上海市闵行区2018—2019学年高一年级上学期质量调研考试数学试卷(精选)
【优质文档】2018-2019学年高中名校高一第一学期期末调研数学试卷(一)含答案

5.设 l , m, n 表示不同的直线, 表示平面,已知 m∥ l ,下列结论错误的是(
)
A.若 m∥ n ,则 l ∥ n
B .若 m n ,则 l n
C.若 m ∥ ,则 l ∥
D .若 m ,则 l
6.已知 a 20180.2 , b 0.22018 , c log 2018 0.2 ,则(
2018-2019 学年高中名校高一第一学期期末调研数学试卷(一)
数学
全卷满分 150 分,考试时间 120 分钟。
★祝考试顺利 ★
注意事项: 1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。并将准考证号条形码
粘贴在答题卡上的指定位置。 2.选择题作答用 2B 铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦
A. 1
B . 0,1 C . 1,0,1 D . 0,1,2
3.函数 f x
x 2 ln 1 x 的定义域为(
)
A. 2,1
B . 2,1 C . 2,1 D . 1,
2
2
4.直线 4 x 3 y 6 0 与圆 x 4
y 1 25 的位置关系是(
)
A.相离
B .相切 C .相交且过圆心
D .相交但不过圆心
)
A.
B
.
C
.
D
.
11.三棱锥 P ABC 中, PA, PB, PC 两两垂直, AB 2 , BC 5 , AC 7 ,则该
三棱锥外接球的表面积为(
)
A. 4
B .8
C . 16
D
.8 2
3
12.已知圆 M : x2 y2 2x 10y 25 0,圆 N : x2 y2 14x 6y 54 0 ,点 P, Q
中学教研网_中学教研网-上海市2018-2019学年闵行区高一上期末数学期末试卷

2018-2019学年闵行区高一上期末数字试卷2019.1一、填空题:1、已知全集,集合,则=_________;{}1,3,5,7,9U ={}5,7,9A =U C A 2、函数_________________;y =3、函数的反函数是____;()20y x x =≥4、不等式的解集为________;11x ≥5、用“二分法”求函数在区间(2,3)内的零点时,取(2,3)中点()325f x x x =--,则的下一个有零点的区间是______________;1 2.5x =()f x 6、命题“若,则’’,能说明该命题为假命题的一组的值依次为a b >22a b >,a b ______________;7、已知,则=________(用表示);3log 2m =32log 18m 8、函数的值域为________;()19log 19x -9、已知函数,若函数过点(1,-2),那么函数一定经过点()()f x x R ∈()2f x +()y f x =_______;10、已知是奇函数,则=_______;()()2300x x f x g x x ⎧->⎪=⎨<⎪⎩()()3f g -11、已知,若,则的取值范围是________;()3411x x x f x x x ->⎧=⎨≤⎩()(),a b f a f b <=3a b+12、函数___________;()f x =二、选择题:13、若函数的图像位于第一、二象眼,则它的反函数的图像位于()()y f x =()1y f x -=A 、第一、二象限B 、第三、四象限C 、第二、三象限D 、第一、四象限14、下列函数中,在上既是奇函数又是減函数的是()R A 、B 、C 、D 、1y x =1ln 1xy x -=+y x x =-3xy -=15、已知,原命题是“若,则中至少有一个不小于0”,那么原命题,m n R ∈0m n +>m n 、与其逆命题依次是()A 、真命题、假命题B 、假命题、真命题C 、真命题、真命题D 、假命题、假命题16、已知,则“”是“0,0a b >>1120182019420182019a b a b+++=”的()()1120182019420182019a b a b ⎛⎫++= ⎪⎝⎭A 、充分不必要条件C 、充要条件B 、必要不充分条件D 、既不充分又不必要条件三、解答题:17、已知函数.()(){}3|1|,,10,02x f x x x R A x f x B x x ⎧-⎫=-∈=->=<⎨⎬+⎩⎭(1)求集合;A B (2)若,比较与的大小.0a ≠()221f a +⎡⎤⎣⎦()21f a -⎡⎤⎣⎦18、已知,函数.0a >()11x x f x a a +-=-(1)判断函数的奇偶性,并给予证明;()f x (2)判断函数的单调性,并给予证明.()f x 19、把一段底面直径为40厘米的圆柱形木料锯成横截面为矩形的木料,设该矩形的一条边长是厘米,另一条边长是厘米(如图所示).x y (1)设用解析式将表示成的函数,并写出函数的定义域;y x(2)若该圆柱形木料长为100厘米,则怎样锯对能使矩形木料的体积最大?并求求出体积的最大值.20、已知函数.()||1,f x a x x x R =++∈(1)若在上增函数,求实数的取值范固;()f x R a (2)当时,作出函数的图像,并解不等式;1a =()f x ()()211f x f x ->+(3)若函数与的图像关于点(0,0)对称,且对任意,都有()g x ()f x 12,x x R ∈,求实数的取值范围;()()()()11220f x g x f x g x -->⎡⎤⎡⎤⎣⎦⎣⎦a21、已知函数为实教,且,记由所有组成()2,2x a f x a x +=+()()*12,n n n x f x x n N +=≠-≠n x 的数集为.E (1)已知,求;;131,3x x ==2x (2)对任意的恒成立,求的取值范围;()11,1,6x f x x ⎡⎤∈<⎢⎥⎣⎦a (3)若,判断数集是否存在最大的项?若存在,求出最大项;若不存在,请11,1x a =>E 说明理由.参考答案:一、填空题:1、{1,3};2、;3、;4、;5、(2,2.5);6、1,-10;7、;[)0,+∞0y x =≥(]0,125m m +8、;9、(3,2);10、-33;11、;12、2;(],1-∞(],8-∞二、选择题:13、D ;14、C ;15、A ;16、A ;三、解答题:17、(1);(2);()()2,02,3- ()()22211f a f a +>-⎡⎤⎡⎤⎣⎦⎣⎦18、(1)略;(2)略;19、(1);(2)时,体积最大,最大为;40y x <<x =280000cm 20、(1)(-1:1);(2)(-1:0);(3);0a ≥21、(1)4;(2);(3)存在,5;1a <已知函数,,,且,即由所有()22x a f x x +=+1a >11x =()()12,n n n x f x x n N *+=≠-∈组成的数集为.判断数集是否存在最大的项?若存在,求出最大项;若不存在,请说n x E E 明理由.选自:2018-2019闵行高一上期末21-3答案:存在,5。
2018-2019学年上海市闵行区七宝中学高一(上)期中数学试卷(解析版)

2018-2019学年上海市闵行区七宝中学高一(上)期中数学试卷一、选择题(本大题共4小题,共12.0分)1.如图,I为全集,M、P、S是I的三个子集,则阴影部分所表示的集合是()A. B. C. D.2.下列各组函数中,表示同一函数的是()A. 与B. 与C. 与D. 与3.已知a,b R+,那么“a2+b2<1”是“ab+1>a+b”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件二、填空题(本大题共12小题,共36.0分)4.函数的定义域为______5.已知集合,B={y|y=x2},则A∩B=______6.不等式>的解集是______7.“若a>1且b>2,则a+b>3”的否命题是______8.已知-1<a<b<1,则a-b的取值范围是______9.若A={x||x|<a},B={x|x<-2},且A∩B=∅,则a的取值范围是______10.若不等式(a-2)x2+2(a-2)x-4<0的解集为R,则实数a的取值范围是______.11.若函数f(x-2)=x2-x+1,则f(2x+1)=______12.已知关于x的不等式2x+≥7在x(a,+∞)上恒成立,则实数a的最小值为______.13.已知函数,g(x)=x2-3ax+2a2(a<0),若不存在实数x使得f(x)>1和g(x)<0同时成立,则a的取值范围是______14.当x R+时,可以得到不等式,,…,由此可以推广为,则P=______15.已知数集A={a1,a2,…,a n}(0≤a1<a2<…<a n,n≥3)具有性质P:对任意i、j(1≤i≤j≤n),a j+a i与a j-a i两数中至少有一个属于集合A,现给出以下四个命题:①数集{0,1,3,5,7}具有性质P;②数集{0,2,4,6,8}具有性质P;③若数集A具有性质P,则a1=0;④若数集A={a1,a2,…,a5}(0≤a1<a2<…<a5)具有性质P,则a1+a3=2a2;其中真命题有______(填写序号)三、解答题(本大题共5小题,共72.0分)16.练习册第21页的题“a>0,b>0,求证:”除了用比较法证明外,还可以有如下证法:(当且仅当a=b时等号成立),∴.学习以上解题过程,尝试解决下列问题:(1)证明:若a>0,b>0,c>0,则,并指出等号成立的条件;(2)试将上述不等式推广到n(n≥2)个正数a1、a2、…、a n-1、a n的情形,并证明.17.某公司有价值10万元的一条流水线,要提高该流水线的生产能力,就要对其进行技术改造,改造就需要投入,相应就要提高产品附加值,假设附加值y万元与技术改造投入x万元之间的关系满足:①y与10-x和x的乘积成正比;②当x=5时,y=100;③,其中t为常数,且,.(1)设y=f(x),求出f(x)的表达式,并求出y=f(x)的定义域;(2)求出附加值y的最大值,并求出此时的技术改造投入的x的值.18.已知x>0,设a=x2+2x+1,b=x2+7x+1,c=mx(m>0,m为常数).(1)求的最小值及相应的x的值;(2)设A={x|a-c=0},若A∩R+=∅,求m的取值范围;(3)若对任意x>0,以、、为三边长总能构成三角形,求m的取值范围.答案和解析1.【答案】C【解析】解:图中的阴影部分是:M∩P的子集,不属于集合S,属于集合S的补集即是C I S的子集则阴影部分所表示的集合是(M∩P)∩∁I S故选:C.先根据图中的阴影部分是M∩P的子集,但不属于集合S,属于集合S的补集,然后用关系式表示出来即可.本题主要考查了Venn图表达集合的关系及运算,同时考查了识图能力,属于基础题.2.【答案】D【解析】解:A.f(x)=x的定义域为R,g(x)=的定义域为[0,+∞),定义域不同,不是同一函数;B.的定义域为{x|x≤-2,或x≥2},的定义域为{x|x≥2},定义域不同,不是同一函数;C.,f(0)=-1,,g(0)=1;(0,-1)是f(x)图象上的点,不在g(x)的图象上,不是同一函数;D.f(x)=2x(x{1})表示点(1,2),g(x)=2x2(x{1})表示点(1,2),函数图象相同,是同一函数.故选:D.通过求函数定义域,可判断出选项A,B都错误,根据f(x),g(x)的解析式看出,点(0,-1)在f(x)图象上,而不在g(x)的图象上,从而这两函数不是同一函数,只能选D.考查函数的定义,判断两函数是否为同一函数的方法:看定义域和解析式是否都相同.3.【答案】A【解析】解:由题意可知:a,b R+,若“a2+b2<1”则a2+2ab+b2<1+2ab+a2•b2,∴(a+b)2<(1+ab)2∴ab+1>a+b.若ab+1>a+b,当a=b=2时,ab+1>a+b成立,但a2+b2<1不成立.综上可知:“a2+b2<1”是“ab+1>a+b”的充分不必要条件.故选:A.本题考查的是必要条件、充分条件与充要条件的判断问题.在解答时,要先判断准条件和结论并分别是什么.然后结合不等式的知识分别由条件推结论和由结论推条件,看是否正确即可获得问题解答.本题考查的是必要条件、充分条件与充要条件的判断问题.在解答的过程当中充分体现了不等式的知识、充要条件的判断问题以及问题转化的思想.值得同学们体会反思.4.【答案】[0,1)(1,2]【解析】解:由,解得0≤x≤2且x≠1.∴函数的定义域为[0,1)(1,2].故答案为:[0,1)(1,2].由根式内部的代数式大于等于0,分式的分母不为0联立不等式组求解.本题考查函数的定义域及其求法,考查一元二次不等式的解法,是基础题.5.【答案】[0,1]【解析】解:解1-x2≥0得,-1≤x≤1;∴A=[-1,1];又x2≥0;∴B=[0,+∞);∴A∩B=[0,1].故答案为:[0,1].可解出集合A,B,然后进行交集的运算即可.考查描述法的定义,一元二次不等式的解法,以及交集的运算.6.【答案】,【解析】解:∵,∴>0,即<0,解得:-<x<0,故不等式的解集是(-,0),故答案为:(-,0)移项,求出不等式的解集即可.本题考查了解分式不等式,考查转化思想,是一道基础题.7.【答案】若a≤1或b≤2,则a+b≤3【解析】解:命题“若a>1且b>2,则a+b>3”的否命题是“若a≤1或b≤2,则a+b≤3”,故答案为:若a≤1或b≤2,则a+b≤3根据四种命题的定义,结合原命题,可得其否命题.本题考查的知识点是四种命题,正确理解四种命题的定义,是解答的关键.8.【答案】(-2,0)【解析】解:∵-1<a<1,-1<b<1∴-1<-b<1,∴-1-1<a-b<1+1∴-2<a-b<2,又a<b,∴a-b<0故答案为:(-2,0)由b的范围得-b的范围,然后两个不等式同向相加.本题考查了不等关系与不等式.属基础题.9.【答案】(-∞,2]【解析】解:根据题意得,A={x|-a<x<a};B={x|x<-2},且A∩B=∅,∴-a≥2,∴a≤-2,故答案为(-∞,2].运用交集的定义可求得参数的取值范围.本题考查集合的交集和参数的取值范围.10.【答案】(-2,2]【解析】解:由题意,a=2时,不等式为-4<0恒成立,满足题意,所以a=2成立;a≠2时,不等式(a-2)x2+2(a-2)x-4<0的解集为R,等价于,解得-2<a<2;综上得到a的范围是(-2,2];故答案为:(-2,2].观察不等式,二次项系数为a-2,故讨论系数,得到不等式解集为R的a的范围.本题考查了不等式恒成立问题的加法;关键是注意讨论的二次项系数.11.【答案】4x2+10x+7【解析】解:令x-2=t,则x=t+2,∴f(t)=(t+2)2-(t+2)+1=t2+3t+3,∴f(2x+1)=(2x+1)2+3(2x+1)+3=4x2+10x+7,故答案为:4x2+10x+7.先换元令x-2=t,得x=t+2,求出f(t)后,将t换成2x+1即可.本题考查了函数解析的求解及换元法.属基础题.12.【答案】【解析】解:∵x>a,∴x-a>0,∴2x+=2(x-a)++2a≥2+2a=2a+4,即2a+4≥7,所以a≥,即a的最小值为当且仅当x=a+1时取等号.故答案为.将不等式配凑成基本不等的形式,利用基本不等式求最小值,注意等号成立的条件即可.本题考查不等式恒成立问题,合理利用基本不等式给解题带来“便捷”,关键要注意等号成立的条件,属于基础题.13.【答案】 ,,【解析】解:由f(x)>1,得>1,化简整理得<0,解得-2<x<-1或2<x<3,即f(x)>1的解集为A={x|-2<x<-1或2<x<3}.由g(x)<0得x2-3ax+2a2<0,即(x-a)(x-2a)<0,g(x)<0的解集为:B={x|2a<x<a,a<0},由题意A∩B=∅,因此a≤-2或-1≤2a<0,故a的取值范围是{a|a≤-2或-≤a<0},故答案为:(-∞,-2][-,0).通过f(x)>1和g(x)<0,求出集合A、B,利用A∩B=∅,求出a的范围即可.本题考查分式不等式的解法,二次不等式的解法,集合的交集运算,考查分析问题解决问题的能力.14.【答案】n n【解析】解:∵x R+时可得到不等式,,…,∴在p位置出现的数恰好是分母的指数的指数次方∴p=n n故答案为:n n本题考查归纳推理,要先考查前几个不等式,总结出规律再研究推广后的式子中的p值.本题考查归纳推理,解题的关键是理解归纳推理的规律--从所给的特例中总结出规律来,以之解决问题,归纳推理是一个很重要的思维方式,熟练应用归纳推理猜想,可以大大提高发现新问题的效率,解题时善用归纳推理,可以为一题多解指明探究的方向.15.【答案】②③④【解析】解:①数集A={0,1,3,5,7},由于7-5=2,7+5=12,2,12∉A,故不具有性质P;②数集A={0,2,4,6,8},由于0,2,4,6,8构成等差数列,首项为0,公差为2,具有性质P;③若数集A具有性质P,可令i=j可得2a i与0两数中至少有一个属于集合A,当i=n时,2a n∉A,即有0A则a1=0正确;④若数集A={a1,a2,…,a5}(0≤a1<a2<…<a5)具有性质P,由③可得a1=0,令j=n,i>1,则∵“a i+a j与a j-a i两数中至少有一个属于A”,∴a i+a j不属于A,∴a n-a i属于A.令i=n-1,那么a n-a n-1是集合A中某项,a1不行,是0,a2可以.如果是a3或者a4,那么可知a n-a3=a n-1,那么a n-a2>a n-a3=a n-1,只能是等于a n 了,矛盾.所以令i=n-1可以得到a n=a2+a n-1,即有a3=2a2,则a1+a3=2a2,故④正确.故答案为:②③④.由新定义考虑7-5=2,7+5=12不在数集中,可判断①;考虑A中的数构成等差数列,结合新定义可判断②;由i=j,结合新定义可判断③;j=n,i>1,结合a1=0,以及新定义,推理可判断④.本题考查命题的真假判断,考查等差数列的定义通项公式、新定义,考查推理能力与计算能力,属于中档题.16.【答案】证明:(1)∵,∴,当且仅当a=b=c时等号成立;(2)∵+a2++a3+…++a1≥2a1+2a2+…+2a n-1+2a n,∴.当且仅当a1=a2=…=a n-1=a n时取等号【解析】(1)根据题设例题证明过程,类比b++c++a+可得证明,(2)根据题设例题证明过程,类比b++c++a+可得证明本题考查了基本不等式的应用,考查了不等式的证明和类比的思想,属于中档题17.【答案】解:(1)由题意可设y=k(10-x)x,∵当x=5时,y=100,∴k(10-5)×5=100,∴k=4,∴y=f(x)=4x(10-x),∵,t[,1],∴x[0,],(2)由(1)可知y=4x(10-x)=-4(x-5)2+100,∵x[0,],t[,1],令f(t)=,则f(t)=10•=10()=10(1-),显然f(t)在[,1]上是单调递增,∵f()=5,∴≥5,∴y=-(x-5)2+25,x(0,],当x=5时,y max=25,因此售价y的最大值为25万元,此时的技术改造投入的资金为5万元【解析】(1)可设y=k(10-x)x,代值计算即可,再根据函数的性质求出定义域,(2)由(1)可知y=4x(10-x)=-4(x-5)2+100,即可求出附加值y的最大值,并求出此时的技术改造投入的x的值本题考查函数的应用问题,函数的解析式、二次函数的最值及分类讨论思想,属于中档题.18.【答案】解:(1)由已知得==(2x++9),∵x>0,∴x+≥2,∴的最小值为,当x=1时取等号;(2)A={x|a-c=0},即有A={x|x2+2x+1=mx},由m>0,x2+2x+1=(x+1)2≥0,可得x>0,由m=x++2≥2+2=4,当且仅当x=1时,取得等号,又A∩R+=∅,可得m<4,即m的范围是(-∞,4);(3)∵b>a>0,∴>>0.∴ >>,即>>对x>0恒成立.∴><对x>0恒成立,∵+≥+=5(x=1取得等号),∴5>,即m<25.又∵-=≤=1,∴>1,即m>1.综上得1<m<25.【解析】(1)化简所求式子,运用基本不等式即可得到所求最小值和x的值;(2)由题意可得x>0,运用基本不等式和A中无正数解,可得m的范围;(3)运用三角形的三边的关系和基本不等式,以及不等式恒成立问题解法,即可得到所求范围.本题考查了基本不等式、三角形的三边大小关系、恒成立问题等基础知识与基本技能方法,属于难题.第11页,共11页。
精选上海市闵行区2018学年度第一学期高三数学(一模)期末质量监控试题(精品解析)

上海市闵行区2018学年度第一学期高三数学(一模)期末质量监控试卷一、选择题(本大题共4小题,共12.0分)1.若a,b为实数,则“”是“”的A. 充要条件B. 充分非必要条件C. 必要非充分条件D. 既非充分必要条件【答案】B【解析】【分析】根据充分条件和必要条件的概念,即可判断出结果.【详解】解不等式得或;所以由“”能推出“或”,反之不成立,所以“”是“”的充分不必要条件.故选B【点睛】本题主要考查充分条件与必要条件的概念,熟记概念即可,属于基础题型.2.已知a,b为两条不同的直线,,为两个不同的平面,,,则下面结论不可能成立的是A. ,且B.C. ,且D. b与,都相交【答案】D【解析】【分析】由点线面的位置关系,结合题中条件,即可分析出结果.【详解】因为a,b为两条不同的直线,,为两个不同的平面,,,所以有以下三种情况:(1)若,则;(2)若,则;(3)若且,则且;因此不可能b与,都相交.故选D【点睛】本题主要考查空间中线面位置关系,由线线平行,分类讨论线面关系即可,属于基础题型.3.已知函数,与其反函数有交点,则下列结论正确的是A. B.C. D.a与b的大小关系不确定【答案】B【解析】【分析】由函数与其反函数有交点,可得函数与直线有交点,进而可得出结果.【详解】因为函数,与其反函数有交点,所以函数与直线有交点,即方程有实根,整理得,所以,又,所以.故选B【点睛】本题主要考查反函数的概念,原函数与反函数有交点,必然与直线有交点,由此即可求解,属于基础题型.4.在平面直角坐标系中,已知向量,O是坐标原点,M是曲线上的动点,则的取值范围A. B. C. D.【答案】A【解析】【分析】先设,由M是曲线上的动点,得到,再由向量数量积运算的坐标表示,即可求出结果.【详解】设,则,因为M是曲线上的动点,所以,又,所以;因为,所以的取值范围是.故选A【点睛】本题主要考查向量数量积的坐标运算,熟记公式即可,属于常考题型.二、填空题(本大题共12小题,共36.0分)5.已知全集,集合,则______.【答案】【解析】【分析】解不等式得到集合,进而可求出结果.【详解】解不等式得或,所以集合或,因为,所以.故答案为【点睛】本题主要考查补集的运算,熟记概念即可,属于基础题型.6.______.【答案】【解析】【分析】在原式的基础上,分子分母同除以,进而可求出结果.【详解】因为.故答案为【点睛】本题主要考查型极限,只需分子分母同除以即可得出结果,属于基础题型.7.若复数z满足是虚数单位,则______.【答案】【解析】【分析】由先得到,再由复数的除法运算即可得出结果.【详解】因为,所以.故答案为【点睛】本题主要考查复数的运算,熟记除法运算法则即可,属于基础题型.8.方程的解为______.【答案】【解析】【分析】方程可化为,求解即可.【详解】由得即,解得.故答案为【点睛】本题主要考查矩阵,由矩阵的运算转化为含指数的方程,即可求解,属于基础题型. 9.等比数列中,,,则______.【答案】256【解析】【分析】先设等比数列的公比为,根据题中条件求出,进而可求出结果.【详解】设等比数列的公比为,因为,,所以,因此,所以.故答案为256【点睛】本题主要考查等比数列的性质,熟记等比数列性质即可,属于基础题型.10.的展开式中项的系数为___.(用数字表示)【答案】【解析】试题分析:由得:项的系数为.考点:二项展开式定理求特定项11.已知两条直线:,:,则与的距离为______.【答案】【解析】【分析】将:化为,再由平行线间的距离公式即可求出结果.【详解】因为:可化为,所以与的距离为.故答案为【点睛】本题主要考查两条平行线间的距离公式,熟记公式即可,属于基础题型.12.已知函数,的值域为,则的取值范围是______.【答案】【解析】【分析】由作出其图像,由值域为,即可求出结果.【详解】因为,作出其图像如下:因为函数,的值域为,所以由图像可得,;所以.故答案为【点睛】本题主要考查函数的性质,根据函数的值域求参数范围,通常需要作出函数图像,由数形结合的思想来处理,属于常考题型.13.如图,在过正方体的任意两个顶点的所有直线中,与直线异面的直线的条数为______.【答案】12【解析】【分析】由异面直线的概念,一一列举出与异面的直线即可.【详解】由题中正方体可得与异面的直线有:,,,,,;,,,,,,共12条.故答案为12【点睛】本题主要考查异面直线,熟记概念即可,属于基础题型.14.在中,角A,B,C的对边分别为a,b,c,面积为S,且,则______.【答案】0【解析】【分析】由三角形面积公式和余弦定理可将化为,进而可求出结果.【详解】因为,余弦定理,又,所以有,即,所以,因此或,所以或,因为C三角形内角,所以,故.故答案为0【点睛】本题主要考查解三角形,熟记余弦定理和三角形面积公式即可求出结果,属于常考题型.15.已知向量,,且,若向量满足,则的最大值为______.【答案】【解析】【分析】先由题中条件求出,再由即可求出结果.【详解】因为,,且所以,所以,因此.故的最大值为【点睛】本题主要考查向量的模的最值问题,根据向量模的几何意义,即可求解,属于常考题型.16.若无穷数列满足:,当,时.其中表示,,,中的最大项,有以下结论:若数列是常数列,则若数列是公差的等差数列,则;若数列是公比为q的等比数列,则则其中正确的结论是______写出所有正确结论的序号【答案】【解析】【分析】根据题中条件,逐项判断即可.【详解】若数列是常数列,则有,所以,又,所以,故,又,所以,即.故正确;若数列是公差的等差数列,若,则数列是递增数列,则,则,,不能满足数列为公差的等差数列;若,则数列是递减数列,则,所以满足题意;故正确;若数列是公比为q的等比数列,若q>1,由可知数列是递增数列,所以,所以,即q=2满足题意;若0<q<1,由可知数列是递减数列,所以,所以,故,因为0<q<1,所以显然不成立,故0<q<1不满足题意;若q<0,则数列是摆动数列,不能满足题意;综上q>1,故正确.故答案为【点睛】本题主要考查数列的应用,灵活运用数列的性质是解题的关键,难度较大.三、解答题(本大题共5小题,共60.0分)17.如图,正三棱柱的各棱长均为2,D为棱BC的中点.求该三棱柱的表面积;求异面直线AB与所成角的大小.【答案】(1);(2).【解析】【分析】根据棱柱的表面积公式直接求解即可;先取AC中点E,连结DE,,根据题意可得是异面直线AB与所成角,解三角形即可. 【详解】解:正三棱柱的各棱长均为2,该三棱柱的表面积:.取AC中点E,连结DE,,为棱BC的中点,,,是异面直线AB与所成角或所成角的补角,,,,异面直线AB与所成角的大小为.【点睛】本题主要考查几何体的表面积公式以及异面直线所成的角,在几何体中作出异面直线所成的角即可,属于基础题型.18.已知抛物线C:.若C上一点到其焦点的距离为3,求C的方程;若,斜率为2的直线l交C于两点,交x轴的正半轴于点M,O为坐标原点,求点M的坐标.【答案】(1);(2).【解析】【分析】根据抛物线的定义,由C上一点到其焦点的距离为3,可求出,进而可求出抛物线方程;由先求出抛物线方程,再设直线l:,代入抛物线方程,设,,结合韦达定理和判别式,根据求出的值即可.【详解】解:由抛物线的定义得:,解得:,所以抛物线C的方程为:;时,抛物线C:,设直线l:,并代入抛物线C:得:,,解得设,,则,,,解得或当时,不在x轴正半轴上,舍去;当时,故点M的坐标为【点睛】本题主要考查抛物线的方程与简单性质,通常需要联立直线与抛物线方程,结合韦达定理和题中条件求解,属于常考题型.19.在股票市场上,投资者常根据股价每股的价格走势图来操作,股民老张在研究某只股票时,发现其在平面直角坐标系内的走势图有如下特点:每日股价元与时间天的关系在ABC段可近似地用函数的图象从最高点A到最低点C的一段来描述如图,并且从C 点到今天的D点在底部横盘整理,今天也出现了明显的底部结束信号.老张预测这只股票未来一段时间的走势图会如图中虚线DEF段所示,且DEF段与ABC段关于直线l:对称,点B,D的坐标分别是.请你帮老张确定a,,的值,并写出ABC段的函数解析式;如果老张预测准确,且今天买入该只股票,那么买入多少天后股价至少是买入价的两倍?【答案】(1),,,,;(2)16.【解析】【分析】由B,D的坐标确定的值,和C的坐标,进而确定周期,求出,再由C的坐标,求出,即可得出函数解析式;(2)由(1)线求出DEF的解析式,令,求出即可.【详解】解:因为B,D的坐标分别是,且DEF段与ABC段关于直线l:对称,所以,所以,,,,由可得,,.由题意得DEF的解析式为:,由,得,故买入天后股价至少是买入价的两倍.【点睛】本题主要考查三角函数的应用,熟记三角函数的图像和性质即可,属于常考题型.20.对于函数,若函数是增函数,则称函数具有性质A.若,求的解析式,并判断是否具有性质A;判断命题“减函数不具有性质A”是否真命题,并说明理由;若函数具有性质A,求实数k的取值范围,并讨论此时函数在区间上零点的个数.【答案】(1),具有性质A;(2)假命题;(3)详见解析.【解析】【分析】由,结合即可得出解析式,和单调性,进而可得出结果;判断命题“减函数不具有性质A”,为假命题,举出反例即可,如;若函数具有性质A,可知在为增函数,进而可求出实数k的取值范围;再令,则在区间上零点的个数,即是的根的个数,结合k 的取值范围,即可求出结果.【详解】解:,,在R上递增,可知具有性质A;命题“减函数不具有性质A”,为假命题,比如:,在R上递增,具有性质A;若函数具有性质A,可得在递增,可得,解得;由,可得,即,可得,时显然成立;时,,由在递减,且值域为,时,或1,有三解,3个零点;当时,,即,可得,1个零点;当时,,t有一解,x两解,即两个零点;当,且时,无解,即x无解,无零点.【点睛】本题主要考查函数的解析式与函数的单调性,以及函数零点问题,按照题中条件结合函数的性质分析即可,属于常考题型.21.对于数列,若存在正数p,使得对任意都成立,则称数列为“拟等比数列”.已知,且,若数列和满足:,且,.若,求的取值范围;求证:数列是“拟等比数列”;已知等差数列的首项为,公差为d,前n项和为,若,,,且是“拟等比数列”,求p的取值范围请用,d表示.【答案】(1)详见解析;(2).【解析】【分析】由即可求出结果;根据题中“拟等比数列”的定义,由,结合条件推出存在正数,使得有成立即可;由题中条件,,,先求出的范围;再根据是“拟等比数列”,分类讨论和,即可得出结果.【详解】解:,,且,,,.由题意得,当且时,,对任意,都有,即存在,使得有,数列数列是“拟等比数列”;,,,,,,由得,从而解得,又是“拟等比数列”,故存在,使得成立,当时,,,由得,由图象可知在时递减,故,当时,,,由得,由图象可知在时递减,故,由得p的取值范围是.【点睛】本题主要考查数列的应用,根据题中的新定义,结合条件,分类讨论即可求出结果,过程较繁琐,难度较大.。
2018-2019年上海市闵行中学高一上期中数学试卷(有答案)

2018-2019年闵行中学高一上期中一. 填空题1. 已知集合{1,0,1,2}A =-,{2,3}B =,则AB = 2. 已知20{1,2}x x x ∈+--,则x =3. 设x ∈R ,那么“0x <”是“2x ≠”的 条件(填充分不必要、必要不充分、充要、既不充分又不必要之一)4. 已知函数1()2f x x =-,则()f x 的定义域为5. 已知f x =,则()f x =6. 已知集合{|15}A x x =<<,{|2,}B x x n n ==∈N ,则集合A B 中有 个元素7. 若集合2{|20}N x x x a =-+=,{1}M =,且N M ⊆,则实数a 的取值范围是8. 已知0x y >>,0m >,比较大小y x y m x m++(填>,≥,<,≤之一) 9. 已知关于x 的不等式210ax ax --<恒成立,则实数a 的取值范围是10. 若关于x 的不等式10ax x b-≥-(,a b ∈R )的解集为(,1)[2,)-∞+∞,则a 的值为 11. 已知x ∈R ,且2x ≠-,则1||2x x ++的最小值是 12. 我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x 的不足近似值和过剩近似值分别为b a 和d c (*,,,a b c d ∈N ),则b d a c++是x 的更为精确的近似值. 我们知道 3.1415926535897932π=⋅⋅⋅,我国早在《周髀算经》中就有“周三径一”的古率记载,《隋书⋅律历志》有如下记载:“南徐州从事史祖冲之更开密法,以圆径一亿为丈,圆周盈数三丈一尺四寸一分五厘九毫二秒七忽,朒数三丈一尺四寸一分五厘九毫二秒六忽,正数在盈朒二限之间。
密率:圆径一百一十三,圆周三百五十五。
约率,圆径七,周二十二”,这一记录指出了祖冲之关于圆周率的两大贡献:其一是求得圆周率3.1415926 3.1415927π<<;其二是得到π的两个近似分数即:约率为22/7,密率为355/113,他算出的π的8位可靠数字,不但在当时是最精密的圆周率,而且保持世界纪录一千多年,他对π的研究真可谓“运筹于帷幄之中,决胜于千年之外”,祖冲之是我国古代最有影响的数学家之一,莫斯科大学走廊里有其塑像,1959年10月,原苏联通过“月球3”号卫星首次拍下月球背面照片后,就以祖冲之命名一个环形山,其月面坐标是:东经148度,北纬17度.纵横古今,关于π值的研究,经历了古代试验法时期、几何法时期、分析法时期、蒲丰 或然性试验方法时期、计算机时期,已知15722507π<<,试以上述π的不足近似值15750和 过剩近似值227为依据,那么使用两次“调日法”后可得π的近似分数为二. 选择题13. 命题“已知,x y ∈R ,若220x y +=,则0x =且0y =”的逆否命题是( )A. 已知,x y ∈R ,若220x y +≠,则0x ≠且0y ≠B. 已知,x y ∈R ,若220x y +≠,则0x ≠或0y ≠C. 已知,x y ∈R ,若0x ≠且0y ≠,则220x y +≠D. 已知,x y ∈R ,若0x ≠或0y ≠,则220x y +≠14. 已知集合{(,)|10}A x y x y =+-=,22{(,)|1}B x y x y =+=,则A B =( )A. {0,1}B. {(1,0)}C. {(0,1)}D. {(0,1),(1,0)}15. 下列各图中,是函数的图像的序号是( )A. B. C. D.16. 设集合{1,2,3,,}n S n =⋅⋅⋅,若A 是n S 的子集,把A 中的所有数的和称为A 的“容量” (规定空集的容量为0),若A 的容量为奇(偶)数,则称A 为n S 的奇(偶)子集.命题①:n S 的奇子集与偶子集个数相等;命题②:当3n ≥时,n S 的所有奇子集的容量之和与所有偶子集的容量之和相等;则下列说法正确的是( )A. 命题①和命题②都成立B. 命题①和命题②都不成立C. 命题①成立,命题②不成立D. 命题①不成立,命题②成立三. 解答题17. 已知集合{|3}A x a x a =≤≤+,{|2B x x =<-或6}x >.(1)若AB =∅,求a 的取值范围;(2)若2a =-,求()C A B R .18. 已知集合7{|1}5S x x=>-,{|0(1)14}P x x a a =<-+<+. (1)求集合S ;(2)若S P ⊆,求实数a 的取值范围. 19. 已知:|25|3p x -≤,2:(2)20q x a x a -++≤.(1)若p 是真命题,求对应x 的取值范围;(2)若p 是q 的必要不充分条件,求a 的取值范围.20. 某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y (万元)与年产量x (吨)之间的函数关系式可以近似地表示为24880005x y x =-+,已知此生产线年产量 最大为230吨.(1)求年产量为多少吨时,生产每吨产品的平均成本P (年总成本除以年产量)最低,并 求最低成本;(2)若每吨产品平均出厂价为40万元,且生产的产品全部售完,那么当年产量为多少吨时, 年总利润R 可以获得最大?最大利润是多少?21. 已知0a >,0b >.(1)若22a b +=,且211t a b≤++恒成立,求实数t 的最大值; (2)若函数()|||2|f x x a x b =++-的最小值为1,证明:22a b +=; (3)若22m -<<,且(2)(2)20m a m b ab -++-=,设a b +的最小值为()g m , 求()g m 的值域.参考答案一. 填空题1. {1,0,1,2,3}-2. 23. 充分不必要4. [1,2)(2,)+∞ 5. 2x (0)x ≥ 6. 2 7. [1,)+∞ 8. <9. (4,0]- 10.12 11. 0 12. 20164二. 选择题13. D 14. D 15. C 16. A三. 解答题17.(1)[2,3]-;(2)(1,6].18.(1)(2,5)-;(2)[5,3]--.19.(1)[1,4];(2)[1,4].20.(1)200x =,min32P =;(2)28880005x R x =-+-,220x =,max 1680R =. 21.(1)112;(2)略;(3)值域(2,4]。
闵行区第一中学2018-2019学年高三上学期11月月考数学试卷含答案

闵行区第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1.函数f(x)=3x+x的零点所在的一个区间是()A.(﹣3,﹣2) B.(﹣2,﹣1) C.(﹣1,0)D.(0,1)2.某工厂生产某种产品的产量x(吨)与相应的生产能耗y(吨标准煤)有如表几组样本数据:0.7,则这组样本数据的回归直线方程是()A.=0.7x+0.35 B.=0.7x+1 C.=0.7x+2.05 D.=0.7x+0.453.如果函数f(x)的图象关于原点对称,在区间上是减函数,且最小值为3,那么f(x)在区间上是()A.增函数且最小值为3 B.增函数且最大值为3C.减函数且最小值为﹣3 D.减函数且最大值为﹣34.设曲线y=ax2在点(1,a)处的切线与直线2x﹣y﹣6=0平行,则a=()A.1 B.C.D.﹣15.等差数列{a n}中,a2=3,a3+a4=9 则a1a6的值为()A.14 B.18 C.21 D.276.下列语句所表示的事件不具有相关关系的是()A.瑞雪兆丰年B.名师出高徒C.吸烟有害健康D.喜鹊叫喜7.对“a,b,c是不全相等的正数”,给出两个判断:①(a﹣b)2+(b﹣c)2+(c﹣a)2≠0;②a≠b,b≠c,c≠a不能同时成立,下列说法正确的是()A.①对②错B.①错②对C.①对②对D.①错②错8.函数f(x)=sinωx+acosωx(a>0,ω>0)在x=处取最小值﹣2,则ω的一个可能取值是()A.2 B.3 C.7 D.99.一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为()班级_______________座号______姓名_______________分数__________________________________________________________________________________________________________________A .B .C .D . 10.已知函数y=x 3+ax 2+(a+6)x ﹣1有极大值和极小值,则a 的取值范围是( )A .﹣1<a <2B .﹣3<a <6C .a <﹣3或a >6D .a <﹣1或a >211.棱长为2的正方体的8个顶点都在球O 的表面上,则球O 的表面积为( ) A .π4 B .π6 C .π8 D .π1012.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 据此估计,这三天中恰有两天下雨的概率近似为( ) A .0.35 B .0.25 C .0.20 D .0.15二、填空题13.向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为 .14.已知角α终边上一点为P (﹣1,2),则值等于 .15.函数)(x f (R x ∈)满足2)1(=f 且)(x f 在R 上的导数)('x f 满足03)('>-x f ,则不等式1log 3)(log 33-<x x f 的解集为 .【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.16.设函数,若用表示不超过实数m 的最大整数,则函数的值域为 .17.已知一组数据1x ,2x ,3x ,4x ,5x 的方差是2,另一组数据1ax ,2ax ,3ax ,4ax ,5ax (0a >)的标准差是a = .18.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B 为 .三、解答题19.已知等比数列{a n }中,a 1=,公比q=.(Ⅰ)S n 为{a n }的前n 项和,证明:S n =(Ⅱ)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{b n }的通项公式.20.某中学为了普及法律知识,举行了一次法律知识竞赛活动.下面的茎叶图记录了男生、女生各 10名学生在该次竞赛活动中的成绩(单位:分).已知男、女生成绩的平均值相同. (1)求的值;(2)从成绩高于86分的学生中任意抽取3名学生,求恰有2名学生是女生的概率.21.【徐州市第三中学2017~2018学年度高三第一学期月考】为了制作广告牌,需在如图所示的铁片上切割出一个直角梯形,已知铁片由两部分组成,半径为1的半圆O 及等腰直角三角形EFH ,其中FE FH ⊥,为裁剪出面积尽可能大的梯形铁片ABCD (不计损耗),将点,A B 放在弧EF 上,点,C D 放在斜边EH 上,且////AD BC HF ,设AOE θ∠=.(1)求梯形铁片ABCD 的面积S 关于θ的函数关系式;(2)试确定θ的值,使得梯形铁片ABCD 的面积S 最大,并求出最大值.22.【常熟中学2018届高三10月阶段性抽测(一)】如图,某公司的LOGO图案是多边形ABEFMN,其设计创意如下:在长4cm、宽1c m的长方形ABCD中,将四边形DFEC沿直线EF翻折到MFEN(点F是线段AD上异于D的一点、点E是线段BC上的一点),使得点N落在线段AD上.∆面积;(1)当点N与点A重合时,求NMF-最小时,LOGO最美观,试求此时LOGO图案的面积.(2)经观察测量,发现当2NF MF23.已知等差数列{a n}中,a1=1,且a2+2,a3,a4﹣2成等比数列.(1)求数列{a n}的通项公式;(2)若b n=,求数列{b n}的前n项和S n.24.已知(+)n展开式中的所有二项式系数和为512,(1)求展开式中的常数项;(2)求展开式中所有项的系数之和.闵行区第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】C【解析】解:由函数f(x)=3x+x可知函数f(x)在R上单调递增,又f(﹣1)=﹣1<0,f(0)=30+0=1>0,∴f(﹣1)f(0)<0,可知:函数f(x)的零点所在的区间是(﹣1,0).故选:C.【点评】本题考查了函数零点判定定理、函数的单调性,属于基础题.2.【答案】A【解析】解:设回归直线方程=0.7x+a,由样本数据可得,=4.5,=3.5.因为回归直线经过点(,),所以3.5=0.7×4.5+a,解得a=0.35.故选A.【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.3.【答案】D【解析】解:由奇函数的性质可知,若奇函数f(x)在区间上是减函数,且最小值3,则那么f(x)在区间上为减函数,且有最大值为﹣3,故选:D【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,比较基础.4.【答案】A【解析】解:y'=2ax,于是切线的斜率k=y'|x=1=2a,∵切线与直线2x﹣y﹣6=0平行∴有2a=2∴a=1故选:A【点评】本题考查导数的几何意义:曲线在切点处的导数值是切线的斜率.5.【答案】A【解析】解:由等差数列的通项公式可得,a3+a4=2a1+5d=9,a1+d=3解方程可得,a1=2,d=1∴a1a6=2×7=14故选:A【点评】本题主要考查了等差数列的通项公式的简单应用,属于基础试题6.【答案】D【解析】解:根据两个变量之间的相关关系,可以得到瑞雪兆丰年,瑞雪对小麦有好处,可能使得小麦丰收,名师出高徒也具有相关关系,吸烟有害健康也具有相关关系,故选D.【点评】本题考查两个变量的线性相关关系,本题解题的关键是根据实际生活中两个事物之间的关系确定两个变量之间的关系,本题是一个基础题.7.【答案】A【解析】解:由:“a,b,c是不全相等的正数”得:①(a﹣b)2+(b﹣c)2+(c﹣a)2中至少有一个不为0,其它两个式子大于0,故①正确;但是:若a=1,b=2,c=3,则②中a≠b,b≠c,c≠a能同时成立,故②错.故选A.【点评】本小题主要考查不等关系与不等式等基础知识,考查运算求解能力,考查逻辑思维能力.属于基础题.8.【答案】C【解析】解:∵函数f(x)=sinωx+acosωx(a>0,ω>0)在x=处取最小值﹣2,∴sin+acos=﹣=﹣2,∴a=,∴f(x)=sinωx+cosωx=2sin(ωx+).再根据f()=2sin(+)=﹣2,可得+=2kπ+,k∈Z,∴ω=12k+7,∴k=0时,ω=7,则ω的可能值为7,故选:C.【点评】本题主要考查三角恒等变换,正弦函数的图象的对称性,属于基础题.9.【答案】C【解析】解:由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的左侧,由以上各视图的描述可知其俯视图符合C选项.故选:C.【点评】本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义.10.【答案】C【解析】解:由于f(x)=x3+ax2+(a+6)x﹣1,有f′(x)=3x2+2ax+(a+6).若f(x)有极大值和极小值,则△=4a2﹣12(a+6)>0,从而有a>6或a<﹣3,故选:C.【点评】本题主要考查函数在某点取得极值的条件.属基础题.11.【答案】B【解析】考点:球与几何体12.【答案】B【解析】解:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三天中恰有两天下雨的有:191、271、932、812、393,共5组随机数,∴所求概率为.故选B.二、填空题13.【答案】.【解析】解:不等式组的可行域为:由题意,A(1,1),∴区域的面积为=(x3)=,由,可得可行域的面积为:1=,∴坐标原点与点(1,1)的连线的斜率大于1,坐标原点与与坐标原点连线的斜率大于1的概率为: =故答案为:.【点评】本题考查线性规划的应用,几何概型,考查定积分知识的运用,解题的关键是利用定积分求面积.14.【答案】.【解析】解:角α终边上一点为P (﹣1,2), 所以tan α=﹣2.===﹣.故答案为:﹣.【点评】本题考查二倍角的正切函数,三角函数的定义的应用,考查计算能力.15.【答案】)3,0(【解析】构造函数x x f x F 3)()(-=,则03)(')('>-=x f x F ,说明)(x F 在R 上是增函数,且13)1()1(-=-=f F .又不等式1log 3)(log 33-<x x f 可化为1l o g 3)(l o g 33-<-x x f ,即)1()(l o g 3F x F <,∴1log 3<x ,解得30<<x .∴不等式1log 3)(log 33-<x x f 的解集为)3,0(.16.【答案】 {0,1} .【解析】解:=[﹣]+[+]=[﹣]+[+],∵0<<1,∴﹣<﹣<,<+<,①当0<<时,0<﹣<,<+<1,故y=0;②当=时,﹣=0,+=1,故y=1;③<<1时,﹣<﹣<0,1<+<,故y=﹣1+1=0;故函数的值域为{0,1}.故答案为:{0,1}.【点评】本题考查了学生的化简运算能力及分类讨论的思想应用.17.【答案】2 【解析】试题分析:第一组数据平均数为2)()()()()(,2524232221=-+-+-+-+-∴x x x x x x x x x x x ,22222212345()()()()()8,4,2ax ax ax ax ax ax ax ax ax ax a a -+-+-+-+-=∴=∴=.考点:方差;标准差. 18.【答案】4π 【解析】考点:正弦定理.【方法点晴】本题考查正余弦定理,根据正弦定理,将所给的含有边和角的等式化为只含有角的等式,再利用三角形的三角和是︒180,消去多余的变量,从而解出B 角.三角函数题目在高考中的难度逐渐增加,以考查三角函数的图象和性质,以及三角形中的正余弦定理为主,在2016年全国卷( )中以选择题的压轴题出现.三、解答题19.【答案】【解析】证明:(I )∵数列{a n }为等比数列,a 1=,q=∴a n =×=,S n =又∵==S n∴S n =(II )∵a n =∴b n =log 3a 1+log 3a 2+…+log 3a n =﹣log 33+(﹣2log 33)+…+(﹣nlog 33)=﹣(1+2+…+n )=﹣∴数列{b n }的通项公式为:b n =﹣【点评】本题主要考查等比数列的通项公式、前n 项和以及对数函数的运算性质.20.【答案】(1) 7a =;(2) 310P =. 【解析】试题分析: (1)由平均值相等很容易求得的值;(2)成绩高于86分的学生共五人,写出基本事件共10个,可得恰有两名为女生的基本事件的个数,则其比值为所求.其中恰有2名学生是女生的结果是(96,93,87),(96,91,87),(96,90,87)共3种情况. 所以从成绩高于86分的学生中抽取了3名学生恰有2名是女生的概率310P =.1 考点:平均数;古典概型.【易错点睛】古典概型的两种破题方法:(1)树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件数的探求.另外在确定基本事件时,),(y x 可以看成是有序的,如()1,2与()2,1不同;有时也可以看成是无序的,如)1,2)(2,1(相同.(2)含有“至多”、“至少”等类型的概率问题,从正面突破比较困难或者比较繁琐时,考虑其反面,即对立事件,应用)(1)(A P A P -=求解较好.21.【答案】(1)()21sin cos S θθ=+,其中02πθ<<.(2)6πθ=时,max S =【解析】试题分析:(1)求梯形铁片ABCD 的面积S 关键是用θ表示上下底及高,先由图形得AOE BOF θ∠=∠=,这样可得高2cos AB θ=,再根据等腰直角三角形性质得()1cos sin AD θθ=-+,()1cos sin BC θθ=++最后根据梯形面积公式得()2AD BC ABS +⋅=()21sin cos θθ=+,交代定义域02πθ<<.(2)利用导数求函数最值:先求导数()'f θ()()22sin 1sin 1θθ=--+,再求导函数零点6πθ=,列表分析函数单调性变化规律,确定函数最值试题解析:(1)连接OB ,根据对称性可得AOE BOF θ∠=∠=且1OA OB ==, 所以1cos sin AD θθ=-+,1cos sin BC θθ=++,2cos AB θ=, 所以()2AD BC ABS +⋅=()21sin cos θθ=+,其中02πθ<<.考点:利用导数求函数最值【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f′(x )>0或f′(x )<0求单调区间;第二步:解f′(x )=0得两个根x 1、x 2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小. 22.【答案】(1)215cm 16;(2)24. 【解析】试题分析:(1)设MF x =4x =,则158x =, 据此可得NMF ∆的面积是2115151cm 2816⨯⨯=;试题解析:(1)设MF x =,则FD MF x ==,NF =∵4NF MF +=,4x =,解之得158x =, ∴NMF ∆的面积是2115151cm 2816⨯⨯=; (2)设NEC θ∠=,则2NEF θ∠=,NEB FNE πθ∠=∠=-,∴()22MNF πππθθ∠=--=-,∴112MNNF cos MNFsin cos πθθ===∠⎛⎫- ⎪⎝⎭,MF FD MN tan MNF ==⋅∠=2cos tan sin πθθθ⎛⎫-=- ⎪⎝⎭,∴22cos NF MF sin θθ+-=.∵14NF FD <+≤,∴114cos sin θθ-<≤,即142tan θ<≤, ∴42πθα<≤(4tan α=且,32ππα⎛⎫∈ ⎪⎝⎭), ∴22πθα<≤(4tan α=且,32ππα⎛⎫∈ ⎪⎝⎭), 设()2cos f sin θθθ+=,则()212cos f sin θθθ--=',令()0f θ'=得23πθ=, 列表得∴当23πθ=时,2NF MF -取到最小值, 此时,NEF CEF NEB ∠=∠=∠3FNE NFE NFM π=∠=∠=∠=,6MNF π∠=,在Rt MNF ∆中,1MN =,3MF =,3NF =,在正NFE ∆中,NF EF NE ===,在梯形ANEB 中,1AB =,4AN =,4BE =-∴MNF EFN ABEFMN ABEN S S S S ∆∆=++=六边形梯形144142⎛+⨯-⨯=- ⎝⎭.答:当2NF MF -最小时,LOGO 图案面积为24. 点睛:求实际问题中的最大值或最小值时,一般是先设自变量、因变量,建立函数关系式,并确定其定义域,利用求函数的最值的方法求解,注意结果应与实际情况相结合.用导数求解实际问题中的最大(小)值时,如果函数在开区间内只有一个极值点,那么依据实际意义,该极值点也就是最值点. 23.【答案】【解析】解:(1)由a 2+2,a 3,a 4﹣2成等比数列,∴=(a 2+2)(a 4﹣2),(1+2d )2=(3+d )(﹣1+3d ),d 2﹣4d+4=0,解得:d=2,∴a n=1+2(n﹣1)=2n﹣1,数列{a n}的通项公式a n=2n﹣1;(2)b n===(﹣),S n=[(1﹣)+(﹣)+…+(﹣)],=(1﹣),=,数列{b n}的前n项和S n,S n=.24.【答案】【解析】解:(1)对(+)n,所有二项式系数和为2n=512,解得n=9;设T r+1为常数项,则:T r+1=C9r=C9r2r,由﹣r=0,得r=3,∴常数项为:C9323=672;(2)令x=1,得(1+2)9=39.【点评】本题考查了二项式展开式定理的应用问题,也考查了赋值法求展开式各项系数和的应用问题,是基础题.。
上海市闵行区2018-2019学年高一上学期质量调研考试数学试卷 (3)

【题文】
(本题满分14分:6+8)
把一段底面直径为40厘米的圆柱形木料据成横截面为矩形的木料,该矩形的一条边长是x 厘米,另一条边长是y 厘米.
(1)试用解析式将y 表示成x 的函数,并写出函数的定义域;
(2)若该圆柱形木料长为100厘米,则怎样据才能使矩形木料的体积最大?并求出体积的最大值.
【答案】
(1)()40,0,1600,02∈-=>x x y y ;(2)220cm ,80000cm 3
【解析】
解析:(1)2
2221600,1600x y y x -==+ ()40,0,1600,02∈-=>x x y y
(2)设矩形木料的体积为V , ()()220640000800100160010016001001002
2222
=+--=-=-==x x x x x x xy V
80000max =V
答:将木料截面矩形锯成边长都为220cm 时体积最大,体积的最大值为80000 cm 3
【标题】上海市闵行区2018-2019学年高一上学期质量调研考试数学试卷
【结束】。
2018-2019学年上海市闵行中学高一上学期期中数学试题(解析版)

2018-2019学年上海市闵行中学高一上学期期中数学试题一、单选题1.命题“己知,x y R ∈,若220x y +=,则0x =且0y =”的逆否命题是( ) A .己知,x y R ∈,若220x y +≠,则0x ≠且0y ≠ B .己知,x y R ∈,若220x y +≠,则0x ≠或0y ≠ C .己知,x y R ∈,若0x ≠且0y ≠,则220x y +≠ D .己知,x y R ∈,若0x ≠或0y ≠,则220x y +≠ 【答案】D【解析】直接利用逆否命题的定义得到答案. 【详解】己知,x y R ∈,若220x y +=,则0x =且0y =”的逆否命题是:己知,x y R ∈,若0x ≠或0y ≠,则220x y +≠ 故选:D 【点睛】本题考查了命题的逆否命题,意在考查学生对于命题基础知识的掌握情况. 2.已知集合(){}(){}22,10,,1A x y x y B x y xy A B =+-==+=⋂=,则 ( )A .()(){}0110,,, B .{}01,C .(){}01, D .(){}10, 【答案】A【解析】联立A B ,中的方程组成方程组,求出解即可确定出两集合的交集 【详解】联立集合A B ,可得:22101x y x y +-=⎧⎨+=⎩,解得01x y =⎧⎨=⎩或10x y =⎧⎨=⎩则()(){}0110A B ⋂=,,, 故选A 【点睛】本题主要考查了集合的交集运算,属于基础题。
3.下列各图中,是函数的图像的序号是( )A .B .C .D .【答案】C【解析】根据函数定义,对于任意的x ,最多有一个y 与之对应,据此依次判断每个选项得到答案. 【详解】根据函数定义,对于任意的x ,最多有一个y 与之对应 选项ABD 均不满足,排除. 故选:C 【点睛】本题考查了函数图像的判断,属于基础题型.4.设集合{}1,2,3,...,n S n =,若A 是n S 的子集,把A 中的所有数的和称为A 的“容量”(规定空集的容量为0),若A 的容量为奇(偶)数,则称A 为n S 的奇(偶)子集,命题①:n S 的奇子集与偶子集个数相等;命题②:当3n ≥时,n S 的所有奇子集的容量之和与所有偶子集的容量之和相等,则下列说法正确的是( ) A .命题①和命题②都成立 B .命题①和命题②都不成立 C .命题①成立,命题②不成立 D .命题①不成立,命题②成立【答案】A【解析】设S 为n S 的奇子集,构造集合{}{}1,11,1SS S T C S ⎧⋃∉⎪=⎨∈⎪⎩,得到奇子集与偶子集个数相等,①正确; 计算奇子集容量之和是2312(1)2nn n i i n n --==+∑,等于偶子集的容量之和,得到②正确,判断得到答案. 【详解】设S 为n S 的奇子集,令{}{}1,11,1S S ST C S⎧⋃∉⎪=⎨∈⎪⎩,则T 是偶子集 S T →是奇子集到偶子集的一一对应,且每个偶子集T ,均恰有一个奇子集,{}{}11,11,1TT TS C T ⎧⋃∉⎪=⎨∈⎪⎩与之对应,故n S 的奇子集与偶子集个数相等,所以①正确;对任一(1)i i n ≤≤,含i 的子集共有12n -个,用上面的对应方法可知,在1i ≠时,这12n -个子集中有一半是奇子集,在1i =时,由于3n ≥,将上边的1换成3,同样可得其中有一半是奇子集,于是计算奇子集容量之和是2312(1)2nn n i i n n --==+∑,根据上面所说,这也是偶子集的容量之和,两者相等,所以当3n ≥时,n S 的所有奇子集的容量之和与所有偶子集的容量之和相等,即命题②正确, 故应选A . 【点睛】本题考查了集合的新定义问题,构造集合{}{}1,11,1S S ST C S ⎧⋃∉⎪=⎨∈⎪⎩是解题的关键.二、填空题5.已知集合{1,0,1}A =-,{}2,3B =,则A B =____________【答案】{}1,0,1,2,3-【解析】直接利用并集运算法则得到答案. 【详解】集合{1,0,1}A =-,{}2,3B =,则{}1,0,1,2,3A B ⋃=- 故答案为:{}1,0,1,2,3- 【点睛】本题考查了并集的运算,属于基础题型.6.已知{}201,2x x x ∈+--,则x =_____________ 【答案】2【解析】讨论10x +=和220x x --=两种情况,再验证得到答案. 【详解】{}201,2x x x ∈+--当10x +=时,1x =-,代入验证知:{}{}21,20,0x x x +--=,不满足互异性,排除;当220x x --=时,2x =或1x =-(舍去),代入验证知:{}{}21,23,0x x x +--=,满足. 故答案为:2 【点睛】本题考查了元素和集合的关系,没有验证互异性是容易发生的错误.7.设x ∈R ,那么“0x <”是“2x ≠”的____________条件(填充分不必要、必要不充分、充要、既不充分又不必要之一) 【答案】充分不必要【解析】0x <可以得到2x ≠,充分性;举反例得到不必要,得到答案. 【详解】0x <可以得到2x ≠,充分性;2x ≠时,举反例1x =,不满足0x <,不必要.故答案为:充分不必要 【点睛】本题考查了必要不充分条件,意在考查学生的推断能力.8.己知函数()12f x x =-,则()f x 的定义域为___________ 【答案】[1,2)(2,)⋃+∞【解析】根据函数定义域的定义得到不等式1020x x -≥⎧⎨-≠⎩,计算得到答案.【详解】函数()12f x x =-的定义域满足:1020x x -≥⎧⎨-≠⎩解得1x ≥且2x ≠ 故答案为:[1,2)(2,)⋃+∞ 【点睛】本题考查了函数的定义域,属于简单题型.9.己知fx =,则()f x =________【答案】()20xx ≥【解析】(0)t t =≥,则2x t =,代入化简得到答案. 【详解】(0)t t =≥,则2x t =,代入化简得到:2()(0)f t t t =≥即()()20f x x x =≥故答案为:()20x x ≥【点睛】本题考查了换元法求函数解析式,忽略定义域是容易发生的错误. 10.己知集合{}|15A x x =<<,{}|2,B x x n n N ==∈,则集合A B 中有________个元素 【答案】2【解析】先计算{}{}|2,0,2,4,6...B x x n n N ==∈=,再计算{}2,4A B =得到答案. 【详解】{}{}|2,0,2,4,6...B x x n n N ==∈=,{}|15A x x =<<则{}2,4AB =故答案为:2 【点睛】本题考查了交集的运算,属于简单题.11.若集合{}2|20N x x x a =-+=,{}1M =,且N M ⊆,则实数a 的取值范围是_________ 【答案】[1,)+∝【解析】根据条件得到{}1N =或N =∅,分别计算得到答案. 【详解】N M ⊆,则{}1N =或N =∅当{}1N =时,{}{}2|201N x x x a =-+==,解得1a =;当N =∅时,{}2|20N x x x a =-+=,满足4401a a ∆=-<∴>.综上所述:1a ≥ 故答案为:[1,)+∝ 【点睛】本题考查了根据集合的包含关系求参数,忽略掉空集的情况是容易发生的错误. 12.己知0,0x y m >>>,比较大小yx___________y m x m ++(填>,≥,<,≤之一)【答案】<【解析】作差得到()()m x y y m y x m x x m x-+-=++,根据0,0x y m >>>确定符号得到答案.【详解】()()()()()x y m y x m m x y y m y x m x x m x x m x +-+-+-==+++ 0,0x y m >>>,故()()0m x y x m x->+,即y m yx m x +>+故答案为:< 【点睛】本题考查了代数式的大小比较,作差法是一个常用方法,需要熟练掌握.13.对于任意实数x ,不等式210ax ax --<恒成立,则实数a 的取值范围是___ . 【答案】(4,0]-【解析】分0a =与0a ≠讨论即可得结论. 【详解】当0a =时,有10-<显然成立,当0a ≠时,则00a <⎧⎨<⎩,解得40a -<<,综上40a -<≤,故答案为(4,0]- 【点睛】本题考查了一元二次不等式恒成立的问题,考查了二次函数的图象的应用,属于基础题. 14.若关于x 的不等式10ax x b-≥-(),a b R ∈的解集为(),1[2,)-∞+∞,则a 的值为_____ 【答案】12【解析】根据不等式的解找到对应方程的解:10ax -=对应的解为2,计算得到答案.【详解】 关于x 的不等式10ax x b-≥-(),a b R ∈的解集为(),1[2,)-∞+∞ 则10ax -=对应的解为2;0x b -=对应的解为1. 解得1,12a b == 故答案为:12【点睛】本题考查了已知不等式的解求参数,转化为对应方程的解是解题的关键. 15.己知x ∈R ,且2x ≠-,则12x x ++的最小值是_______ 【答案】0【解析】讨论2x >-和2x <-两种情况,分别利用均值不等式计算最小值得到答案. 【详解】当2x >-时,11222022x x x x +=++-≥=++,当1x =-时等号成立;当2x <-时,()1112224222x x x x x x +=--=-+-+≥=+++,当3x =-时等号成立;综上所述:当1x =-,12x x ++有最小值是0. 故答案为:0 【点睛】本题考查了利用均值不等式求最值,分类讨论是常用的方法,需要熟练掌握. 16.我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x 的不足近似值和过剩近似值分别为b a和dc()*,,,a b c d N ∈,则b d a c ++是x 的更为精确的近似值. 我们知道 3.1415926535897932π=⋯,我国早在《周髀算经》中就有“周三径一”的古率记载,《隋书•律历志》有如下记载:“南徐州从事史祖冲之更开密法,以圆径一亿为丈,圆周盈数三丈一尺四寸一分五厘九毫二秒七忽,肭数三丈一尺四寸一分五厘九毫二秒六忽,正数在盈肭二限之间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018—2019学年上海市闵行区高一年级上学期质量调研考试数学试卷一、填空题:(本大题共12题,满分54分;第1-6题每题4分,第7-12每题5分)1.已知全集,集合,则____________【答案】【解析】【分析】结合补集计算方法,即可.【详解】结合集合补集计算方法,得到【点睛】本道题考查了补集计算方法,难度较容易.2.函数的定义域是__________.【答案】【解析】分析:先根据偶次根式下被开方数非负列不等式,再解指数不等式得结果.详解:要使函数有意义,则,解得,故函数的定义域是.点睛:具体函数定义域主要考虑:(1)分式函数中分母不等于零. (2)偶次根式函数的被开方式大于或等于0.(3)对数中真数大于零.(4)零次幂得底不为零.3.函数的反函数是____________【答案】【解析】【分析】反函数,即利用y表示x,即可。
【详解】反函数,即用y表示x,得到【点睛】本道题考查了反函数的计算方法,抓住用y表示x,即可,属于较容易题。
4.不等式的解集为____________【答案】【解析】【分析】结合不等式,移项,计算x的范围,即可。
【详解】结合不等式,可知,对不等式移项,得到,所以x的范围为【点睛】本道题考查了分式不等式计算方法,属于较容易的题。
5.用“二分法”求函数在区间内的零点时,取的中点,则的下一个有零点的区间是____________【答案】【解析】【分析】如果则说明零点在之间,即可。
【详解】,故下一个有零点的区间为【点睛】本道题考查了零点判定规则,抓住如果则说明零点在之间,属于较容易的题。
6.命题“若,则”,能说明该命题为假命题的一组的值依次为________【答案】(不唯一)【解析】【分析】代入特殊值,计算,分析,即可。
【详解】代入特殊值,当,发现,为假命题。
【点睛】本道题考查了命题真假判断,难度较容易。
7.已知,则____________(用表示)【答案】【解析】【分析】本道题结合以及,不断转化,即可。
【详解】,【点睛】本道题考查了换底公式,考查了对数的运算性质,难度中等。
8.函数的值域为____________【答案】【解析】【分析】结合真数的范围,计算值域,即可.【详解】,得到,而对数函数满足,所以,故值域为【点睛】本道题考查了对数函数的性质,关键抓住的范围,难度中等.9.已知函数,若函数过点,那么函数一定经过点____________【答案】【解析】【分析】本道题将点坐标代入,得到,即可.【详解】将代入中,得到得到,所以,故一定经过点.【点睛】本道题考查了抽象函数过定点问题,关键在于把点坐标代入抽象函数解析式中,难度中等.10.已知是奇函数,则____________【答案】【解析】【分析】本道题结合奇函数的性质,计算出,代入,即可.【详解】,所以【点睛】本道题考查了奇函数的基本性质,关键抓住,即可.11.已知,若,,则的取值范围是_________【答案】【解析】【分析】本道题结合分段函数,绘制图像,结合图像可知要使得,关键使得做一条直线平行于x轴,能使得与有两个交点,计算a,b的范围,即可。
【详解】结合分段函数,绘制图像,得到:结合图像可知要使得,关键使得做一条直线平行于x轴,能使得与有两个交点,则,,得到,故范围为【点睛】本道题考查了函数的性质,考查了数形结合思想,属于较难的题。
12.函数的最大值与最小值的和为__________【答案】【解析】【分析】本道题转化,构造函数,结合函数的奇偶性,判定关于对称,计算最大值与最小值的和,即可。
【详解】构造函数,可知为奇函数,故关于对称,所以最大值M与最小值m也是关于对称,故,所以最大值与最小值的和为2.【点睛】本道题考查了奇偶性判定,考查了对称中心的找法,关键证明出关于中心对称,难度较难。
二、选择题(本大题共4小题,每题5分)13.若函数的图像位于第一、二象限,则它的反函数的图像位于()A. 第一、二象限B. 第三、四象限C. 第二、三象限D. 第一、四象限【答案】D【解析】【分析】结合函数与反函数关于得出,即可得出反函数位于第一、四象限,即可。
【详解】结合函数与反函数关于得出,即可得出反函数位于第一、四象限,即可。
【点睛】本道题考查了函数与反函数的性质,难度中等。
14.下列函数中,在上既是奇函数又是减函数的是()A. B. C. D.【答案】C【解析】【分析】本道题结合,以及减函数的判定,每个选项依次分析,即可.【详解】A选项,在R上不保证一直单调递减,故错误.B选项,定义域满足,故定义域不是R,故错误.C选项,,故为奇函数,对于,故为单调递减,对于,故为单调递减,对于,故为单调递减,所以在R上为减函数,故正确.D选项,不满足奇函数的判定,故选C.【点睛】本道题考查了奇函数的判定,考查了函数单调的判定,难度中等.15.已知,原命题是“若,则中至少有一个不小于0”,那么原命题与其逆命题依次是()A. 真命题、假命题B. 假命题、真命题C. 真命题、真命题D. 假命题、假命题【答案】A【解析】【分析】本道题先判定原命题的真假性,然后写出逆命题,判定真假,即可。
【详解】结合题意,显然原命题正确,逆命题为:若,则m,n中都小于0。
显然这句话是错误的,比如,即可,故选A。
【点睛】本道题考查了逆命题的改写,考查了命题真假判断,难度较容易。
16.已知,则“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】本道题反复运用基本不等式,即可.【详解】结合题意可知,,而,得到解得,故可以推出结论,而当得到,故由结论推不出条件,故为充分不必要条件.【点睛】本道题考查了基本不等式的运用,关键注意,即可,属于偏难的题.三、解答题(本大题共76分)17.已知函数,,,.(1)求集合(2)若,比较与的大小【答案】(1)(2)【解析】【分析】(1)计算出A集合,然后解出B集合,结合交集运算性质,即可.(2)将代入中,运用作差法,判定与0的关系,即可。
【详解】(1)由,得,所以或故,又所以(2)由,得又,所以,即【点睛】本道题考查了集合的交集运算性质,考查了运用作差法比较大小,注意比较大小,运用作差法,所得结果与0的关系,即可。
18.已知,函数:(1)判断函数的奇偶性,并给与证明;(2)判断函数的单调性,并给与证明.【答案】(1)是奇函数;(2)在上单调递增【解析】【分析】(1)结合与0的关系,判定奇偶性,即可。
(2)设,判定与0的关系,判定单调性,即可。
【详解】(1)由,可得,函数的定义域关于原点对称所以是奇函数,设,且因为所以所以在上单调递增【点睛】本道题考查了奇偶性的判定,考查了单调性的判定,判定奇偶性,关键抓住与0的关系,判定单调性,抓住与0的关系,即可,属于中档题。
19.把一段底面直径为40厘米的圆柱形木料据成横截面为矩形的木料,该矩形的一条边长是厘米,另一条边长是厘米.(1)试用解析式将表示成的函数,并写出函数的定义域;(2)若该圆柱形木料长为100厘米,则怎样据才能使矩形木料的体积最大?并求出体积的最大值.【答案】(1);(2),80000【解析】【分析】(1)结合矩形的双边与圆的直径构成直角三角形,结合勾股定理,建立方程,即可。
(2)利用体积计算公式,建立函数关系,结合二次函数的性质,计算最值,即可。
【详解】(1)(2)设矩形木料的体积为,答:将木料截面矩形锯成边长都为时体积最大,体积的最大值为80000【点睛】本道题考查了函数方程的求解以及函数的性质,计算最值,结合二次函数的性质,即可,属于中档题。
20.已知函数.(1)若在上是增函数,求实数的取值范围;(2)当时,作出函数的图像,并解不等式:;(3)若函数与的图像关于对称,且任意,都有,求实数的取值范围.【答案】(1);(2)见解析,;(3)【解析】【分析】(1)结合x的不同范围,去掉绝对值,得到解析式,结合函数单调性满足的性质,即可。
(2)把a的值代入中,绘制函数图像,建立不等式,即可。
(3)结合题意,判定与0的关系,结合恒成立满足的条件,得到关于a的不等式,结合函数性质,计算最值,即可。
【详解】(1)已知∵在上是增函数,∴;(2)当时,,图像如右∵∴可得∴(3)∴对任意,都有即恒成立或者恒成立,∵,∴恒成立,∴时,恒成立;时,,∴综上可知,【点睛】本道题考查了函数的性质,考查了函数单调性,考查了恒成立问题计算最值,关键结合图像,建立不等式,属于较难的题。
21.已知函数. 为实数,且,记由所有组成的数集为.(1)已知,求;(2)对任意的,恒成立,求的取值范围;(3)若,,判断数集中是否存在最大的项?若存在,求出最大项;若不存在,请说明理由. 【答案】(1);(2);(3)见解析【解析】【分析】(1)用a表示,建立等式,即可。
(2)结合恒成立问题,构造不等式,构造函数,计算最值,即可。
(3)针对a取不同范围,分类讨论,判定最大项,即可。
【详解】(1)已知,,解得(2)对任意的,恒成立,函数在上是单调递减的,所以的取值范围是(3)①当时,,即,∴数集中的最大项为2②当时,在单调递减,,,,当时,,∴∴∴数集中的最大项为③当时,在单调递增,,,,由恒成立∴∴数集中无最大项综上可知,当时,数集中的最大项为;当时,数集中无最大项【点睛】本道题考查了函数的性质,考查了函数计算最值问题,属于较难的题。