华师一附中2018-2019高二下数学期末试卷(含答案)

合集下载

湖北省华中师范大学第一附属中学2018~2019学年度高二第一学期期末考试文科数学试题及参考答案解析

湖北省华中师范大学第一附属中学2018~2019学年度高二第一学期期末考试文科数学试题及参考答案解析

华中师大一附中2018—2019学年度第一学期期末考试高中二年级年级数学(文科)试题一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.用秦九韶算法求多项式当时的值,有如下说法:①要用到6次乘法;②要用到6次加法和15次乘法;③v3=12;④v0=11.其中说法正确的是A.①③B.①④C.②④D.①③④【参考答案】A【试题解析】【分析】根据秦九韶算法求多项式的规则变化其形式,把等到价转化为,就能求出结果.解:需做加法与乘法的次数都是6次,,,,,的值为12;其中正确的是①④故选:A.本题考查算法的多样性,正确理解秦九韶算法求多项式的原理是解题的关键,属于基础题. 2.把[0,1]内的均匀随机数x分别转化为[0,2]和内的均匀随机数y1,y2,需实施的变换分别为( )A.,B.,C.,D.,【参考答案】C【试题解析】【分析】先看区间长度之间的关系:故可设或,再用区间中点之间的对应关系得到,解出,问题得以解决.解:将[0,1]内的随机数x转化为[0,2]内的均匀随机数,区间长度变为原来的2倍,因此设=2x+(是常数),再用两个区间中点的对应值,得当时,=1,所以,可得=0,因此x与的关系为:=2x;将[0,1]内的随机数x转化为[-2,1]内的均匀随机数,区间长度变为原来的2倍,因此设=3x+(是常数),再用两个区间中点的对应值,得当时,=,所以,可得,因此x与的关系为:=3x-2;故选C.本题考查均匀随机数的含义与应用,属于基础题.解决本题解题的关键是理解均匀随机数的定义,以及两个均匀随机数之间的线性关系.3.抛物线的准线方程是,则的值为( )A. B. C.8 D.-8【参考答案】B【试题解析】方程表示的是抛物线,,,抛物线的准线方程是,解得,故选A.4.执行如图所示的程序框图,若输出n的值为9,则判断框中可填入( )A. B. C. D.【参考答案】D【试题解析】【分析】执行程序框图,根据输出,可计算的值,由此得出判断框中应填入的条件.解:执行程序框图,可得该程序运行后是计算,满足条件后,输出,由此得出判断框中的横线上可以填入?.故选:D.本题主要考查了程序框图的应用问题,正确判断退出循环的条件是解题的关键,属于基础题.5.将二进制数110 101(2)转化为十进制数为( )A.106B.53C.55D.108【参考答案】B【试题解析】由题意可得110101(2)=1×25+1×24+0×23+1×22+0×21+1×20=53.选B。

2018-2019学年高二数学下学期期末考试试题理(含解析)_2

2018-2019学年高二数学下学期期末考试试题理(含解析)_2

2018-2019学年高二数学下学期期末考试试题理(含解析)一、填空题1.集合,若,则实数的值为__________.【答案】【解析】【分析】根据并集运算法则计算得到答案.【详解】集合,若则故答案为:【点睛】本题考查了集合的并集运算,属于简单题.2.复数的虚部是.【答案】【解析】试题分析:因为,,所以,复数的虚部是。

考点:复数的代数运算,复数的概念。

点评:简单题,复数的除法,要注意分子分母同乘分母的共轭复数,实现分母实数化。

3.命题“若,则”的否命题为.【答案】若,则【解析】【详解】试题分析:否命题是对命题的条件和结论同时否定,同时否定和即可.命题“若,则”的否命题为:若,则考点:四种命题.4.若幂函数的图像经过点,则__________.【答案】【解析】【分析】设出幂函数,代入点计算函数表达式,将代入得到答案.【详解】设:,图像经过点,即故答案为:【点睛】本题考查了幂函数的计算,属于简单题.5.直三棱柱中,若,则__________.【答案】【解析】【分析】将向量用基向量表示出来得到答案.【详解】直三棱柱中,若故答案为:【点睛】本题考查了空间基向量的知识,意在考查学生的空间想象能力.6.为定义在上的奇函数,且,则_____.【答案】【解析】【分析】根据已知将x=x+2代入等式可得,可知为周期T=4的周期函数,化简,再由奇函数的性质可得其值。

【详解】由题得,则有,因为为定义在R上的奇函数,那么,则,故.【点睛】本题考查奇函数的性质和周期函数,属于常见考题。

7.方程的解为__________.【答案】或【解析】【分析】方程相等分为两种情况:相等或者相加等于14,计算得到答案.【详解】或解得:或故答案为:或【点睛】本题考查了组合数的计算,漏解是容易发生的错误.8.“”是“”的____条件(在“充分不必要”、“必要不充分”、“既不充分又不必要条件”、“充要”中选择填空).【答案】充分不必要【解析】【分析】据题意“”解得,由此可判断它与“”的关系。

2018-2019学年高二数学下学期期末考试试题理(含解析)

2018-2019学年高二数学下学期期末考试试题理(含解析)

2018-2019学年高二数学下学期期末考试试题理(含解析)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数满足(为虚数单位),则复数在复平面内所对应的点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】利用复数的四则运算法则,可求出,从而可求出在复平面内所对应的点的坐标,从而可得到答案.【详解】由题意,,则复数在复平面内所对应的点为,在第四象限.【点睛】本题考查了复数的四则运算,考查了学生对复数知识的理解和掌握,属于基础题.2.已知抛物线的焦点和双曲线的右焦点重合,则的值为()A. B. C. D.【答案】A【解析】【分析】先求出抛物线的焦点坐标,进而可得到双曲线的右焦点坐标,然后利用,可得到答案.【详解】由题意,抛物线的焦点坐标为,则双曲线的右焦点为,则,故选A.【点睛】本题考查了抛物线、双曲线的焦点坐标的求法,考查了学生的计算能力,属于基础题.3.如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的分别为10,14,则输出的()A. 6B. 4C. 2D. 0【答案】C【解析】【分析】由程序框图,先判断,后执行,直到求出符合题意的.【详解】由题意,可知,,满足,不满足,则,满足,满足,则,满足,满足,则,满足,不满足,则,不满足,输出.故选C.【点睛】本题考查了算法和程序框图,考查了学生对循环结构的理解和运用,属于基础题.4.已知函数在上可导,且,则函数的解析式为()A. B.C. D.【答案】A【解析】【分析】先对函数求导,然后将代入导函数中,可求出,从而得到的解析式.【详解】由题意,,则,解得,故.故答案为A.【点睛】本题考查了函数解析式的求法,考查了函数的导数的求法,属于基础题.5.若圆锥的高为,底面半径为,则此圆锥的表面积为()A. B. C. D.【答案】B【解析】【分析】先求出母线,然后分别求出圆锥的底面面积和侧面面积.【详解】圆锥的母线,则圆锥的表面积.【点睛】本题考查了圆锥的表面积,考查了学生的空间想象能力与计算求解能力,属于基础题.6.函数在上不单调,则实数的取值范围是()A. B. C. D.【答案】D【解析】【分析】函数在上不单调,即在内有极值点,由,结合二次函数的性质,即可求出实数的取值范围.【详解】,函数在上不单调,即在内有极值点,因为,且,所以有,即,解得.故答案为D.【点睛】本题考查了函数的单调性,考查了二次函数的性质,考查了学生分析问题与解决问题的能力,属于中档题.7.下列叙述正确的是()A. 若命题“”为假命题,则命题“”是真命题B. 命题“若,则”的否命题为“若,则”C. 命题“,”的否定是“,”D. “”是“”的充分不必要条件【答案】B【分析】结合命题知识对四个选项逐个分析,即可选出正确答案.【详解】对于选项A,“”为假命题,则,两个命题至少一个为假命题,若,两个命题都是假命题,则命题“”是假命题,故选项A错误;对于选项B,“若,则”的否命题为“若,则”,符合否命题的定义,为正确选项;对于选项C,命题“,”的否定是“,”,故选项C错误;对于选项D,若,则,故“”不是“”的充分不必要条件.【点睛】本题考查了命题的真假的判断,考查了学生对基础知识的掌握情况.8.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.【解析】【分析】该空间几何体是由具有相同底面和高的三棱柱和三棱锥组合而成,分别求出体积即可.【详解】该空间几何体是由具有相同底面和高的三棱柱和三棱锥组合而成,底面三角形的面积为,三棱柱和三棱锥的高为1,则三棱柱的体积,三棱锥的体积为,故该几何体的体积为.故选A.【点睛】本题考查了空间组合体的三视图,考查了学生的空间想象能力,属于基础题.9.设是两条不同的直线,是两个不同的平面,下列命题中正确的是()A. 若,,则B. 若,,,则C. 若,,则D. 若,,则【答案】C【解析】【分析】结合空间中点线面的位置关系,对选项逐个分析即可选出答案.【详解】对于选项A,当,,有可能平行,也有可能相交,故A错误;对于选项B,当,,,有可能平行,也可能相交或者异面,故B错误;对于选项C,当,,根据线面垂直的判定定理可以得到,故C正确;对于选项D,当,,则或者,故D错误;故答案为选项C.【点睛】本题考查了空间中直线与平面的位置关系,考查了学生的空间想象能力,属于基础题.10.函数与它的导函数的大致图象如图所示,设,当时,单调递减的概率为()A. B. C. D.【答案】B【解析】分析】结合图象可得到成立的x的取值范围,从而可得到的单调递减区间,即可选出答案.【详解】由图象可知,轴左侧上方图象为的图象,下方图象为的图象,对求导,可得,结合图象可知和时,,即在和上单调递减,故时,单调递减的概率为,故答案为B.【点睛】本题考查了函数的单调性问题,考查了数形结合的数学思想,考查了导数的应用,属于中档题.11.在三棱锥中,平面,,,则三棱锥的外接球的表面积为()A. B. C. D.【答案】C【解析】【分析】先求出的外接圆的半径,然后取的外接圆的圆心,过作,且,由于平面,故点为三棱锥的外接球的球心,为外接球半径,求解即可.【详解】在中,,,可得,则的外接圆的半径,取的外接圆的圆心,过作,且,因为平面,所以点为三棱锥的外接球的球心,则,即外接球半径,则三棱锥的外接球的表面积为.故选C.【点睛】本题考查了三棱锥的外接球表面积的求法,考查了学生的空间想象能力,属于中档题.12.已知函数有三个不同的零点(其中),则的值为( )A. B. C. D.【答案】A【解析】【分析】令,构造,要使函数有三个不同的零点(其中),则方程需要有两个不同的根,则,解得或,结合的图象,并分,两个情况分类讨论,可求出的值.【详解】令,构造,求导得,当时,;当时,,故在上单调递增,在上单调递减,且时,,时,,,可画出函数的图象(见下图),要使函数有三个不同的零点(其中),则方程需要有两个不同的根(其中),则,解得或,且,若,即,则,则,且,故,若,即,由于,故,故不符合题意,舍去.故选A.【点睛】解决函数零点问题,常常利用数形结合、等价转化等数学思想.三、填空题13.若“,使成立”为真命题,则实数的取值范围是_________.【答案】m≤1【解析】,使为真命题则解得则实数的取值范围为14.观察下面几个算式:;;;1+2+3+4+5+4+3+2+1=25.利用上面算式的规律,计算______【答案】10000【解析】观察归纳中间数为2,结果为4=22;中间数为3,结果为9=32;中间数为4,结果为16=42;于是中间数为100,结果应为1002=10 000.故答案为:10 000点睛:这个题目考查的是合情推理中的数学式子的推理;一般对于这种题目,是通过数学表达式寻找规律,进而得到猜想。

2018-2019学年上海市华师大第一附属中学高二下学期期末数学试题(解析版)

2018-2019学年上海市华师大第一附属中学高二下学期期末数学试题(解析版)

2018-2019学年上海市华师大第一附属中学高二下学期期末数学试题一、单选题1.下列集合中,表示空集的是( )A .{}0B .(){},0x y y x =≤C .{}2560,x x x x N ++=∈ D .{}24,x x x Z <<∈【答案】C【解析】没有元素的集合是空集,逐一分析选项,得到答案. 【详解】A.不是空集,集合里有一个元素,数字0,故不正确;B.集合由满足条件的0y x =≤上的点组成,不是空集,故不正确;C.2560x x ++=,解得:2x =-或3x =-,都不是自然数,所以集合里没有元素,是空集,故正确;D.满足不等式的解为3x =±,所以集合表示{}3,3-,故不正确. 故选:C 【点睛】本题考查空集的判断,关键是理解空集的概念,意在考查分析问题和解决问题的能力.2.已知有相同两焦点F 1、F 2的椭圆25x + y 2=1和双曲线23x - y 2=1,P 是它们的一个交点,则ΔF 1PF 2的形状是( ) A .锐角三角形 B .直角三角形C .钝有三角形D .等腰三角形【答案】B【解析】根据椭圆和双曲线定义:221212125,||16PF PF PF PF PF PF +=-=⇒+=又222121224,||||F F PF PF F F =∴+=;故选B3.已知等式 ,定义映射,则( )A .B .C .D .【答案】C【解析】试题分析:本题可以采用排除法求解,由题设条件,等式左右两边的同次项的系数一定相等,故可以比较两边的系数来排除一定不对的选项,由于立方项的系数与常数项相对较简单,宜先比较立方项的系数与常数项,由此入手,相对较简.解:比较等式两边x 3的系数,得4=4+b 1,则b 1=0,故排除A ,D ;再比较等式两边的常数项,有1=1+b 1+b 2+b 3+b 4,∴b 1+b 2+b 3+b 4=0.故排除B 故应选C 【考点】二项式定理点评:排除法做选择题是一种间接法,适合题目条件较多,或者正面证明、判断较困难的题型.4.己知集合{}2430,A x x x x R =-+<∈,(){}12202750,x B x a x a x x R -=+≤-++≤∈且,若A B ⊆,则实数a 的取值范围_______. A .[]4,0- B .[]4,1--C .[]1,0-D .14,13⎡⎤--⎢⎥⎣⎦【答案】B【解析】首先解出集合A ,若满足A B ⊆,则当()1,3x ∈时,120x a -+≤和()22750x a x -++≤恒成立,求a 的取值范围.【详解】{}13A x x =<<,A B ⊆,即当()1,3x ∈时,120x a -+≤恒成立, 即12x a -≤- ,当()1,3x ∈时恒成立, 即()1min2xa -≤- ,()1,3x ∈而12xy -=-是增函数,当1x =时,函数取得最小值1-,1a ∴≤-且当()1,3x ∈时,()22750x a x -++≤恒成立,()()1030f f ⎧≤⎪⎨≤⎪⎩,解得:4a ≥- 综上:41a -≤≤-. 故选:B 【点睛】本题考查根据给定区间不等式恒成立求参数取值范围的问题,意在考查转化与化归和计算求解能力,恒成立问题可以参变分离转化为求函数的最值问题,如果函数是二次函数可以转化为根的分布问题,列不等式组求解.二、填空题5.已知集合{}2A x x =>,{}B x x a =>,若A B ⊇,则实数a 的取值范围是_______. 【答案】{}2a a ≥【解析】根据B A ⊆,确定参数a 的取值范围. 【详解】若满足A B ⊇,则2a ≥. 故答案为:{}2a a ≥ 【点睛】本题考查根据集合的包含关系,求参数的取值范围,属于简单题型. 6.如果不等式20x ax b ++<的解集为()1,3-,那么a b +=_______. 【答案】5-【解析】根据一元二次不等式和一元二次方程的关系可知,1-和3时方程20x ax b ++=的两个实数根,利用韦达定理求解.【详解】不等式20x ax b ++<的解集为()1,3-∴20x ax b ++=的两个实数根是11x =-,23x = ,根据韦达定理可知()1313ab -+=-⎧⎨-⨯=⎩ ,解得:2,3a b =-=- , 5a b ∴+=-.故答案为:5- 【点睛】本题考查一元二次方程和一元二次不等式的关系,意在考查计算能力,属于基础题型.7.已知椭圆中心在原点,一个焦点为F (,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是________。

2018-2019学年高二数学下学期期末考试试题文(含解析)_3

2018-2019学年高二数学下学期期末考试试题文(含解析)_3

2018-2019学年高二数学下学期期末考试试题文(含解析)第Ⅰ卷(选择题60分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知i是虚数单位,若复数z满足,则=A. -2iB. 2iC. -2D. 2【答案】A【解析】由得,即,所以,故选A.【名师点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.注意下面结论的灵活运用:(1)(1±i)2=±2i;(2)=i,=-i.2.设,,则“”是“”的()A. 充要条件B. 充分而不必要条件C. 必要而不充分条件D. 既不充分也不必要条件【答案】C【解析】不能推出,反过来,若则成立,故为必要不充分条件.3.如果直线与直线平行,则的值为()A. B. C. D.【答案】B【解析】试题分析:因为直线与直线平行,所以,故选B.考点:直线的一般式方程与直线的平行关系.4.已知,是两条不同直线,,是两个不同平面,则下列命题正确的是()A. 若,垂直于同一平面,则与平行B. 若,平行于同一平面,则与平行C. 若,不平行,则在内不存在与平行的直线D. 若,不平行,则与不可能垂直于同一平面【答案】D【解析】由,若,垂直于同一平面,则,可以相交、平行,故不正确;由,若,平行于同一平面,则,可以平行、重合、相交、异面,故不正确;由,若,不平行,但平面内会存在平行于的直线,如平面中平行于,交线的直线;由项,其逆否命题为“若与垂直于同一平面,则,平行”是真命题,故项正确.所以选D.考点:1.直线、平面的垂直、平行判定定理以及性质定理的应用.5.若圆关于直线:对称,则直线在轴上的截距为()A. -lB. lC. 3D. -3【答案】A【解析】【分析】圆关于直线:对称,等价于圆心在直线:上,由此可解出.然后令 ,得,即为所求.【详解】因为圆关于直线:对称,所以圆心在直线:上,即 ,解得.所以直线,令 ,得.故直线在轴上的截距为.故选A.【点睛】本题考查了圆关于直线对称,属基础题.6.如图所示的流程图中,输出的含义是()A. 点到直线的距离B. 点到直线的距离的平方C. 点到直线的距离的倒数D. 两条平行线间的距离【答案】A【解析】【分析】将代入中,结合点到直线距离公式可得.【详解】因为,,所以,故的含义是表示点到直线的距离.故选A.【点睛】本题考查了程序框图以及点到直线的距离公式,属基础题.7.观察,,,由归纳推理可得:若定义在上的函数满足,记为的导函数,则=A. B. C. D.【答案】D【解析】由归纳推理可知偶函数的导数是奇函数,因为是偶函数,则是奇函数,所以,应选答案D。

湖北省武汉市华中师范大学第一附属中学2018-2019学年高二下学期期中考试数学(文)试题 含解析

湖北省武汉市华中师范大学第一附属中学2018-2019学年高二下学期期中考试数学(文)试题 含解析

华中师大一附中2018—2019学年度下学期期中检测高二年级文科数学试题一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“,”的否定为()A. “,”B. “,”C. “,”D. “,”【答案】C【解析】由特称命题的否定为全称命题可得命题“,”的否定为“,”,故选C.2.在复平面内,复数(为虚数单位)对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】先化简复数,再根据实部和虚部的符号确定所在象限.【详解】.所以在第三象限,故选C.【点睛】本题主要考查复数的除法.复数除法运算一般是使其分母实数化.题目较为容易.3.“”是“函数有零点”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】试题分析:,由,得,且,所以函数有零点.反之,函数有零点,只需,故选A.考点:充分必要条件.4.函数的定义域为开区间(a, b),其导函数在(a, b)内的图象如图所示,则函数在开区间(a, b)内极大值点的个数为A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】利用导数图像推演出函数单调性的变化情况,从而可得极大点的个数.【详解】根据导数图像可知,函数在区间上单调性的变化是:先增后减,再增又减,故极大点有2个. 【点睛】本题主要考查利用导数图像判断函数的单调性问题,导数值为正则函数为增,导数值为负则函数为减.5.i是虚数单位,A. i B. C. 1 D. 【答案】D【解析】【分析】利用虚数单位的周期性,可求.【详解】因为,所以.故选D.【点睛】本题主要考查复数的乘方运算.注意到,,,能简化运算.6.已知命题p :方程有实数根,命题,,则,,,这四个命题中,真命题的个数为A. 1B. 2C. 3D. 4【答案】B【解析】分析:先根据指数的性质判定命题,根据二次函数的性质判断命题的真假,再利用复合命题真假的判定方法即可得出.详解:∵,∴是方程的根,故命题:方程有实数根为真命题;又∵恒成立,所以命题:,为假命题,根据复合命题真假性的判断可得为假,为真,为假命题,为真命题,即真命题的个数为2个,故选B.点睛:本题考查了指数的性质、一元二次不等式成立问题、复合命题真假的判定方法,考查了推理能力与计算能力,属于中档题.7.已知函数,为的导函数,则A. 1B.C. 0D.【答案】D【解析】【分析】先求出,代入1可求出.【详解】,代入可得,所以.【点睛】本题主要考查导数的运算.熟悉导数的运算规则,明确为常数是求解关键.8.已知函数的图像在点处的切线的斜率为3,设数列的前n项和为,则的值为A. B. C. D.【答案】C【解析】【分析】利用导数的几何意义求出b,再利用裂项求和求得.【详解】,由题意可得,即.,所以.故选C.【点睛】本题主要考查导数的几何意义及数列求和.函数在某点处的导数值即为该点处切线的斜率.裂项相消求和是注意剩余项.9.设点P是曲线上的任意一点,P点处的切线的倾斜角为,则角的取值范围是A. B. C. D.【答案】B【解析】【分析】先求出导数,结合导数的几何意义,可得斜率的范围,从而可求倾斜角的范围.【详解】,由于,所以,所以,结合正切函数的图像可得.故选B.【点睛】本题主要考查导数的几何意义.题目相对简单,但是要注意倾斜角的求解时,要关注正切函数的图像.10.下列命题正确的是(1)命题“,”的否定是“,”;(2)l为直线,,为两个不同的平面,若,,则;(3)给定命题p,q,若“为真命题”,则是假命题;(4)“”是“”的充分不必要条件.A. (1)(4)B. (2)(3)C. (3)(4)D. (1)(3)【答案】D【解析】【分析】逐个命题进行判定,对于(1)结合全称命题的否定方法可以判定;对于(2)要考虑全面直线与平面的位置关系;对于(3)根据复合命题的真假进行判断;对于(4)利用可以判定.【详解】对于(1)“,”的否定就是“,”,正确;对于(2)直线可能在平面内,所以不能得出,故不正确;对于(3)若“为真命题”则均为真命题,故是假命题,正确;对于(4)因为时可得,反之不能得出,故“”是“”的必要不充分条件,故不正确.故选D.【点睛】本题主要考查简易逻辑,涉及知识点较多,要逐一判定,最后得出结论.题目属于知识拼盘.11.定义在上的函数,已知是它的导函数,且恒有成立,则有()A. B.C. D.【答案】C【解析】分析:根据题意,令,由可得,即函数为减函数,利用单调性结合选项,分析即可得结论.详解:构造函数,则其导数,由,且恒有,可得,所以函数为减函数,又由,则有,即,可得,又由,则有,即,分析可得,故选C.点睛:利用导数研究函数的单调性、构造函数比较大小,属于难题.联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数..12.已知直线,若与直线和曲线分别交于A,B两点,则的最小值为A. 1B. 2C.D.【答案】B【解析】【分析】利用导数求出与直线平行的曲线的切线的切点,利用点到直线的距离可得.【详解】,令可得,所以切点为.根据题意可知且,所以,此时.故选B.【点睛】本题主要考查导数的几何意义.已知切线的斜率,结合导数可得切点.二、填空题:本大题共4小题,每小题5分,共20分.13.函数在[2, 6]内的平均变化率为________.【答案】24【解析】【分析】利用平均变化率的求解方法求解. 【详解】,所以平均变化率为.【点睛】本题主要考查平均变化率的求解,题目较为简单,明确求解步骤是解题关键.14.复数,,则的最大值是___________.【答案】. 【解析】【分析】设,且,求出,再由三角换元可求出最大值。

2018-2019学年高二数学下学期期末考试试题(含解析)_7

2018-2019学年高二数学下学期期末考试试题(含解析)_7

2018-2019学年高二数学下学期期末考试试题(含解析)本试卷共6页,150分。

考试时长120分钟。

考生务必将答案答在答题纸上,在试卷上作答无效。

考试结束后,将答题纸交回,试卷自行保存。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.抛物线的焦点坐标为A. (0,2)B. (2,0)C. (0,4)D. (4,0)【答案】A【解析】【分析】根据抛物线标准方程求得,从而得焦点坐标.【详解】由题意,,∴焦点在轴正方向上,坐标为.故选A.【点睛】本题考查抛物线的标准方程,属于基础题.解题时要掌握抛物线四种标准方程形式.2.复数的共轭复数是A. -1+iB. -1-iC. 1+iD. 1-i【答案】D【解析】【分析】化简复数为标准形式,然后写出共轭复数.【详解】,其共轭复数为.故选D.【点睛】本题考查复数的除法运算,考查共轭复数的概念,属于基础题.3.已知双曲线的离心率为,则m=A. 4B. 2C.D. 1【答案】B【解析】【分析】根据离心率公式计算.【详解】由题意,∴,解得.【点睛】本题考查双曲线的离心率,解题关键是掌握双曲线的标准方程,由方程确定.4.如图,在空间四边形ABCD中,设E,F分别是BC,CD的中点,则+(-)等于A.B.C.D.【答案】C【解析】【分析】由向量的线性运算的法则计算.【详解】-=,,∴+(-).【点睛】本题考查空间向量的线性运算,掌握线性运算的法则是解题基础.5.若=(4,2,3)是直线l的方向向量,=(-1,3,0)是平面α的法向量,则直线l与平面α的位置关系是A. 垂直B. 平行C. 直线l在平面α内D. 相交但不垂直【答案】D【解析】【分析】判断直线的方向向量与平面的法向量的关系,从而得直线与平面的位置关系.【详解】显然与不平行,因此直线与平面不垂直,又,即与不垂直,从而直线与平面不平行,故直线与平面相交但不垂直.故选D.【点睛】本题考查用向量法判断直线与平面的位置关系,方法是由直线的方向向量与平面的法向量的关系判断,利用向量的共线定理和数量积运算判断直线的方向向量与平面的法向量是否平行和垂直,然后可得出直线与平面的位置关系.6.“m≠0”是“方程=m表示的曲线为双曲线”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】【分析】根据双曲线的标准方程进行判断.【详解】时,方程表示两条直线,时,方程可化为,时表示焦点在轴上的双曲线,时表示焦点在轴上的双曲线.故选C.【点睛】本题考查双曲线的标准方程,考查充分必要条件,解题关键是掌握双曲线的标准方程.7.如图,棱长为1的正方体中,P为线段上的动点(不含端点),则下列结论错误的是A. 平面平面B. 的取值范围是(0,]C. 的体积为定值D.【答案】B【解析】【分析】根据线面位置关系进行判断.【详解】∵平面,∴平面平面,A正确;若是上靠近的一个四等分点,可证此时为钝角,B 错;由于,则平面,因此的底面是确定的,高也是定值,其体积为定值,C正确;在平面上的射影是直线,而,因此,D正确.故选B.【点睛】本题考查空间线面间的位置关系,考查面面垂直、线面平行的判定,考查三垂线定理等,所用知识较多,属于中档题.8.设F是椭圆=1的右焦点,椭圆上至少有21个不同的点(i=1,2,3,···),,,···组成公差为d(d>0)的等差数列,则d的最大值为A. B. C. D.【答案】B【解析】【分析】求出椭圆点到的距离的最大值和最小值,再由等差数列的性质得结论.【详解】椭圆中,而的最大值为,最小值为,∴,.故选B.【点睛】本题考查椭圆的焦点弦的性质,考查等差数列的性质,难度不大.第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。

2018-2019学年高二数学下学期期末考试试题理(含解析)

2018-2019学年高二数学下学期期末考试试题理(含解析)

2018-2019学年高二数学下学期期末考试试题理(含解析)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知是虚数单位,若复数满足,则的虚部为()A. -1B.C. 1D. -3【答案】D【解析】分析】利用复数代数形式的乘除运算可得z=1﹣3 i,从而可得答案.【详解】,∴复数z的虚部是-3故选:D【点睛】本题考查复数代数形式的乘除运算,属于基础题.2.的展开式中,的系数是()A. 30B. 40C. -10D. -20【答案】B【解析】【分析】通过对括号展开,找到含有的项即可得到的系数.【详解】的展开式中含有的项为:,故选B.【点睛】本题主要考查二项式定理系数的计算,难度不大.3.若直线和椭圆恒有公共点,则实数的取值范围是( )A. B. C. D.【答案】B【解析】【分析】根据椭圆1(b>0)得出≠3,运用直线恒过(0,2),得出1,即可求解答案.【详解】椭圆1(b>0)得出≠3,∵若直线∴直线恒过(0,2),∴1,解得,故实数的取值范围是故选:B【点睛】本题考查了椭圆的几何性质,直线与椭圆的位置关系,属于中档题.4.甲、乙两人进行乒乓球比赛,假设每局比赛甲胜的概率是0.6,乙胜的概率是0.4.那么采用5局3胜制还是7局4胜制对乙更有利?()A. 5局3胜制B. 7局4胜制C. 都一样D. 说不清楚【答案】A【解析】【分析】分别计算出乙在5局3胜制和7局4胜制情形下对应的概率,然后进行比较即可得出答案.【详解】当采用5局3胜制时,乙可以3:0,3:1,3:2战胜甲,故乙获胜的概率为:;当采用7局4胜制时,乙可以4:0,4:1,4:2,4:3战胜甲,故乙获胜的概率为:,显然采用5局3胜制对乙更有利,故选A.【点睛】本题主要考查相互独立事件同时发生的概率,意在考查学生的计算能力和分析能力,难度中等.5.正方体中,直线与平面所成角正弦值为()A. B. C. D.【答案】C【解析】【分析】作出相关图形,设正方体边长为1,求出与平面所成角正弦值即为答案.【详解】如图所示,正方体中,直线与平行,则直线与平面所成角正弦值即为与平面所成角正弦值.因为为等边三角形,则在平面即为的中心,则为与平面所成角.可设正方体边长为1,显然,因此,则,故答案选C.【点睛】本题主要考查线面所成角的正弦值,意在考查学生的转化能力,计算能力和空间想象能力.6.已知,则等于( )A. -4B. -2C. 1D. 2【答案】D【解析】【分析】首先对f(x)求导,将1代入,求出f′(1)的值,化简f′(x),最后将x=3代入即可.【详解】因f′(x)=2x+2f′(1),令x=1,可得f′(1)=2+2f′(1),∴f′(1)=﹣2,∴f′(x)=2x+2f′(1)=2x﹣4,当x=3,f′(3)=2.故选:D【点睛】本题考查导数的运用,求出f′(1)是关键,是基础题.7.“”是“函数在区间单调递增”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】分析:求出导函数,若函数在单调递增,可得在区间上恒成立.解出,故选A 即可.详解:,∵若函数函数在单调递增,∴在区间上恒成立.∴,而在区间上单调递减,∴.即“”是“函数在单调递增”的充分不必要条件.故选A..点睛:本题考查充分不必要条件的判定,考查利用导数研究函数的单调性、恒成立问题的等价转化方法,属中档题.8.某次运动会中,主委会将甲、乙、丙、丁四名志愿者安排到三个不同比赛项目中担任服务工作,每个项目至少1人,若甲、乙两人不能到同一个项目,则不同的安排方式有()A. 24种 B. 30种 C. 36种 D. 72种【答案】B【解析】【分析】首先对甲、乙、丙、丁进行分组,减去甲、乙两人在同一个项目一种情况,然后进行3个地方的全排列即可得到答案.【详解】先将甲、乙、丙、丁分成三组(每组至少一人)人数分配是1,1,2共有种情况,又甲、乙两人不能到同一个项目,故只有5种分组情况,然后分配到三个不同地方,所以不同的安排方式有种,故答案选B.【点睛】本题主要考查排列组合的相关计算,意在考查学生的分析能力,逻辑推理能力和计算能力,难度不大.9.若曲线在处的切线,也是的切线,则()A. B. 1 C. 2 D.【答案】C【解析】【分析】求出的导数,得切线的斜率,可得切线方程,再设与曲线相切的切点为(m,n),得的导数,由导数的几何意义求出切线的斜率,解方程可得m,n,进而得到b的值.【详解】函数的导数为y=ex,曲线在x=0处的切线斜率为k==1,则曲线在x=0处的切线方程为y﹣1=x;函数的导数为y=,设切点为(m,n),则=1,解得m=1,n=2,即有2=ln1+b,解得b=2.故选:A.【点睛】本题主要考查导数的几何意义,求切线方程,属于基础题.10.设分别是定义在R上的奇函数和偶函数,且分别是的导数,当时,且,则不等式的解集是()A. B.C. D.【答案】C【解析】【分析】构造函数,判断函数的单调性和奇偶性,脱离即可求得相关解集.【详解】根据题意,可设,则为奇函数,又当时,所以在R上为增函数,且,转化为,当时,则,当,则,则,故解集是,故选C.【点睛】本题主要考查利用抽象函数的相关性质解不等式,意在考查学生的分析能力和转化能力,难度中等.11.点、在以为直径的球的表面上,且,,,若球的表面积是,则异面直线和所成角余弦值为()A. B. C. D.【答案】C【解析】【分析】首先作出图形,计算出球的半径,通过几何图形,找出异面直线和所成角,通过余弦定理即可得到答案.【详解】设球的半径为,则,故,如图所示:分别取PA,PB,BC的中点M,N,E,连接MN,NE,ME,AE,易知,平面,由于,所以,所以,因为E为BC的中点,则,由于M,N分别为PA,AB的中点,则,且,同理,且,所以,异面直线和所成角为或其补角,且,在中,,由余弦定理得:,因此异面直线和所成角余弦值为,故选C.【点睛】本题主要考查外接球的相关计算,异面直线所成角的计算.意在考查学生的空间想象能力,计算能力和转化能力,难度较大.12.已知函数在时取得极大值,则的取值范围是()A. B. C. D.【答案】A【解析】【分析】先对进行求导,然后分别讨论和时的极值点情况,随后得到答案.【详解】由得,当时,,由,得,由,得.所以在取得极小值,不符合;当时,令,得或,为使在时取得极大值,则有,所以,所以选A.【点睛】本题主要考查函数极值点中含参问题,意在考查学生的分析能力和计算能力,对学生的分类讨论思想要求较高,难度较大.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若,则__________.【答案】-32【解析】【分析】通过对原式x赋值1,即可求得答案.【详解】令可得,故答案为-32.【点睛】本题主要考查二项式定理中赋值法的理解,难度不大.14.已知棱长为的正方体中,,分别是和的中点,点到平面的距离为________________.【答案】1【解析】【分析】以D点为原点,的方向分别为轴建立空间直角坐标系,求出各顶点的坐标,进而求出平面的法向量,代入向量点到平面的距离公式,即可求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华中师大一附中2018—2019学年度上学期期末考试高二年级数学(理科)试题时间:120分钟满分:150分命题人:黄倩审题人:黄进林一、 选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.用秦九韶算法求多项式542()2253f x x x x x =-+++当3x =的值时,02,v =15v =,则2v 的值是 A.2 B.1 C.15 D.172.某宠物商店对30只宠物狗的体重(单位:千克)作了测量,并根据所得数据画出了频率分布直方图如下图所示,则这30只宠物狗体重(单位:千克)的平均值大约为A.15.5B.15.6C.15.7D.163.若方程12348x x x x +++=,其中22x =,则方程的正整数解的个数为 A.10 B.15 C.20 D.304.过(2,1)作圆223x y +=的切线,切点分别为,A B ,且直线AB 过双曲线2221(0)2x y a a -=>的右焦点,则双曲线的渐近线方程为 A.2y x =±B.22y x =±C.23417y x =±D.3417y x =±5.给出下列结论:(1)某学校从编号依次为001,002,…,900的900个学生中用系统抽样的方法抽取一个样本,已知样本中有两个相邻的编号分别为053,098,则样本中最大的编号为862.(2)甲组数据的方差为5,乙组数据为5、6、9、10、5,那么这两组数据中较稳定的是甲. (3)若两个变量的线性相关性越强,则相关系数r 的值越接近于1.(4)对A 、B 、C 三种个体按3:1:2的比例进行分层抽样调查,若抽取的A 种个体有15个,则样本容量为30. 则正确的个数是 A.3 B.2 C.1 D.06.已知,x y 是0~1之间的两个均匀随机数,则“,,1x y 能构成钝角三角形三边”的概率为 A.24π- B.44π- C.43π- D.23π-7.已知实数,x y 满足33011101x x y x y y ⎧≤≤⎪⎪-≥-⎨⎪⎪≤≤⎩,则121y x --的取值范围是A.(-∞,0]∪(1,+∞)B.(-∞,0]∪[1,+∞)C.(-∞,0]∪[2,+∞)D.(-∞,0]∪(2,+∞) 8.在二项式1()2n x x-的展开式中,当且仅当第5项的二项式系数最大,则系数最小的项是A.第6项B.第5项C.第4项D.第3项9.已知椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别为12,F F ,过1F 的直线与椭圆C 交于,M N 两点, 若21225MNF MF F S S ∆∆=且2121F F N F NF ∠=∠,则椭圆C 的离心率为A.25B.22C.35D.3210.将一颗质地均匀的骰子先后抛掷三次,则数字之和能被3整除的概率为A.13B.14C.536D.1511.在右侧程序框图中,若输入的a b 、分别为18、100,输出的a 的值为m ,则二项式342()(1)x m x x x+⋅-+的展开式中的常数项是 A.224 B.336 C.112 D.56012.如右图,已知12,F F 分别为双曲线22:1412x y C -=的左、右焦点,过2F 的直线与双曲线C 的右支交于,P Q 两点,且点A 、B 分别为1212,PF F QF F ∆∆的内心,则||AB 的取值范围是A.[4,+)∞B.[5,6)C.[4,6)D.8[4,3)3二、填空题(本大题共4小题,每小题5分,共20分.)13.向正方形随机撒一些豆子,经查数,落在正方形内的豆子的总数为1000,其中有780粒豆子落在该正方形的内切圆内,以此估计圆周率π的值(用分数表示)为____________.14.右图是华师一附中数学讲故事大赛7位评委给某位学生的表演打出的分 数的茎叶图.记分员在去掉一个最高分和一个最低分后,算得平均分为91分,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若记分员计算无误,则数字x 应该是____________. 15.将1,2,3,,,a b c 排成一排,则字母a 不在两端,且三个数字中有且只有两个数字相邻的概率是____________. 16.已知圆22()9(5)x a y a -+=>上存在点M ,使||2||OM MQ =(O 为原点)成立,(2,0)Q ,则实数a 的取值范围是____________.三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)为了解华师一附中学生喜欢吃辣是否与性别有关,调研部(共10人)分三组对高中三个年级的学生进行调查,每个年级至少派3个人进行调查.(1)求调研部的甲、乙两人都被派到高一年级进行调查的概率.(2)调研部对三个年级共100人进行了调查,得到如下的列联表,请将列联表补充完整,并判断是否有99.9%以上的把握认为喜欢吃辣与性别有关?喜欢吃辣 不喜欢吃辣 合计 男生 10 女生 20 30 合计 100参考数据:18.(本小题满分12分)已知n ∈N *,12323192n nn n n C C C nC +++⋅⋅⋅+=,且2012(32)n n n x a a x a x a x -=+++⋅⋅⋅+.求:(1)展开式中各项的二项式系数之和;(2)0246a a a a +++;(3)01||||||n a a a ++⋅⋅⋅+.20()P K k ≥ 0.05 0.025 0.010 0.005 0.0010k 3.841 5.024 6.635 7.879 10.828参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,19.(本小题满分12分)一只红铃虫的产卵数y 和温度x 有关,现收集了6组观测数据于下表中,通过散点图可以看出样本点分布在一条指数型函数y =bx ae+的图象的周围.(1)试求出y 关于x 的上述指数型的回归曲线方程(结果保留两位小数);(2)试用(1)中的回归曲线方程求相应于点(24,17)的残差e ∧.(结果保留两位小数) 温度x (°C) 20 22 24 26 28 30 产卵数y (个) 6 9 17 25 44 88 z =ln y 1.792.202.833.223.784.48几点说明:①结果中的,,a b e ∧∧∧都应按题目要求保留两位小数.但在求a ∧时请将b ∧的值多保留一位即用保留三位小数的结果代入.②计算过程中可能会用到下面的公式:回归直线....方程的斜率b ∧=121()()()niii nii x x zz x x ==---∑∑=1221ini i i ni x z n x zxn x==-⋅⋅-⋅∑∑,截距a z b x ∧∧=-.③下面的参考数据可以直接引用:x =25,y =31.5,z ≈3.05,61i ii x y =∑=5248,61i ii x z=∑≈476.08,6213820i i x ==∑,ln18.17≈2.90.20.(本小题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为22,左、右焦点分别是12,F F .以1F 为圆心以21-为半径的圆与以2F 为圆心以2+1为半径的圆相交,且交点在椭圆C 上.(1)求椭圆的标准方程;(2)不过点2F 的直线:l y kx m =+与该椭圆交于,A B 两点,且2BF O ∠与2AF O ∠互补,求AOB ∆面积的最大值.21.(本小题满分12分)已知抛物线2:4C y x =的焦点为F ,过焦点F 且斜率存在的直线l 与抛物线C 交于,B D 两点,且B 点在D 点上方,A 点与D 点关于x 轴对称.(1)求证:直线AB 过某一定点Q ;(2)当直线l 的斜率为正数时,若以BD 为直径的圆过(3,1)M -,求BDQ ∆的内切圆与ABD ∆的外接圆的半径之比.22.(本小题满分10分)以直角坐标系的原点O 为极点,x 轴的非负半轴为极轴,并在两种坐标系中取相同的长度单位,曲线C 1的极坐标方程为2cos sin ρθθ=,曲线C 2的参数方程是222812(1)1k x k k y k ⎧=⎪⎪+⎨-⎪=⎪+⎩(k 为参数).(1)求曲线C1的直角坐标方程及曲线C2的普通方程;(2)已知点1(0)2M,,直线l的参数方程为1+2xy t⎧=⎪⎨=⎪⎩(t为参数),设直线l与曲线C1相交于P,Q两点,求11||||MP MQ+的值.华中师大一附中2018—2019学年度上学期期末考试高二年级数学理科试题答案二、 选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)13.782514.115.2516.57a <≤三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.解:(1)设事件A 为“甲、乙两人都对高一年级进行调查”………………………………………………1分基本事件共有43331063322C C C A A ⋅⋅⋅个 事件A 包含的基本事件有2313286872C C C C A ⋅+⋅⋅个 由古典概型计算公式,得2313286872433310633224()45C C C C A P A C C C A A ⋅+⋅⋅==⋅⋅⋅ ∴甲、乙两人都对高一年级进行调查的概率为445……………………………………………………6分 (2)…………………………………………………………………………………………………………………8分∴22100(40302010)16.66710.82850506040K ⨯⨯-⨯=≈>⨯⨯⨯………………………………………………………11分∴有99.9%以上的把握认为喜欢吃辣与性别有关………………………………………………………12分18.解:∵11!(1,2,,)!()!ii nn n iC i nC i n i n i --=⋅==⋅⋅⋅⋅-∴1230111611123()232n n n n n n n n n n C C C nC n C C C n -----+++⋅⋅⋅+=++⋅⋅⋅+=⋅=⨯ ∴6n =………………………………………………………………………………………………………3分法二:设0123023n n n n n n s C C C C nC =++++⋅⋅⋅+则,10(1)0n n n n n s nC n C C -=+-+⋅⋅⋅相加得012()2nn nn n s n C C C n =++⋅⋅⋅=⋅即16232n s n -=⋅=⨯ ∴6n =………………………………………………………………………………………………………3分 (1)展开式中各项的二项式系数之和为6264=…………………………………………………………………6分 (2)令1x =,得0161a a a ++⋅⋅⋅+=①令1x =-,得601265a a a a -+⋅⋅⋅+=②相加得02467813a a a a +++=(或6512+)………………………………………………………………………10分(3)令1x =-得01||||||n a a a ++⋅⋅⋅+=65………………………………………………………………………12分19.解:(1)设z 关于x 的回归直线方程为z b x a ∧∧∧=+∴b ∧=61621()i ii ii x zn x zx x ==-⋅⋅-∑∑≈476.08625 3.0570-⨯⨯保留三位小数:b ∧≈0.265,保留两位小数:b ∧≈0.27………………………………………………………3分 ∴a ∧=z b x ∧-≈3.05-0.265×25≈-3.58……………………………………………………………………5分∴z=lny 关于x 的回归直线方程为ˆz=0.27x -3.58 ∴y 关于x 的指数型的回归曲线方程为ˆy=0.27 3.58x e -………………………………………………………8分 (2)相应于点(24,17)的残差ˆe=y -ˆy =17-0.2724 3.58e ⨯-=17- 2.90e ≈17-ln18.17e =17-18.17=-1.17………………………………………………………………………12分 20.解:(1)由题2c a a ==∴222,1a b ==,方程为2212x y +=………………………………………………………………………2分(2)2212x y y kx m ⎧+=⎪⎨⎪=+⎩消y 得222(21)4220k x mkx m +++-=设1122(,),(,)A x y B x y ∴228(21)0k m ∆=-+>①2121222422,2121mk m x x x x k k -+=-=++…………………………………………………………………………4分由22BF O AF O π∠+∠=得22AF BF k k +=1212011y yx x +=-- ∴1221()(1)()(1)kx m x kx m x +-++-, =12122()()2kx x m k x x m +-+-=2222242()()202121m mk k m k m k k -⋅+-⋅--=++∴2m k =- ②,由①②得2102k <<……………………………………………………………………………………………………7分∴1211||||||22s m x x m =-==………………………………………10分令221(1,2)t k =+∈,则s =43t =时,max s =…………………………………12分 (说明:对于没有解出k 的范围或没有代入判别式检验而直接求出最值的,扣2分) 21.解:(1)设BD :1(0)x my m =+≠,1122(,),(,)B x y D x y联立214x my y x=+⎧⎨=⎩消x 得2440y my --=∴21616m ∆=+恒正,12124,4y y m y y +==-∴212112212:()44y y y AB y y x y y +-=--即12124()0x y y y y y ---= 令0y =,得1214y y x ==- ∴定点Q (1,0)-………………………………………………………………………………………………4分 (2)由题MB MD ⋅=1122(3,1)(3,1)x y x y -+⋅-+=2121212()(13)()4016y y m y y y y -++++=∴212410m m --=即得1126m =-或(舍)∴BD :220x y --=……………………………………………………………………………………………6分 由题,BDQ ∆的内心必在x 轴上,设内心(,0),(11)I t t -<<1222121244BQ AB y y k k y y y y +=====--∴:220BQ x +=由I 到直线BQ 与到直线BD 的距离相等得|22|3t+=,∴t=,内心I∴BDQ∆内切圆半径|22|3r==9分由对称性,ABD∆的外心应在x轴上,设外心(,0)P aBD中垂线方程为2470x y+-=,得7(,0)2P联立22204x yy x--=⎧⎨=⎩得1)B∴BAD∆的外接圆半径R=11分∴rR=分22.解:(1)221:cos sinCρθρθ=,得2x y=…………………………………………………………………1分224:21C yk+=+①,281kxk=+②相除得2(2)xky=+,将其代入②得221164x y+=………………………………………………………………3分又242(2,2]1yk=-+∈-+2C的普通方程为221(2)164x yy+=≠-…………………………………………………………………………5分法二:设tan,,2k n n Zπθθπ=≠+∈,则4sin22cos2xyθθ=⎧⎨=⎩(2,n n Zθππ≠+∈)………………………………3分∴2C的普通方程为221(2)164x yy+=≠-…………………………………………………………………………5分(2)直线l参数方程的标准形式为11+22x my m⎧=⎪⎪⎨⎪=⎪⎩(m为参数)代入2x y=得23220m m--=,121222,033m m m m+==-<121212121212||||||1111||||||||||||m m m mMP MQ m m m m m m+-+=+====……………………………………………10分。

相关文档
最新文档