其调幅、调频功能均由软件实现,而且有较好的可扩展性、稳定性,与计算机接口方便。

关键词:音频信号发生器,正弦波,DSP ,DDSAUDIO SIGNAL GENERATOR BASED ON TMS320C5402 DESIGN AND LMPLEMENTATIONABSTRACTThis design uses TMS320C5402 of DSP chip as a data processor,STC89C51 as a controller to guide and control the DSP chip. use TMS320C5402 as a data processor, STC89C51 as a controller to guide and control the DSP chip. Synthesis of direct sequence (DDS) technology, DSP, a signal generator, can generate the specified frequency (audio range) of the sine wave, square wave signal. Synthesis of direct sequence (DDS) technology, DSP, a signal generator, can generate the specified frequency (audio range) of the sine wave, square wave signal. The design of the main sine wave audio signal generator, the system by the DDS module, microprocessor control module, voice prompt, the output operational amplifier module, D/A converter module, rate control module.High-speed direct-sequence synthesis (DDS) technique, D/A and other technology, can generate any frequency sinusoidal signal and a variety of analog and digital modulation signal. Wide frequency range of the system, step small, magnitude and frequency with high accuracy.KEY WORDS:Signal generator,Sine tonic train signal, DSP ,DDS目录前言 (1)第1章系统描述 (3)§1.1 系统方案选择 (3)§1.2 本系统的方案 (3)§1.2.1 方案系统框图 (3)§1.2.2 DSK5402开发板硬件结构 (4)§1.2.3 DSK5402系统概述 (6)第2章音频信号发生器的硬件描述 (7)§2.1 DSP芯片 (7)§2.1.1 DSP芯片特点 (7)§2.1.2 C54x的引脚功能 (8)§2.2 串行口MCBSP (12)§2.3 主机接口 (13)第3章音频信号发生器的外设 (16)§3.1 89C51芯片的描述 (16)§3.1.1 89C51的主要性能高如下 (16)§3.1.2 89C51的引脚及说明 (17)§3.2 串口描述 (19)§3.2.1 RS232接口电路 (19)§3.2.2 RS232通信原理 (21)§3.3 声卡 (21)第4章音频信号发生器设计的算法 (24)§4.1 DDS算法简介 (24)§4.2 步长计算查表 (25)§4.3 DDS的特点 (25)第5章系统软件设计 (27)§5.1 DSP程序设计 (27)§5.2 单片机程序设计 (27)第6章系统调试及测试 (29)§6.1 DSP程序编写 (29)§6.2 把DSP程序转化成单片机程序 (35)§6.3 程序调试 (36)§6.3.1 调试流程 (36)§6.3.2 系统的调试 (37)结论 (39)参考文献 (40)致谢 (42)外文资料翻译 (43)前言随着21世纪的到来,人类跨入了信息网络时代。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章 绪论1.1 DSP 简介数字信号处理(Digital Signal Processing ,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。

20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。

数字信号处理是一种通过使用数学技巧执行转换或提取信息,来处理现实信号的方法,这些信号由数字序列表示。

在过去的二十多年时间里,信号处理已经在通信等领域得到极为广泛的应用。

图一是数字信号处理系统的简化框图。

此系统先将模拟信号转换为数字信号,经数字信号处理后,再转换成模拟信号输出。

其中抗混叠滤波器的作用是将输入信号x(t)中高于折叠频率的分量滤除,以防止信号频谱的混叠。

随后,信号经采样和A/D转换后,变成数字信号x(n)。

数字信号处理器对x(n)进行处理,得到输出数字信号y(n),经D/A 转换器变成模拟信号。

此信号经低通滤波器,滤除不需要的高频分量,最后输出平滑的模拟信号y(t)。

图1.1 数字信号处理系统简化框图数字信号处理是以众多学科为理论基础的,它所涉及的范围极其广泛。

例如,在数学领域,微积分、概率统计、随机过程、数值分析等都是数字信号处理的基本工具,与网络理论、信号与系统、控制论、通信理论、故障诊断等也密切相关。

近来新兴的一些学科,如人工智能、模式识别、神经网络等,都与数字信号处理密不可分。

可以说,数字信号处理是把许多经典的理论体系作为自己的理论基础,同时又使自己成为一系列新兴学科的理论基础。

抗混叠 滤波器A/D数字信号处理D/A低通滤波器x(n)y(n) x(t)y(t)1.2 课题来源数字信号处理器(DSP)是在模拟信号变成数字信号以后进行高速实时处理的专用处理器。

DSP芯片以其独特的结构和快速实现各种数字信号处理算法的突出优点,发展十分迅速。

数字信号发生器是在电子电路设计、自动控制系统和仪表测量校正调试中应用很多的一种信号发生装置和信号源。

而正弦信号是一种频率成分最为单一的常见信号源,任何复杂信号(例如声音信号)都可以通过傅里叶变换分解为许多频率不同、幅度不等的正弦信号的叠加,广泛地应用在电子技术试验、自动控制系统和通信、仪器仪表、控制等领域的信号处理系统中及其他机械、电声、水声及生物等科研领域。

目前,常用的信号发生器绝大部分是由模拟电路构成的。

当这种模拟信号发生器用于低频信号输出时,往往需要的RC值很大,这样不但参数准确度难以保证,而且体积和功耗都很大。

而由数字电路构成的低频信号发生器,虽然其低频性能好,但体积较大,价格较贵。

而本文借助DSP运算速度高,系统集成度强的优势设计的这种信号发生器,比以前的数字式信号发生器具有速度更快,且实现更加简便。

1.3 课题研究的目的意义科技的进步带动了DSP技术的发展,现代控制设备的性能和结构发生了巨大的变化,我们已经进入了高速发展的信息时代,DSP技术也成为当今科技的主流之一,被广泛地应用于生产的各个领域。

对于本次设计,其目的在于:(1) 了解DSP及DSP控制器的发展过程及其特点。

(2) 较熟练地在硬件上掌握DSP及DSP硬件器的结构、各部件基本工作原理。

(3) 熟悉CCS集成开发环境,并能较熟练的对CCS的开发系统进行使用。

(4) 熟悉用C语言、汇编语言编程DSP源程序(5) 学习DSP程序的调试及编写,及运用观察变量的方法查看程序的运行情况。

(6) 掌握工程设计的流程及方法。

1.4 课题研究内容用TMS320C54x的汇编语言程序设计正弦信号发生器大大方便了程序的编写、调试和加快了程序的运行速度。

第2章 分析和设计2.1 总体方案设计1.基于DSP 的特点,本设计采用TMS320C54X 系列的DSP 作为正弦信号发生器的核心控制芯片。

2.用泰勒级数展开法实现正弦波信号。

3.设置波形时域观察窗口,得到其滤波前后波形变化图;4.设置频域观察窗口,得到其滤波前后频谱变化图。

2.2正弦波信号发生器正弦波信号发生器已被广泛地应用于通信、仪器仪表和工业控制等领域的信号处理系统中。

通常有两种方法可以产生正弦波,分别为查表法和泰勒级数展开法。

查表法是通过查表的方式来实现正弦波,主要用于对精度要求不很高的场合。

泰勒级数展开法是根据泰勒展开式进行计算来实现正弦信号,它能精确地计算出一个角度的正弦和余弦值,且只需要较小的存储空间。

本次主要用泰勒级数展开法来实现正弦波信号。

产生正弦波的算法正弦函数和余弦函数可以展开成泰勒级数,其表达式:取泰勒级数的前5项,得近似计算式:-+-+-=!9!7!5!3)sin(9753xxxxx x-+-+-=!8!6!4!21)cos(8642xxxxx ))))((((981761541321 !9!7!5!3)sin(22229753⨯-⨯-⨯-⨯-=+-+-=xxxxx xxxxx x递推公式:sin(nx ) = 2cos(x )sin[(n -1)x ]-sin[(n -2)x ] cos(nx ) = 2cos(x )sin[(n -1)x ]-cos[(n -2)x ]由递推公式可以看出,在计算正弦和余弦值时,需要已知cos(x )、sin(n -1)x 、sin(n-2)x 和cos(n -2)x 。

2.3 总体方案设计1.基于DSP 的特点,本设计采用TMS320C54X 系列的DSP 作为正弦信号发生器的核心控制芯片。

2.用泰勒级数展开法实现正弦波信号。

3.设置波形时域观察窗口,得到其滤波前后波形变化图;4.设置频域观察窗口,得到其滤波前后频谱变化图。

)))(((87165143121 !8!6!4!21)cos(22228642⨯-⨯-⨯--=+-+-=xxxxxxxx x第3章 硬件设计3.1硬件组成基于DSP 的信号发生器的硬件结构图如图3.1所示,它主要由DSP 主控制器,输出D/A 通道和人机界面等几个主要部分组成。

图3.1 基于DSP 的信号发生器系统框图 3.2控制器部分本系统采用TI 公司的TMS320LF2407 DSP 处理器,该器件具有外设集成度高,程序存储器容量大,A/D 转换精度高,运算速度高,I/O 口资源丰富等特点,芯片内部集成有32KB 的FLASH 程序存储器、2KB 的数据/程序RAM ,两个事件管理器模块(EVE 和EVB )、16通道A/D 转换器、看门狗定时器模块、16位的串行外设接口(SPI )模块、40个可单独编程或复用的通用输入输出引脚(GPIO )以及5个外部中断和系统监视模块。

TMS320LF2407芯片中的事件管理模块(EV )是一个非常重要的组成部分。

SPWM 波形的产生和输出就是由这一部分完成的,它由两个完全相同的模块(EV A和EVB )组成,每个模块都含有2个通用定时器、3个比较器、6至8个PWM 发生DSP 微控制器 TMS320LF 2407 PGE段驱动器 2*SN74LS07四位LED位驱动器 74LS07缓冲及电平转换电路输出三相 正弦波独立式四 键功能键有源滤波 电路减法电路放大电路 AD624 电源(自带复位功能)ClockCircuit器、3个捕获单元和2个正交脉冲编码电路(QEP )。

由于TMS320LF2407有544字的双口RAM (DARAM )和2K 字的单口RAM (SARAM );而本系统的程序仅有几KB ,且所用RAM 也不多,因此不用考虑存储器的扩展问题,而对于TMS320LF2407的I/O 扩展问题,由于TMS320LF2407器件有多达40个通用、双向的数字I/O (GPIO )引脚,且其中大多数的基本功能和一般I/O 复用的引脚,而实际上,本系统只需要17路I/O 信号,这样,就可以为系统剩余50%多的I/O 资源,因此可以说,该方案既不算浪费系统资源,也为系统今后的升级留有余地。

3.3微输出D/A 通道部分本系统的输出通道部分主要负责实现波形的输出,此通道的入口为TMS320LF2407的PWM8口,可输出SPWM 等幅脉冲波形,出口为系统的输出端,这样,经过一系列的中间环节,便可将PWM 脉冲波转化为交流正弦波形,从而实现正弦波的输出,其原理框图如图3.2所示。

图3.2 输出通道的原理结构图3.2中的缓冲电路的作用是对PWM 口输出的数字量进行缓冲,并将电压拉高到5V 左右,以供后级模拟电路滤波使用。

这一部分电路由两个芯片组成。

一片用三态缓冲器,由于PWM 口的输出为3.3V 的TTL 电平,这样,在设计时就应当选用输入具有5V 的TTL 输入,CMOS 输出电平的转换芯片(如TI 公司的74HCT04);另一片则可选用TOSHIBA 公司出品的光电耦合器6N137;输出端连接的5V 精密稳压电源可选用BURR-BROWN 公司生产的REF02型精密稳压电源,以输出标准的5V 电压。

系统中的减法电路的主要作用是把0-10V 直流脉动信号的转换成-5~+5V 的正弦交流信号,并使其电压增益为1。

设计使可利用差分式电路来实现其功能,为了简化电路,可以选用较为常用的AD 公司的AD524,并将AD524接成电压跟随器DSP 的 PWN 输出输出缓冲电路电平转换电路低通 滤波 电路减法 电路的形式,同时适当的选取电阻以满足要求,此外,为了使产生的正弦波信号具有2-5mA的驱动能力,可选用AD624来构成末级的信号放大电路。

AD624是高精度低噪声仪用放大器,若外接一只增益电阻,即可得到1-1000之间的任意增益值,其误差小于1%。

由于AD624的建立时间只有15μs,所以它非常适宜在高速数据采集系统中使用。

3.4人机接口部分3.4.1 驱动器设计位驱动器电路由两片集成电路组成,即由位驱动的CMOS芯片和将TTL电平转换成CMOS电平的电平转换芯片组成,电平转换芯片可以和输出通道的电平转换芯片共用一片74HCT244(本部分使用4路,输出通道使用3路),其主要作用是对DSP输出的3.3V TTL电平与5V CMOS电平进行匹配,从而带动具有CMOS 电平的位驱动器,根据动态扫描显示的要求,位驱动器需要选用每路输出吸收电流都要大于200mA的芯片,因此,本设计选用了TI公司的74LS06来做LED的大电流驱动器件。

3.4.2 键盘设计本系统选用四个独立式按键,分别接入PF3-PF6口,并使用四个220Ω上拉电阻接VCC。

所谓独立式,就是将每一个独立键按一对一地直接接到I/O输入线上,而在读键值时,直接读I/O口,每一个键的状态通过读入键值的一位(二进制位)来反应,所以这种方式也称为一维直读方式,这种方式的查键软件比较简单,但占用I/O线较多,一般在键的数量较少时采用,不过,由于DSP芯片有足够的I/O接口可供使用,因而可大大方便设计,设计时可以充分利用这一特点来连接硬件,至于按键的削抖动措施,则可在软件中完成。

相关文档
最新文档