江苏省无锡市锡山区2019-2020学年七年级下学期期中数学试题

合集下载

江苏省无锡市2020版七年级下学期数学期中考试试卷A卷

江苏省无锡市2020版七年级下学期数学期中考试试卷A卷

江苏省无锡市2020版七年级下学期数学期中考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2017七上·闵行期末) 下列运算正确的是()A . 2a+3b=5abB . (3a3)2=6a6C . a6÷a2=a3D . a2•a3=a52. (2分)如图,已知∠1 = 70º,如果CD∥BE,那么∠B的度数为()A . 70ºB . 100ºC . 110ºD . 120º3. (2分)下列长度的各组线段中,不能组成三角形的是()A . 1.5,2.5,3.5B . 2,3,5C . 6,8,10D . 4,3,34. (2分)如果二次三项式x2+px﹣6可以分解为(x+q)(x﹣2),那么(p﹣q)2的值为()A . 2B . 3C . 4D . 95. (2分) (2018七下·紫金月考) 如果a﹣b=2,a﹣c= ,那么a2+b2+c2﹣ab﹣ac﹣bc等于()A .B .C .D . 不能确定6. (2分)一个多边形的每个内角都等于120°,则这个多边形的边数为()A . 4B . 5C . 6D . 77. (2分)下列多项式的乘法中可用平方差公式计算的是().A .B .C .D .8. (2分)(2019·南通) 如图,△ABC中,AB=AC=2,∠B=30°,△ABC绕点A逆时针旋转α(0<α<120°)得到,与BC,AC分别交于点D,E.设,的面积为,则与的函数图象大致为()A .B .C .D .二、填空题 (共10题;共14分)9. (1分)(2016·自贡) 若n边形内角和为900°,则边数n=________.10. (1分) (2016八上·西昌期末) 计算(2a﹣2bc3)2(﹣3ab5c﹣2)2=________.11. (1分)(2017七上·启东期中) 若(x﹣1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5 ,则32a0+16a1+8a2+4a3+2a4+a5=________.12. (1分) (2017七下·宜城期末) 完成推理填空:如图在△ABC中,已知∠1+∠2=180°,∠3=∠B,试说明∠AED=∠C.解:∵∠1+∠EFD=180°(邻补角定义),∠1+∠2=180°(已知)∴________(同角的补角相等)①∴________(内错角相等,两直线平行)②∴∠ADE=∠3(________)③∵∠3=∠B(________)④∴________(等量代换)⑤∴DE∥BC(________)⑥∴∠AED=∠C(________)⑦13. (1分) (2015七下·成华期中) 计算:()2015×(﹣)2016=________14. (5分)已知x、y、a都是实数,且|x|=1﹣a,y2=(1﹣a)(a﹣1﹣a2),则x+y+a3+1的值为________ .15. (1分)分解因式:x3﹣6x2+9x= ________.16. (1分)若a、b为有理数,且|a+2|+|b﹣|=0,则(ab)2014= ________17. (1分)计算(﹣2xy3)2=________ ;(﹣)2014×(﹣1.5)2015=________ .18. (1分) (2017七下·兴化期末) 已知a+b=3,ab=2,则(a-b)2=________.三、解答题 (共8题;共55分)19. (10分)计算(1)(2a2)2(2)(a2b)3(3)(﹣3a)3(a2)4(4)(a2)3+5a3•a3﹣(2a2)3(5)0.1255×85(6)0.252007×42009(7) 2(y3)2•y3﹣(3y3)2+(5y)2•y720. (10分) (2020八上·淅川期末)(1)因式分解(2)对于任何实数,规定一种新运算,如 .当时,按照这个运算求的值.21. (5分)画图题:(1)在如图所示的方格纸中,经过线段AB外一点C,不用量角器与三角尺,仅用直尺,画线段AB的垂线EF 和平行线GH.(2)判断EF、GH的位置关系是.(3)连接AC和BC,则三角形ABC的面积是.22. (10分) (2019八上·武汉月考) 如图,的三个顶点的坐标分别为,,.(1)先将向下平移2个单位长度,再向右平移3个单位长度,得,画出;(2)直接写出BC边在两次平移过程中扫过的面积;(3)在(1)中求与y轴的交点D的坐标.23. (5分) (2018七上·深圳期中) 先化简,再求值:,其中a=-224. (5分)(2017·南岸模拟) 如图,△ABC与△DBE中,AC∥DE,点B、C、E在同一直线上,AC,BD相交于点F,若∠BDE=85°,∠BAC=55°,∠ABD:∠DBE=3:4,求∠DBE的度数.25. (5分)抛物线y=ax2+bx+c,若a,b,c满足b=a+c,则称抛物线y=ax2+bx+c为“恒定”抛物线.(1)求证:“恒定”抛物线y=ax2+bx+c必过x轴上的一个定点A;(2)已知“恒定”抛物线y=x2﹣的顶点为P,与x轴另一个交点为B,是否存在以Q为顶点,与x轴另一个交点为C的“恒定”抛物线,使得以PA,CQ为边的四边形是平行四边形?若存在,求出抛物线解析式;若不存在,请说明理由.26. (5分) (2019七下·丹东期中) 已知,如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H,问CD与AB有什么关系?并说明理由参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共10题;共14分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共55分) 19-1、19-2、19-3、19-4、19-5、19-6、19-7、20-1、20-2、21-1、22-1、22-2、22-3、23-1、24-1、25-1、26-1、。

最新2019-2020年江苏省七年级下学期期中数学试卷 ( 解析版)

最新2019-2020年江苏省七年级下学期期中数学试卷 ( 解析版)

江苏省七年级(下)期中数学试卷一、选择题(本大题共有8小题,每小题3分,共24分)1.(3分)如图,∠AOD﹣∠AOC=()A.∠ADC B.∠BOC C.∠BOD D.∠COD2.(3分)计算(﹣1)0的结果为()A.1B.﹣1C.0D.无意义3.(3分)若是方程mx+y=3的一组解,则m的值为()A.﹣3B.1C.3D.24.(3分)要求画△ABC的边AB上的高,下列画法中,正确的是()A.B.C.D.5.(3分)因式分解的结果是(x﹣3)(x﹣4)的多项式是()A.x2﹣7x﹣12B.x2+7x+12C.x2﹣7x+12D.x2+7x﹣12 6.(3分)下面的计算,不正确的是()A.a8÷a4=a2B.10﹣3=0.001C.26×2﹣4=4D.(m2•n)3=m6n37.(3分)某单位购买甲、乙两种纯净水共用250元,其中甲种水每桶8元,乙种水每桶6元;乙种水的桶数是甲种水桶数的75%.设买甲种水x桶,买乙种水y桶,则所列方程组中正确的是()A.B.C.D.8.(3分)如图,能判断AB∥CE的条件是()A.∠A=∠ECD B.∠A=∠ACE C.∠B=∠BCA D.∠B=∠ACE二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)已知2x﹣y=1,用含x的式子表示y的形式是.10.(3分)已知3×2x=24,则x=.11.(3分)如图,线段AB=6cm,点C是AB的中点,点D是CB的中点.则CD的长为cm.12.(3分)若a+b=b+c=a+c=5,则a+b+c=.13.(3分)等腰三角形的一边长是3cm,另外一边长是5cm,则它的第三边长是.14.(3分)计算:29×31=.15.(3分)已知a+b=2,ab=3,代数式a2b+ab2+a+b的值为.16.(3分)如图,∠A=12°,∠ABC=90°,∠ACB=∠DCE,∠ADC=∠EDF,∠CED =∠FEG,则∠F=°.三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步骤)17.(6分)计算:(1)(2)3m5÷m2(3)(2ab2)318.(6分)一颗人造地球卫星的速度是2.844×107米/时,一辆汽车的速度是100公里/时,试问这颗人造地球卫星的速度是这辆汽车的多少倍?19.(8分)尺规作图:画一个角等于已知角(如图),要求两角不共顶点.20.(8分)如图,在△ABC中,点D在BC上,且∠BAD=∠CAD,E是AC的中点,BE 交AD于点F.图中哪条线段是哪个三角形的角平分线?哪条线段是哪个三角形的中线?21.(8分)计算:(1)x2•(2x+1)(2)(2x+1)2(3)(2a+b)(b﹣2a)(4)(a﹣3b)222.(10分)分解因式:(1)y2﹣5y(2)16a2﹣b2(3)x3﹣x(4)8x2﹣8x+223.(10分)已知:如图,∠1=∠2,∠3=∠4,试说明DF∥BC.24.(10分)如图,两直线AB、CD相交于点O,OE平分∠BOD,如果∠AOC:∠AOD =7:11,(1)求∠COE;(2}若OF⊥OE,求∠COF.25.(10分)解二元一次方程组:(1)(2)26.(12分)某厂生产甲、乙两种型号的产品,生产一个甲种产品需时间8s,铜8g;生产一个乙种产品需时间6s,铜16g.如果生产甲、乙两种产品共用时1h,共用铜6.4kg,那么甲、乙两种产品各生产多少个?27.(14分)某中学为了筹备校庆活动,准备印制一批校庆纪念册.该纪念册分A、B两种,每册都需要10张8K大小的纸,其中A纪念册由4张彩色页和6张黑白页组成;B纪念册由6张彩色页和4张黑白页组成(内容均不相同).印制这批纪念册的总费用由制版费和印制费两部分组成,制版费与印制册数无关,价格为:彩色页30元/张,黑白页10元/张;印制费与总印制册数的关系见表:(1)印制这批纪念册的制版费为元.(2)若印制A、B两种纪念册各100册,则共需多少费用?(3)如果该校印制了A、B两种纪念册共800册,一共花费了10520元,则该校印制了A、B两种纪念册各多少册?2018-2019学年江苏省盐城市大丰区七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分)1.(3分)如图,∠AOD﹣∠AOC=()A.∠ADC B.∠BOC C.∠BOD D.∠COD【分析】利用图中角的和差关系计算.【解答】解:结合图形,显然∠AOD﹣∠AOC=∠COD.故选:D.【点评】能够根据图形正确计算两个角的和与差.2.(3分)计算(﹣1)0的结果为()A.1B.﹣1C.0D.无意义【分析】根据零指数幂的运算方法:a0=1(a≠0),求出(﹣1)0的结果为多少即可.【解答】解:∵(﹣1)0=1,∴(﹣1)0的结果为1.故选:A.【点评】此题主要考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:(1)a0=1(a≠0);(2)00≠1.3.(3分)若是方程mx+y=3的一组解,则m的值为()A.﹣3B.1C.3D.2【分析】把x与y的值代入方程计算即可求出m的值.【解答】解:把代入方程得:2m﹣1=3,解得:m=2,故选:D.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.(3分)要求画△ABC的边AB上的高,下列画法中,正确的是()A.B.C.D.【分析】作哪一条边上的高,即从所对的顶点向这条边或者条边的延长线作垂线即可.【解答】解:过点C作AB边的垂线,正确的是C.故选:C.【点评】本题是一道作图题,考查了三角形的角平分线、高、中线,是基础知识要熟练掌握.5.(3分)因式分解的结果是(x﹣3)(x﹣4)的多项式是()A.x2﹣7x﹣12B.x2+7x+12C.x2﹣7x+12D.x2+7x﹣12【分析】直接将各选项分解因式得出答案.【解答】解:A、x2﹣7x﹣12,无法分解因式,故此选项错误;B、x2+7x+12=(x+3)(x+4),不合题意,故此选项错误;C、x2﹣7x+12=(x﹣3)(x﹣4),正确;D、x2+7x﹣12,无法分解因式,故此选项错误.故选:C.【点评】此题主要考查了十字相乘法分解因式,正确分解因式是解题关键.6.(3分)下面的计算,不正确的是()A.a8÷a4=a2B.10﹣3=0.001C.26×2﹣4=4D.(m2•n)3=m6n3【分析】根据幂的运算法则逐一计算可得.【解答】解:A.a8÷a4=a4,错误;B.10﹣3=0.001,正确;C.26×2﹣4=22=4,正确;D.(m2•n)3=m6n3,正确;故选:A.【点评】本题主要考查单项式乘单项式,解题的关键是掌握幂的运算法则和单项式的运算法则.7.(3分)某单位购买甲、乙两种纯净水共用250元,其中甲种水每桶8元,乙种水每桶6元;乙种水的桶数是甲种水桶数的75%.设买甲种水x桶,买乙种水y桶,则所列方程组中正确的是()A.B.C.D.【分析】关键描述语是:甲、乙两种纯净水共用250元;乙种水的桶数是甲种水桶数的75%.等量关系为:甲种水的桶数×8+乙种水桶数×6=250;乙种水的桶数=甲种水桶数×75%.则设买甲种水x桶,买乙种水y桶.【解答】解:设买甲种水x桶,买乙种水y桶,列方程.故选:A.【点评】根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.8.(3分)如图,能判断AB∥CE的条件是()A.∠A=∠ECD B.∠A=∠ACE C.∠B=∠BCA D.∠B=∠ACE 【分析】根据平行线的判定方法:内错角相等两直线平行,即可判断AB∥CE.【解答】解:∵∠A=∠ACE,∴AB∥CE(内错角相等,两直线平行).故选:B.【点评】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)已知2x﹣y=1,用含x的式子表示y的形式是y=2x﹣1.【分析】把x看做已知数求出y即可.【解答】解:方程2x﹣y=1,解得:y=2x﹣1,故答案为:y=2x﹣1【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.10.(3分)已知3×2x=24,则x=3.【分析】直接利用幂的乘方运算法则将原式变形进而得出答案.【解答】解:∵3×2x=24,∴2x=8=23,解得:x=3.故答案为:3.【点评】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.11.(3分)如图,线段AB=6cm,点C是AB的中点,点D是CB的中点.则CD的长为1.5cm.【分析】由点C是AB的中点可得AC=BC=3cm,由点D是BC的中点可得BD=CD=1.5cm.【解答】解:∵点C是AB的中点,∴CB==3cm,又∵点D是BC的中点,∴CD==1.5cm.故答案为:1.5【点评】本题考查了两点间的距离以及线段中点的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.12.(3分)若a+b=b+c=a+c=5,则a+b+c=.【分析】原式即a+b=5,b+c=5,a+c=5,三个式子左右两边分别相加即可求得.【解答】解:根据题意得a+b=5,b+c=5,a+c=5,三个式子左右两边分别相加得2(a+b+c)=15,则a+b+c=.故答案是:.【点评】本题考查了三元一次方程组的解法,理解方程组的特点是关键.13.(3分)等腰三角形的一边长是3cm,另外一边长是5cm,则它的第三边长是3或5.【分析】题中没有指明哪个是底哪个是腰,所以应该分两种情况进行分析.【解答】解:∵题中没有指明哪个是底哪个是腰,根据三角形三边关系,∴这个等腰三角形的第三条边长是3或5cm.故答案为:3或5.【点评】本题主要考查了等腰三角形的性质和三角形的三边关系,已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键,难度适中.14.(3分)计算:29×31=899.【分析】本题可以直接计算,但运用平方差公式更为简便,可化为(30﹣1)(30+1)=302﹣12=899,计算更方便、快捷.【解答】解:29×31=(30﹣1)(30+1)=302﹣12=899故答案为899.【点评】本题是运用平方差公式对有理数的乘法进行简便运算,抓住公式的特征进行计算是解题的关键.15.(3分)已知a+b=2,ab=3,代数式a2b+ab2+a+b的值为8.【分析】将多项式进行因式分解,然后将a+b与ab的值代入即可求出答案.【解答】解:当a+b=2,ab=3时,原式=ab(a+b)+(a+b)=(a+b)(ab+1)=2×4=8,故答案为:8【点评】本题考查因式分解法,解题的关键是熟练运用因式分解法,本题属于基础题型.16.(3分)如图,∠A=12°,∠ABC=90°,∠ACB=∠DCE,∠ADC=∠EDF,∠CED =∠FEG,则∠F=42°.【分析】根据三角形内角和定理求出∠ACB,根据平角的定义、三角形的外角的性质计算即可.【解答】解:∵∠A=12°,∠ABC=90°,∴∠ACB=90°﹣12°=78°,∴∠DCE=∠ACB=78°,∴∠BCD=180°﹣78°﹣78°=24°,∴∠BDC=90°﹣24°=66°,∴∠EDF=∠ADC=66°,∴∠CDE=180°﹣66°﹣66°=48°,∴∠FEG=∠CED=180°﹣78°﹣48°=54°,∴∠F=∠FEG﹣∠A=42°,故答案为:42.【点评】本题考查的是三角形内角和定理、三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步骤)17.(6分)计算:(1)(2)3m5÷m2(3)(2ab2)3【分析】(1)根据有理数的乘方法则和乘法法则计算;(2)根据同底数幂的除法法则计算;(3)根据积的乘方法则计算.【解答】解:(1)=×4=1;(2)3m5÷m2=3m5﹣2=3m3;(3)(2ab2)3=8a3b6.【点评】本题考查的是有理数的乘方、同底数幂的除法、积的乘方,掌握它们的运算法则是解题的关键.18.(6分)一颗人造地球卫星的速度是2.844×107米/时,一辆汽车的速度是100公里/时,试问这颗人造地球卫星的速度是这辆汽车的多少倍?【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:人造地球卫星速度:2.844×107米/时=28 440 000米/时﹣汽车速度:100公里/时=100 000米/时这颗人造地球卫星的速度是这辆汽车的284.4倍.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.19.(8分)尺规作图:画一个角等于已知角(如图),要求两角不共顶点.【分析】利用基本作图(作一个角等于已知角)作∠CED=∠AOB.【解答】解:如图,∠CED为所作.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).20.(8分)如图,在△ABC中,点D在BC上,且∠BAD=∠CAD,E是AC的中点,BE 交AD于点F.图中哪条线段是哪个三角形的角平分线?哪条线段是哪个三角形的中线?【分析】利用角平分线和中线的定义解答即可.【解答】解:AD是△ABC的角平分线,AF是△ABE的角平分线;BE是△ABC的中线,DE是△ADC的中线.【点评】此题考查三角形的角平分线、高和中线,关键是利用角平分线和中线的定义解答.21.(8分)计算:(1)x2•(2x+1)(2)(2x+1)2(3)(2a+b)(b﹣2a)(4)(a﹣3b)2【分析】(1)原式利用单项式乘以多项式法则计算即可求出值;(2)原式利用完全平方公式化简即可求出值;(3)原式利用平方差公式计算即可求出值;(4)原式利用完全平方公式化简即可求出值.【解答】解:(1)x2•(2x+1)=2x3+x2;(2)(2x+1)2=4x2+4x+1;(3)(2a+b)(b﹣2a)=b2﹣4a2;(4)(a﹣3b)2=a2﹣6ab+9b2.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.22.(10分)分解因式:(1)y2﹣5y(2)16a2﹣b2(3)x3﹣x(4)8x2﹣8x+2【分析】(1)原式提取公因式即可;(2)原式利用平方差公式分解即可;(3)原式提取x,再利用平方差公式分解即可;(4)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)y2﹣5y=y(y﹣5);(2)16a2﹣b2=(4a﹣b)(4a+b);(3)x3﹣x=x(x2﹣1)=x(x+1)(x﹣1);(4)8x2﹣8x+2=2(4x2﹣4x+1)=2(2x﹣1)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.23.(10分)已知:如图,∠1=∠2,∠3=∠4,试说明DF∥BC.【分析】由∠3=∠4,根据内错角相等两直线平行,可得:GH∥AB,然后根据两直线平行同位角相等可得:∠2=∠B,然后由∠1=∠2,根据等量代换可得:∠1=∠B,然后由同位角相等两直线平行可得:DF∥BC.【解答】证明:∵∠3=∠4,∴GH∥AB,∴∠2=∠B,∵∠1=∠2,∴∠1=∠B,∴DF∥BC.【点评】此题考查了平行线的判定与性质,解题的关键是:熟记两直线平行⇔同位角相等;两直线平行⇔内错角相等;两直线平行⇔同旁内角互补.24.(10分)如图,两直线AB、CD相交于点O,OE平分∠BOD,如果∠AOC:∠AOD =7:11,(1)求∠COE;(2}若OF⊥OE,求∠COF.【分析】(1)首先依据∠AOC:∠AOD=7:11,∠AOC+∠AOD=180°可求得∠AOC、∠AOD的度数,然后可求得∠BOD的度数,依据角平分线的定义可求得∠DOE的度数,最后可求得∠COE的度数;(2)先求得∠FOD的度数,然后依据邻补角的定义求解即可.【解答】解:(1)∵∠AOC:∠AOD=7:11,∠AOC+∠AOD=180°,∴∠AOC=70°,∠AOD=110°.∴∠BOD=70°.∵OE平分∠BOD,∴∠DOE=35°,∴∠COE=180°﹣35°=145°.(2)∵∠DOE=35°,OF⊥OE,∴∠FOD=55°,∴∠FOC=180°﹣55°=125°.【点评】本题主要考查的是角平分线的定义、对顶角、邻补角的定义,熟练掌握相关知识是解题的关键.25.(10分)解二元一次方程组:(1)(2)【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),①+②×3得:7x=14,解得:x=2,把x=2代入①得:y=1,则方程组的解为;(2),①+②得:9x=18,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.26.(12分)某厂生产甲、乙两种型号的产品,生产一个甲种产品需时间8s,铜8g;生产一个乙种产品需时间6s,铜16g.如果生产甲、乙两种产品共用时1h,共用铜6.4kg,那么甲、乙两种产品各生产多少个?【分析】设甲产品x个、乙产品y个,根据甲产品时间+乙产品时间=3600秒,甲产品铜质量+乙产品铜质量=铜的总质量6400g,列方程组,解方程组可得.【解答】解:设甲产品x个,乙产品y个,根据题意,得:,解得:.答:生产甲产品240个,乙产品280个.【点评】本题主要考查二元一次方程组的实际应用,根据题意抓住相等关系列出方程组是关键.27.(14分)某中学为了筹备校庆活动,准备印制一批校庆纪念册.该纪念册分A、B两种,每册都需要10张8K大小的纸,其中A纪念册由4张彩色页和6张黑白页组成;B纪念册由6张彩色页和4张黑白页组成(内容均不相同).印制这批纪念册的总费用由制版费和印制费两部分组成,制版费与印制册数无关,价格为:彩色页30元/张,黑白页10元/张;印制费与总印制册数的关系见表:(1)印制这批纪念册的制版费为400元.(2)若印制A、B两种纪念册各100册,则共需多少费用?(3)如果该校印制了A、B两种纪念册共800册,一共花费了10520元,则该校印制了A、B两种纪念册各多少册?【分析】(1)根据A纪念册有4张彩色页和6张黑白页组成;B纪念册有6张彩色页和4张黑白页组成,彩色页300元∕张,黑白页50元∕张,求其和即可;(2)根据题意可得等量关系:各印一册A,B种纪念册的印刷费用×2000+制版费=总费用,再算出结果即可;(3)根据(2)中计算方法,得出关于A、B两种纪念册6千册,一共花费了75500元的方程组求出即可.【解答】解:(1)印制这批纪念册的制版费为:4×30+6×10+6×30+4×10=400(元).故答案是:400.(2)∵印制A、B两种纪念册各100册,∴共需:100×(4×2.2+6×0.7+6×2.2+4×0.7)+400=3300(元),答:印制A、B两种纪念册各100册,则共需3300元.(3)设A纪念册印制了x册,B纪念册印制了y册,根据题意得出:解得:答:该校印制了A纪念册500册、B纪念册300册.【点评】此题主要考查了二元一次方程组的应用,关键是设出一个未知数为x,另一个未知数用x表示,再找出数量关系等式,找出对应的量,列方程即可.。

江苏省无锡七年级(下)期中数学试卷(含答案)

江苏省无锡七年级(下)期中数学试卷(含答案)

七年级(下)期中数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.下列图形中,不能通过其中一个四边形平移得到的是()A. B. C. D. 2.若A是五次多项式,B是三次多项式,则A+B一定是()A. 五次整式B. 八次多项式C. 三次多项式D. 次数不能确定3.下列计算正确的是()A. B. C. D. 4.9x2-mxy+16y2是一个完全平方式,那么m的值是()A. 12B. C. D. 5.下列各式从左到右的变形,是因式分解的是()A. B. C. D. 6.根据篮球比赛规则:赢一场得2分,输一场得1分,在某次中学生篮球联赛中,某球队赛了12场,赢了x场输了y场,得20分,则可以列出方程组()A. B. C. D. 7.已知三角形的周长小于13,各边长均为整数且三边各不相等,那么这样的三角形个数共有()A. 2B. 3C. 4D. 58.关于x、y的方程组的解是方程3x+2y=17的一个解,那么m的值是()A. 2B. C. 1D. 9.如图,AB∥CD,直线EF分别交AB,CD于E,F两点,∠BEF的平分线交CD于点G,若∠EFG=72°,则∠EGF等于()A. B. C. D. 10.如图,△ABC,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=132°,∠BGC=118°,则∠A的度数为()A. B. C. D. 二、填空题(本大题共8小题,共16.0分)第1页,共19页11. 计算: = ______ .12. 遗传物质脱氧核糖核酸(DNA )的分子直径为0.000 0002cm ,用科学记数法表示为______cm . 13. 已知一个五边形的4个内角都是100°,则第5个内角的度数是______ 度.度.14. 已知2n =a ,3n =b ,则6n= ______ .15. 已知s +t =4,则s 2-t 2+8t =______.16. 如图,小明从点A 向北偏东75°方向走到B 点,又从B点向南偏西30°方向走到点C ,则∠ABC 的度数为______ .17. 若关于x 、y 的二元一次方程组的二元一次方程组 的解是的解是 ,则关于x 、y 的二元一次方程组次方程组 的解是______ .18. 将1,2,3,…,100这100个自然数,任意分为50组,每组两个数,现将每组的两个数中任一数值记作a ,另一个记作b ,代入代数式 中进行计算,求出其结果,50组数代入后可求得50个值,则这50个值的和的最大值是______. 三、计算题(本大题共1小题,共6.0分)19. 先化简,再求值 (x -2)2+2(x +2)(x -4)-(x -3)(x +3),其中x =-1.四、解答题(本大题共8小题,共58.0分) 20. 计算:计算:(1)(-3)2-2-3+30; (2).21. 把下列各式分解因式:把下列各式分解因式:(1)2x 2-8xy +8y 2 (2)4x 3-4x 2y -(x -y )22. 解方程组:解方程组:(1) ; (2) .23. 如图:在正方形网格中有一个△ABC ,按要求进行下列作图(只能借助于网格):,按要求进行下列作图(只能借助于网格):(1)画出△ABC 中BC 边上的高(需写出结论);边上的高(需写出结论);(2)画出先将△ABC 向右平移6格,再向上平移3格后的△DEF ;(3)画一个锐角△MNP (要求各顶点在格点上),使其面积等于△ABC 的面积.的面积.24. 利用图形来表示数量或数量关系,也可以利用数量或数量关系来描述图形特征或图形之间的关系,这种思想方法称为数形结合.我们刚学过的《从面积到乘法公式》就很好地体现了这一思想方法,你能利用数形结合的思想解决下列问题吗?就很好地体现了这一思想方法,你能利用数形结合的思想解决下列问题吗?如图,一个边长为1的正方形,依次取正方形的,,,,根据图示我们可以知道:第一次取走后还剩,即=1-;前两次取走 +后还剩,即 +=1-;前三次取走 + +后还剩,即 + +=1-;…前n 次取走后,还剩______ ,即______ = ______ . 利用上述计算:利用上述计算:(1) = ______ .(2) = ______ .(3)2-22-23-24-25-26-…-22011+22012(本题写出解题过程)(本题写出解题过程)25.某镇水库的可用水量为12000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?年需节约多少立方米才能实现目标?26.如图,直线OM⊥ON,垂足为O,三角板的直角顶点C落在∠MON的内部,三角板的另两条直角边分别与ON、OM交于点D和点B.(1)填空:∠OBC+∠ODC=______;(2)如图1:若DE平分∠ODC,BF平分∠CBM,求证:DE⊥BF:(3)如图2:若BF、DG分别平分∠OBC、∠ODC的外角,判断BF与DG的位置关系,并说明理由.关系,并说明理由.27.某次初中数学竞赛试题中,有16道5分题和10道7分题,满分为150分.批改时分,没有其它分值.每道题若答对得满分,答错得0分,没有其它分值.(1)如果晓敏同学答对了m道7分题和n道5分题,恰好得分为70分,列出关于m、n的方程,并写出这个方程符合实际意义的所有的解.的方程,并写出这个方程符合实际意义的所有的解.(2)假设某同学这份竞赛试卷的得分为k(0≤k≤150),那么k的值有多少种不同大小?请直接写出答案.大小?请直接写出答案.答案和解析1.【答案】D【解析】解:A 、能通过其中一个四边形平移得到,错误;B 、能通过其中一个四边形平移得到,错误;C 、能通过其中一个四边形平移得到,错误;D 、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,正确. 故选:D .根据平移与旋转的性质得出.本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,导致误选. 2.【答案】A【解析】解:若A 是五次多项式,B 是三次多项式,则A+B 一定是五次整式; 故选:A .利用合并同类项法则判断即可得到结果.本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键. 3.【答案】C【解析】解:A 、a 2•a 3=a 5,错误; B 、a 6÷a 3=a 3,错误; C 、(a 2)3=a 6,正确; D 、(2a )3=8a 3,错误; 故选:C .根据同底数幂的乘法、同底数幂的除法、幂的乘方和积的乘方计算判断即可.此题考查同底数幂的乘法、同底数幂的除法、幂的乘方和积的乘方,关键是根据法则进行计算. 4.【答案】D【解析】解:∵(3x±3x±4y 4y )2=9x 2±24xy+16y 2, ∴在9x 2-mxy+16y 2中,m=±m=±2424. 故答案为D .根据(3x±3x±4y4y )2=9x 2±24xy+16y 2可以求出m 的值. 本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解. 5.【答案】B【解析】解:A 、右边不是积的形式,故本选项错误;B 、是运用完全平方公式,x 2-8x+16=(x-4)2,故本选项正确; C 、是多项式乘法,不是因式分解,故本选项错误; D 、6ab 不是多项式,故本选项错误. 故选:B .根据因式分解就是把一个多项式化为几个整式的积的形式的定义,利用排除法求解.本题考查了因式分解的定义,牢记定义是解题的关键. 6.【答案】C【解析】解:设赢了x 场输了y 场,可得:,故选:C .根据此题的等量关系:①共12场;②赢了x 场输了y 场,得20分列出方程组解答即可.此题考查方程组的应用问题,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.7.【答案】B【解析】解:根据三角形的两边之和大于第三边以及三角形的周长小于13,则其中的任何一边不能超过6.5;再根据两边之差小于第三边,则这样的三角形共有3,4,2;4,5,2;3,4,5三个.故选B.首先根据三角形的两边之和大于第三边以及三角形的周长,得到三角形的三边都不能大于6.5;再结合三角形的两边之差小于第三边进行分析出所有符合条件的整数.本题考查三角形的三边关系,且涉及分类讨论的思想.解答的关键是找到三边的取值范围及对三角形三边的理解把握.8.【答案】C【解析】解:解方程组,得:,∵方程组的解是方程3x+2y=17的一个解,∴21m-4m=17,解得:m=1,故选:C.将m看做已知数求出方程组的解得到x与y,代入已知方程计算即可求出m 的值.此题考查二元方程组的解及其解法,其最基本的方法是先消元,然后再代入求解,能得出关于m的方程是解此题的关键.9.【答案】B【解析】解:∵AB∥CD,∴∠BEF+∠EFG=180°,∴∠BEF=180-72=108°;∵EG平分∠BEF,∴∠BEG=54°;∵AB∥CD,∴∠EGF=∠BEG=54°.根据平行线及角平分线的性质解答.平行线有三个性质,其基本图形都是两条平行线被第三条直线所截,解答此类题关键是在复杂图形之中辨认出应用性质的基本图形,从而利用其性质和已知条件计算.10.【答案】C【解析】解:∵∠ABC、∠ACB的三等分线交于点E、D,∴∠CBG=∠EBG=∠ABE=∠ABC,∠BCF=∠ECF=∠ACE=∠ACB,在△BCG中,∠BGC=118°,∴∠CBG+∠BCE=180°BCE=180°--∠BGC,∴∠CBG+∠2∠BCF=62°①在△BCF中,∠BFC=132°,∴∠BCF+∠CBF=180°CBF=180°--∠BFC,∴∠BCF+2∠CBG=48°②,①+②得,3∠BCF+3∠CBG=110°,∴∠A=180°A=180°--(∠BCF+∠CBG)=70°,故选C.先根据三等份角得出结论,再利用三角形的内角和列出方程,两方程相加即可求出∠ABC+∠ACB即可.本题考查的是三角形内角和定理,求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.用方程的思想解几何问题.11.【答案】【解析】解:=(-)2004×32003×3 =(-)2003×32003×(-)=(-×3)2003×(-)=(-1)2003×(-)=. 故答案为:.先算幂的乘方,再根据积的乘方逆运算求解即可.考查了幂的乘方与积的乘方,关键是根据幂的乘方,积的乘方逆运算得到原式=(-×3)2003×(-).12.【答案】2×2×1010-7 【解析】解:0.0000002=2×0.0000002=2×1010-7. 故答案为:2×2×1010-7. 绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×a×1010-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,小数点移动的位数的相反数即是n 的值.此题主要考查用科学记数法表示较小的数,一般形式为a×a×1010-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定. 13.【答案】140 【解析】解:因为五边形的内角和是(5-2)×180°180°=540°=540°,4个内角都是100°, 所以第5个内角的度数是540°540°-100°-100°-100°××4=140°, 故答案为:140.利用多边形的内角和定理即可求出答案.本题主要考查了多边形的内角和公式,是一个比较简单的问题. 14.【答案】ab【解析】解:∵2n =a ,3n=b ,∴6n=2n•3n=ab .故答案为:ab .利用幂的乘方与积的乘方的法则求解即可.本题主要考查了幂的乘方与积的乘方,解题的关键是熟记幂的乘方与积的乘方法则. 15.【答案】16 【解析】解:∵s+t=4, ∴s 2-t 2+8t =(s+t )(s-t )+8t =4(s-t )+8t =4(s+t ) =16. 故答案为:16.根据平方差公式可得s 2-t 2+8t=(s+t )(s-t )+8t ,把s+t=4代入可得原式=4(s-t )+8t=4(s+t ),再代入即可求解.考查了平方差公式,以及整体思想的运用. 16.【答案】45°【解析】解:如图,∠1=75°, ∵N 1A ∥N 2B ,∴∠1=∠2+∠3=75°, ∵∠3=30°, ∴∠2=75°2=75°--∠3=75°3=75°-30°-30°-30°=45°=45°, 即∠ABC=45°.根据题意画出方位角,利用平行线的性质解答.解答此类题需要从运动的角度,正确画出方位角,根据平行线的性质解答即可.17.【答案】 【解析】解:把代入二元一次方程组,解得:,把代入二元一次方程组,解得:,故答案为:.本题先代入解求出得,再将其代入二元一次方程组,解出即可.本题主要考查二元一次方程组的解法,关键是熟练掌握二元一次方程组的解法即代入消元法和加减消元法.18.【答案】3775 【解析】解:①若a≥b,则代数式中绝对值符号可直接去掉,∴代数式等于a,②若b>a则绝对值内符号相反,∴代数式等于b 由此可见输入一对数字,可以得到这对数字中大的那个数(这跟谁是a谁是b 无关)既然是求和,那就要把这五十个数加起来还要最大,我们可以枚举几组数,找找规律,如果100和99一组,那么99就被浪费了,因为输入100和99这组数字,得到的只是100,如果我们取两组数字100和1一组,99和2一组,则这两组数字代入再求和是199,如果我们这样取100和99 2和1,则这两组数字代入再求和是102,这样,可以很明显的看出,应避免大的数字和大的数字相遇这样就可以使最后的和最大,由此一来,只要100个自然数里面最大的五十个数字从51到100任意俩个数字不同组,这样最终求得五十个数之和最大值就是五十个数字从51到100的和, 51+52+53+…+100=3775. 故答案为:3775.先分别讨论a 和b 的大小关系,分别得出代数式的值,进而举例得出规律,然后以此规律可得出符合题意的组合,求解即可.本题考查了整数问题的综合运用,有一定的难度,解答本题的关键是利用举例法得出组合规律,这在一些竞赛题的解答中经常用到,要注意掌握. 19.【答案】解:原式=x 2-4x +4+2x 2-4x -16-x 2+9=2x 2-8x -3, 当x =-1时,原式=2+8-3=7. 【解析】原式利用完全平方公式,平方差公式,以及多项式乘以多项式法则计算,去括号合并得到最简结果,把x 的值代入计算即可求出值.此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.20.【答案】解:(1)(-3)2-2-3+30=9- +1= (2)=.【解析】(1)根据零指数幂和负整数指数幂计算即可; (2)根据单项式与多项式的乘方计算即可.此题考查整式的混合计算,关键是根据整式的混合计算顺序解答.21.【答案】解:(1)2x 2-8xy +8y 2=2(x 2-4xy +4y 2)=2(x -2y )2; (2)4x 3-4x 2y -(x -y )=4x 2(x -y )-(x -y )=(x -y )(4x 2-1)=(x -y )(2x +1)(2x -1).).【解析】(1)首先提取公因式2,再利用完全平方公式进行二次分解即可. (2)首先把前两项组合提取公因式4x 2,然后再提取公因式(x-y )进行二次分解,最后利用平方差公式进行三次分解即可.此题主要考查了公因式法与公式法的综合运用,解题关键是注意分解因式的步骤:①首先考虑提取公因式,②再考虑公式法,③观察是否分解彻底. 22.【答案】解:(1),①×2-②得,x =-5,把x =-5代入①得,-10-y =0,解得y =-10,故方程组的解为故方程组的解为 ;(2)原方程组可化为,①+②得,6x =18,解得x =3,把x =3代入①得,9-2y =8,解得y =, 故方程组的解为故方程组的解为 .【解析】(1)先用加减消元法求出x 的值,再用代入消元法求出y 的值即可; (2)先把方程组中的方程化为不含分母及括号的方程,再用加减消元法或代入消元法求解即可.本题考查的是解二元一次方程组,熟知解二元一次方程的加减消元法和代入消元法是解答此题的关键.23.【答案】解:解:如图所示,AG 就是所求的△ABC 中BC 边上的高.边上的高.【解析】(1)过点A 作AG ⊥BC ,交CB 的延长线于点G ,AG 就是所求的△ABC 中BC 边上的高;(2)把△ABC 的三个顶点向右平移6格,再向上平移3格即可得到所求的△DEF ;(3)画一个面积为3的锐角三角形即可.用到的知识点为:一边上的高为这边所对的顶点向这边所引的垂线段;图形的平移要归结为各顶点的平移;各个角都是锐角的三角形叫做锐角三角形.24.【答案】;+++…;1-;1-;1-【解析】解:∵第一次取走后还剩,即=1-;前两次取走+后还剩,即+=1-;前三次取走++后还剩,即++=1-;∴前n次取走后,还剩,即+++…=1-;故答案为:,+++…=1-;(1)如图所示:由图可知,+++…+=1-.故答案为:1-;(2)如图是一个边长为1的正方形,根据图示由图可知,+++…+=1-,故答案为:1-;(3)2-22-23-24-25-26-…-22011+22012=2-22012(2-2010+2-2009+2-2008+…+2-1)+22012=2-22012(1-2-2010)+22012=2-22012+4+22012=6.(1)根据题意画出图形,依次取正方形面积的,,…找出规律即可; (2)根据题意画出图形,依次取正方形面积的,,…找出规律即可;(3)根据同底数幂的乘法进行计算即可.本题考查的是整式的加减,根据题意画出图形,利用数形结合求解是解答此题的关键.25.【答案】解:(1)设年降水量为x 万立方米,每人每年平均用水量为y 立方米,由题意,得题意,得,解得:解得: 答:年降水量为200万立方米,每人年平均用水量为50立方米.立方米.(2)设该城镇居民年平均用水量为z 立方米才能实现目标,由题意,得立方米才能实现目标,由题意,得 12000+25×12000+25×200=20×200=20×200=20×2525z , 解得:z =34 则50-34=16(立方米).(立方米).答:该城镇居民人均每年需要节约16立方米的水才能实现目标.立方米的水才能实现目标. 【解析】(1)设年降水量为x 万立方米,每人每年平均用水量为y 立方米,根据储水量+降水量=总用水量建立方程求出其解就可以了;(2)设该城镇居民年平均用水量为z 立方米才能实现目标,同样由储水量+25年降水量=25年20万人的用水量为等量关系建立方程求出其解即可. 本题是一道生活实际问题,考查了列二元一次方程组解实际问题的运用,列一元一次方程解实际问题的运用,解答时根据储水量+降水量=总用水量建立方程是关键.26.【答案】180°【解析】(1)解:∵OM ⊥ON , ∴∠MON=90°,在四边形OBCD 中,∠C=∠BOD=90°, ∴∠OBC+∠ODC=360°ODC=360°-90°-90°-90°-90°-90°-90°=180°=180°; 故答案为180°;(2)证明:延长DE 交BF 于H ,如图1,∵∠OBC+∠ODC=180°, 而∠OBC+∠CBM=180°, ∴∠ODC=∠CBM ,∵DE 平分∠ODC ,BF 平分∠CBM , ∴∠CDE=∠FBE , 而∠DEC=∠BEH , ∴∠BHE=∠C=90°, ∴DE ⊥BF ;(3)解:DG ∥BF .理由如下: 作CQ ∥BF ,如图2, ∵∠OBC+∠ODC=180°, ∴∠CBM+∠NDC=180°,∵BF 、DG 分别平分∠OBC 、∠ODC 的外角, ∴∠GDC+∠FBC=90°, ∵CQ ∥BF ,∴∠FBC=∠BCQ ,而∠BCQ+∠DCQ=90°, ∴∠DCQ=∠GDC , ∴CQ ∥GD , ∴BF ∥DG .(1)先利用垂直定义得到∠MON=90°,然后利用四边形内角和求解;(2)延长DE 交BF 于H ,如图,由于∠OBC+∠ODC=180°,∠OBC+∠CBM=180°,根据等角的补角相等得到∠ODC=∠CBM ,由于DE 平分∠ODC ,BF 平分∠CBM ,则∠CDE=∠FBE ,然后根据三角形内角和可得∠BHE=∠C=90°,于是DE ⊥BF ;(3)作CQ ∥BF ,如图2,由于∠OBC+∠ODC=180°,则∠CBM+∠NDC=180°,再利用BF 、DG 分别平分∠OBC 、∠ODC 的外角,则∠GDC+∠FBC=90°,根据平行线的性质,由CQ ∥BF 得∠FBC=∠BCQ ,加上∠BCQ+∠DCQ=90°,则∠DCQ=∠GDC ,于是可判断CQ ∥GD ,所以BF ∥DG .本题考查了垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.也考查了平行线的判定与性质. 27.【答案】解:(1)根据题意得:7m +5n =70,∴m =10-n .∵m 、n 均为非负整数,均为非负整数,∴n =0时,m =10;n =7时,m =5;n =14时,m =0,∴这个方程符合实际意义的所有的解为:这个方程符合实际意义的所有的解为: , , ;(2)设答对x 道5分题和答对y 道7分题时分数相等,分题时分数相等, 则5x =7y ,当x =7时,y =5;当x =14时,y =10.∴当y =5时,重复的分数有16-7+1=10(种);当x =7时,重复的分数有10-5=5(种);当y =10时,重复的分数有16-7+1+16-14+1=13(种);当x =14时,重复的分数有10-5+10-10=5(种);(种); ∴16×16×10-10-5-13-5=12710-10-5-13-5=127(种).(种). ∴k 的值有127种不同大小.种不同大小. 【解析】(1)根据总分=分值×答对题目数即可得出7m+5n=70,即m=10-n ,再根据m 、n 均为非负整数,即可得出二元一次方程的解;(2)设答对x 道5分题和答对y 道7分题时分数相等,即5x=7y ,解之即可得出x 、y 的值,利用k=16×k=16×10-10-重复种数即可求出结论.本题考查了二元一次方程的应用以及排列与组合问题,解题的关键是:(1)根据m、n的取值范围结合7m+5n=70找出所以可能解;(2)利用排列和组合的知识找出分值相等的重复次数.。

江苏省无锡市七年级下学期期中数学试卷

江苏省无锡市七年级下学期期中数学试卷

江苏省无锡市七年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2020·南宁模拟) 的相反数是()A .B .C .D . 62. (2分) (2020七上·嵩县期末) 一副三角板按如下图放置,下列结论:① ;②若,则;③若,必有;④若,则有 // ,其中正确的有()A . ②④B . ①④C . ①②④D . ①③④3. (2分)下列说法中,正确的是()A . 是的算术平方根B . 的平方根是C . 是的立方根D . 的立方根是4. (2分)以下判断正确的个数有()个(1)有理数和无理数统称实数.(2)无理数是带根号的数.(3)π是无理数.(4)是无理数A . 1个B . 2个C . 3个D . 4个5. (2分)把方程改写成含的式子表示的形式为()A .B .C .D .6. (2分)若方程组的解是,则a、b的值为()A .B .C .D .7. (2分)△ABC中,∠A:∠B:∠C=1:2:3,最小边BC=3cm,则最长边AB的长为()A . 9cmB . 8 cmC . 7 cmD . 6 cm8. (2分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A .B .C .D .二、填空题 (共8题;共8分)9. (1分) (2019七下·淮滨月考) 一个正数的平方根是和,则的值为 ________ .10. (1分)(2017·官渡模拟) 如图,已知AB∥CD,∠1=140°,则∠2=________°.11. (1分)-8的立方根与4的算术平方根的和是________12. (1分) (2019八上·海州期中) 如图,若△RtABC≌Rt△ADE,且∠B=60°,则∠E=________°13. (1分) (2019八下·兴化月考) 已知关于x的方程=3的解是非负数,则m的取值范围是________.14. (1分) (2019七下·萝北期末) a>b,且c为实数,则ac2________bc2.15. (1分) (2017七下·大冶期末) 如果不等式组无解,那么m的取值范围是________.16. (1分)若|a﹣4|+|b+5|=0,则a﹣b=________ .三、解答题 (共7题;共54分)17. (10分) (2019七下·枣庄期中) 如图(1)如图,利用尺规作图:过点B作BM∥AD.(要求:不写作法保留作图痕迹);(2)若直线DE∥AB,设DE与BM交于点C.试说明:∠A=∠BCD.18. (10分) (2015八下·金乡期中) 计算:(1) + ﹣× +(2)(﹣3)2﹣﹣|1﹣2 |﹣(﹣3)0 .19. (5分)如图,已知∠1=∠2,∠C=∠D,求证:∠A=∠F.20. (4分)将下列各数填入相应的集合中.﹣7,0,,﹣22 ,﹣2.55555…,3.01,+9,﹣2π.+10%,4.020020002…(每两个2之间依次增加1个0),无理数集合:{________…};负有理数集合:{________…};正分数集合:{________…};非负整数集合:{________…}.21. (5分)如图,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF于O,AE∥OF,且∠A=30°.(1)求∠DOF的度数;(2)试说明OD平分∠AOG.22. (5分)如果把棱长分别为3.14cm,5.24cm的两个正方体铁块熔化,制成一个大的正方形铁块,那么这个大正方体的棱长有多大?(用一个式子表示,并用计算器计算,结果保留一位小数)23. (15分) (2017七下·个旧期中) 如图,每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,四边形ABCD四个顶点的坐标分别为A(﹣2,0),B(﹣1,2),C(3,3),D(4,0).(1)画出四边形ABCD;(2)把四边形ABCD向下平移4个单位长度,再向左平移2个单位长度得到四边形A′B′C′D′,画出四边形A′B′C′D′,并写出C′的坐标;(3)求出四边形ABCD的面积.参考答案一、选择题 (共8题;共16分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:二、填空题 (共8题;共8分)答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共7题;共54分)答案:17-1、答案:17-2、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:。

江苏省无锡市七年级下学期数学期中联考试卷

江苏省无锡市七年级下学期数学期中联考试卷

江苏省无锡市七年级下学期数学期中联考试卷姓名:________ 班级:________ 成绩:________一、选择题(共10题;共30分) (共10题;共30分)1. (3分) (2019七下·港南期末) 下列是二元一次方程的是()A . x+8y=0B . 2x2=yC . y+ =0D . 3x=102. (3分) (2019七下·龙岗期末) 大肠杆菌的大小为0.0005 0.003毫米,能发酵多种糖类产酸、产气,是人和动物肠道中的正常栖居菌,婴儿出生后即随哺乳进入肠道,与人终身相伴,其中0.0005毫米用科学记数法表示为()A . 毫米B . 毫米C . 毫米D . 毫米3. (3分)(2017·禹州模拟) 已知点A(﹣1,0)和点B(1,2),将线段AB平移至A′B′,点A′于点A 对应,若点A′的坐标为(1,﹣3),则点B′的坐标为()A . (3,0)B . (3,﹣3)C . (3,﹣1)D . (﹣1,3)4. (3分) (2019八上·武威月考) 下列运算正确的是()A .B .C .D .5. (3分)如图,以下条件能判定EG∥HC的是()A . ∠FEB=∠ECDB . ∠AEG=∠DCHC . ∠GEC=∠HCFD . ∠HCF=∠AEG6. (3分) (2015高二上·太和期末) 如图,与∠α构成同旁内角的角有()A . 1个B . 2个C . 5个D . 4个7. (3分)若2x3﹣ax2﹣5x+5=(2x2+ax﹣1)(x﹣b)+3,其中a、b为整数,则a+b之值为何?()A . ﹣4B . ﹣2C . 0D . 48. (3分)学习了“平行线”后,张明想出了过已知直线外一点画这条直线的平行线的新方法,他是通过折一张半透明的纸得到的(如图①~④):从图中可知,张明画平行线的依据有()(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)同位角相等,两直线平行;(4)内错角相等,两直线平行.A . (1)(2)B . (2)(3)C . (1)(4)D . (3)(4)9. (3分)已知一个四位数的十位数字加1等于它的个位数字,个位数字加1等于它的百位数字,把这个四位数倒序排列所成的数与原数的和等于10769,则该四位数的数字之和为()。

【最新】江苏省无锡市新吴区七年级下册期中考试数学试题及答案

【最新】江苏省无锡市新吴区七年级下册期中考试数学试题及答案

2019—2020学年度第二学期七年级期中测试数学试卷满分:100分 考试时间:100分钟一.选择题(本大题共8小题,每小题3分,共24分.)1.图中的小船通过平移后可得到的图案是....................................( )A. B. C. D.2.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其忧. 据测定,杨絮纤维的直径约为0.0000105m ,该数值用科学记数法表示为........................( ) A .5101.05⨯ B .-4100.105⨯ C .-5101.05⨯ D .-710105⨯ 3.下列等式从左到右的变形,属于因式分解的是 ...........................( ) A .2(1)(1)1x x x +-=-B .224(4)(4)x y x y x y -=+-C .221(1)1x x x x -+=-+D .22816(4)x x x -+=-4.一个多边形的边数每增加一条,这个多边形的 ........................ ( ) A .内角和增加360° B .外角和增加360° C .对角线增加一条 D .内角和增加180°5.下面是一位同学所做的5道练习题:①532)(a a =,②632a a a =⋅,③22414mm =-,④325)()(a a a -=-÷-,⑤339)3(a a -=-,他做对题的个数是.......... ( ) A .1道 B .2道 C .3道 D .4道6.如图,∠1=∠2,∠DAB =∠BCD .给出下列结论:①AB//DC ;②AD //BC ;③∠B =∠D ;④∠D =2∠DAB .其中,正确的结论有 ......................................( ) A .1个 B .2个 C .3个 D .4个7.已知a ,b ,c 是三角形的三边,那么代数式22()a b c --的值..............( ) A .大于零 B .小于零 C .等于零 D .不能确定(第6题)(第8题)原图8.如图,ABC ∆的面积为1.分别倍长(延长一倍)AB ,BC ,CA 得到111C B A ∆.再分别倍长11B A ,22C B ,22A C 得到222C B A ∆.…… 按此规律,倍长2018次后得到的201820182018C B A ∆的面积为 .............................................( )A .20176B .20186C .20187D .20188二.填空题:(本大题共8小题,每空2分,共16分.) 9. 已知,,28==nma a 则=+nm a.10. 一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为 . 11.计算:()()870.1258⨯-= .12.若91-2++x m x )(是一个完全平方式,则m = . 13. 如果)5)(1(2a ax x x +-+的乘积中不含2x 项,则a 为 .14. 如图,AD 、AE 分别是△ABC 的角平分线和高,∠B=60°,∠C=70°,则∠EAD= .15.如图,将一张长方形纸片沿EF 折叠后,点D 、C 分别落在点D '、C '的位置,D E '的延长线与BC 相交于点G ,若∠EFG =50°,则∠1= .16. 已知m x =时,多项式222n x x ++的值为-1,则m x -=时,则多项式的值为 .三.解答题:(本大题共9小题,共60分.) 17.(本题满分12分,每小题3分)计算:(1)()()320131132π-⎛⎫-⨯--- ⎪⎝⎭(2)()392332)2(a a a a a a -÷--+⋅⋅(3))2)(3()7(+--+x x x x (4)()()()2322b a a b b a ---+GD'C'A BCDE F1(第15题)(第14题)18.(本题满分6分,每小题3分)因式分解:b a b a ab 322375303+- (2) ()()x y b y x a -+-2219.(本题满分4分)设22113-=a ,22235-=a ,22357-=a ……,(1)写出n a (n 为大于0的自然数)的表达式; (2)探究n a 是否为8的倍数.20.(本题满分4分)如图,每个小正方形的边长为1,在方格纸内将ABC ∆经过一次平移后得到'''C B A ∆,图中标出了点B 的对应点'B .(1)补全'''C B A ∆;根据下列条件,利用网格点和直尺画图:(2)作出中线CP ; (3)画出BC 边上的高线AE ;(4)在平移过程中,线段BC 扫过的面积为 .21.(本题满分5分)如图所示,已知AB //DC ,AE 平分∠BAD ,CD 与AE 相交于点F ,∠CFE=∠E . 试说明AD //BC .22.(本题满分6分)如图,AD 平分BAC ∠,EAD EDA =∠∠. (1)EAC ∠与B ∠相等吗?为什么?(2)若50B =︒∠,:13CAD E =∠∠:,则E ∠=.EC BAD23.(本题满分5分)已知常数a 、b 满足23327ab⨯=,且()()()22235551ba b a ⨯÷=,求224b a +的值.24.(本题满分8分)【知识生成】我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.图1ab ab图2a b cabc图3bbaa例如图1可以得到222()2a b a ab b+=++,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式:.(2)利用(1)中得到的结论,解决下面的问题:若10a b c++=,35ab ac bc++=,则222a b c++=.(3)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张宽、长分别为a、b的长方形纸片拼出一个面积为()()baba22++长方形,则x y z++=.【知识迁移】(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据乙图中图形的变化关系,写出一个代数恒等式:.25.(本题满分10分)已知在四边形ABCD中,︒=∠=∠90CA.(1)如图1,若BE平分ABC∠,DF平分ADC∠的邻补角,请写出BE与DF的位置关系,并证明.图4(2)如图2,若BF 、DE 分别平分ABC ∠、ADC ∠的邻补角,判断DE 与BF 位置关系并证明.(3)如图3,若BE 、DE 分别五等分ABC ∠、ADC ∠的邻补角(即CDN CDE ∠=∠51,CBM CBE ∠=∠51),则E ∠= .图3图2初一数学参考答案与评分标准一、选择题(本大题共8小题,每题3分,共24分)题号 1 2 3 4 5 6 7 8答案 B C D D A C B C二、填空题 (本大题共8小题,每题2分,共16分)9. 16; 10. 7; 11. -0.125 ; 12. 7或-5;13. ; 14. ; 15. ; 16. 3.三、解答题(本大题共9小题,共60分)17. 计算(每小题3分,共12分)(1)(2)=.....1分 =.. (1)分=-1+8.................2分 =......................2分=7.................3分 = (3)分(3)(4)=...........1分=.....1分=........2分=.........2分=.....................3分 =. (3)分18.因式分解:(每题3分,共6分)(1)(2)=........1分=........................1分=.........................3分=..................................2分=............................3分19.(1) .................................................. 2分(2)是8的倍数..........4分20.(1)如图所示,即为所求.............1分(2)如图所示,中线即为所求.............2分(3)如图所示,高线即为所求.............3分(4)线段扫过的面积为 16 ............4分21. ..............................1分..............................2分.........................3分............................................4分............................................5分22. ()是的角平分线;..........1分是的外角;.......2分又,..........3分........................................4分(2)..................................................6分23. ,............................1分,.......................2分...................................................3分..........................4分.........................................5分24.(1)..............2分(2) 30.............................................4分(3) 9..................................................6分(4) ..................................8分25.(1)..................................................1分...........4分(2)...........................................5分................................................................. ...........................................................................8分(3)..................10分。

江苏省2019-2020学年七年级下学期期中测试数学试卷5

江苏省2019-2020学年七年级下学期期中测试数学试卷5

江苏省2019-2020学年七年级下学期期中测试数学试卷一、选择题(每小题3分,共24分)1.在下图中,不能通过其中一个四边形平移得到的是 ( )2.计算23()x x -⋅的结果为 ( )A. 5xB.6xC. 6x -D. 5x -3.已知三角形的两边分别为4和10,则此三角形的第三边可能是 ( )A .4B .6C .8D . 164.如图,一把矩形直尺沿直线断开并错位,点E 、D 、B 、F 在同一条直线上,若∠ADE=125°,则∠DBC 的度数为 ( )A .65°B .55°C .75°D .125°5.下列各式从左到右的变形,是因式分解的是: ( )A.x x x x x 6)3)(3(692+-+=+-B.()()103252-+=-+x x x x C.()224168-=+-x x x D.623ab a b =⋅ 6.下列各式中计算正确的是 ( )A .B .C .D . 7.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,则89的个位数字是 ( )A .2 ;B .8;C .4;D .6.8.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 的外部时,则A ∠与1∠和2∠之间有一种数量关系始终保持不变,你发现的规律是 ( )A .212A ∠=∠-∠B .32(12)A ∠=∠-∠C .3212A ∠=∠-∠D .12A ∠=∠-∠二、填空题(每空2分,共24分)9.甲型H7N9流感病毒的直径大约为0.0000000081米,用科学记数法表示为 (第8题图)10.2(4)(7)x x x mx n -+=++,则m = ,n =11.把多项式y x x 234016+-提出一个公因式28x -后,另一个因式是 12.如下图,若H 是△ABC 三条高AD 、BE 、CF 的交点,则△HBC 中BC 边上的高是 ,△BHA 中BH 边上的高是13.等腰三角形的两边长分别为3cm 、6cm ,则该三角形的周长是 cm14. 226,8,a b ab a b +==+=已知则15.一个多边形截去一个角,形成新多边形的内角和是900°,原多边形的边数是16.如图,把边长为6cm 的正方形ABCD 先向右平移2cm ,再向上平移1cm ,得到正方形EFGH ,则阴影部分的面积为 平方厘米17.若34,97x y ==,则23x y -= 18.如图,将一个长方形纸条折成如图所示的形状,若已知∠2=65°,则∠1=__________。

2019-2020学年七年级下学期期中数学试题(解析版)

2019-2020学年七年级下学期期中数学试题(解析版)

2019-2020学年七年级下学期期中数学试题一.选择题1.在实数3.1415926,17, 1.010010001……,中,无理数的个数是( )个 A. 1B. 2C. 3D. 4 【答案】B【解析】【分析】 无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.,1.010010001……是无理数,故选B .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等无限不循环小数(与是否有规律无关).)A4 B. ±4 C. 2 D. ±2【答案】C【解析】【分析】4,4的算术平方根是2,2,故选C .【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.3.下列式子正确的是()A. =7 =5 ﹣3【答案】B【解析】试题分析:根据平方根的意义,可知49=±7,故A 不正确;根据立方根的意义,可知3377-=-,故B 正确;根据算术平方根的意义,可知25=5,故C 不正确;根据平方根的性质2||a a =,可知()23-=3,故不正确.故选B.点睛:此题主要考查了平方根的意义和性质,解题的关键是抓住平方根的意义,算术平方根,立方根的性质的应用,比较简单,但是容易出错,是中考常考题.4.已知:如图, AB CD ⊥,垂足为O ,EF 为过点O 的一条直线,则1∠与2∠的关系一定成立的是( )A. 相等B. 互补C. 互余D. 互为对顶角【答案】C【解析】【分析】 根据互余的定义,结合图形解答即可.【详解】∵AB CD ⊥,∴∠BOC=90°,∴∠1+∠COE=90°.∵∠2=∠COE ,∴∠1+∠2=90°,∴1∠与2∠互余.故选C.【点睛】本题考查了垂直的定义,对顶角的性质,以及余角的定义,如果两个角的和等于90°那么这两个角互为余角,其中一个角叫做另一个角的余角.5.有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③等角的补角相等;④同一平面内,垂直于同一条直线的两条直线互相平行.其中真命题的个数为A. 1B. 2C. 3D. 4【答案】B【解析】分析:对4个命题一一判断即可.详解:①相等的角是对顶角;假命题.②两条直线被第三条直线所截,同位角相等;假命题.③等角的补角相等;真命题.④同一平面内,垂直于同一条直线的两条直线互相平行. 真命题.是真命题的有2个.故选B.点睛:考查命题与定理.能够判断真假的陈述句叫做命题,判断为真的命题叫做真命题.6.在平面直角坐标系中,点P(-2,2x+1)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【详解】∵-20,2x+10,∴点P (-2,2x+1)在第二象限,故选B.7.已知在同一平面内三条直线a、b、c,若a∥c,b∥c,则a与b的位置关系是()A. a⊥bB. a⊥b或a∥bC. a∥bD. 无法确定【答案】C【解析】【分析】根据平行线的判定得出即可.【详解】解:∵同一平面内三条直线a、b、c,a∥c,b∥c,∴a∥b,故选C.【点睛】本题考查了平行线的性质和判定,平行公理及推理的应用,能熟记知识点(平行于同一直线的两直线平行)是解此题的关键.8. 如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A. 30°B. 25°C. 20°D. 15°【答案】B【解析】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,9.一个正数的平方根是2a-3与5-a,则这个正数的值是()A. 64B. 36C. 81D. 49【答案】D【解析】【分析】根据正数的两个平方根互为相反数列式求出a的值,进而可求出这个这个数.【详解】∵一个正数的平方根是2a-3与5-a,∴2a-3+5-a=0,∴a=-2,∴5-a=5-(-2)=7,∴这个正数的值是49.故选D.【点睛】本题考查了平方根的意义,如果个一个数x 的平方等于a ,即x 2=a ,那么这个数x 叫做a 的平方根,正数a 的平方根记作a ±.正数a 有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.如图,直线AB 、CD 交于点O ,OT⊥AB 于O ,CE∥AB 交CD 于点C ,若∠ECO =30°,则∠DOT 等于( )A. 30°B. 45°C. 60°D. 120°【答案】C【解析】【分析】 由//CE AB ,根据两直线平行,同位角相等,可求得BOD ∠的度数,又由OT AB ⊥求得BOT ∠的度数,然后由DOT BOT BOD ∠=∠-∠即可求得答案.【详解】∵//CE AB ,30ECO ∠=︒∴30BOD ECO ∠=∠=︒(两直线平行,同位角相等)∵OT AB ⊥∴90BOT ∠=︒∴903060DOT BOT BOD ∠=∠-∠=︒-︒=︒故选:C .【点睛】本题考查了平行线的性质、垂直等知识点,熟记并灵活运用平行线的性质是解题关键. 二.填空题11.311-__________,绝对值是_________.【答案】 (1).113, (2). 113.【解析】【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据差的绝对值是大数减小数,可得答案.【详解】解:3-11的相反数是-(3-11)= 11-3,绝对值是11-3.故答案为11-3;11-3【点睛】此题考查了实数的性质,熟练掌握相反数及绝对值的定义是解本题的关键.12.已知实数a,b满足a1-+|1-b|=0,则a2012+b2013=______【答案】2【解析】【分析】根据二次根式与绝对值的非负性即可求出a,b,故可求解.【详解】解:由题意可知:a-1=0,1-b=0,∴a=1,b=1,∴原式=2,故答案为:2.【点睛】本题考查非负数的性质,解题的关键是熟练运用非负数的性质,本题属于基础题型.13.把命题“对顶角相等”改写成“如果⋯那么⋯”的形式:_____.【答案】如果两个角是对顶角,那么它们相等.【解析】【分析】先把命题分解为题设和条件,再改写成“如果⋯那么⋯”的形式,即可.【详解】题设为:对顶角,结论为:相等,故写成“如果⋯那么⋯”的形式是:如果两个角是对顶角,那么它们相等.故答案为:如果两个角是对顶角,那么它们相等.【点睛】本题主要考查把命题改写成“如果⋯那么⋯”的形式,理解命题的题设和结论是解题的关键.14.如图所示,想在河的两岸搭建一座桥,沿线段________搭建最短,理由是___【答案】(1). PM(2). 垂线段最短【解析】【分析】连接直线外一点与直线上所有点的连线中,垂线段最短,据此进行解答即可. 【详解】∵PM⊥EN,垂足为M,∴PM为垂线段,∴想在河的两岸搭建一座桥,沿线段PM搭建最短(垂线段最短),故答案为PM,垂线段最短.【点睛】本题考查了垂线段的性质在生活中的应用,熟练掌握垂线段最短的知识是解题的关键.__________________.【答案】(1). 3(2).32【解析】【分析】,再求出立方根即可.,3,32,故答案为3,32.【点睛】此题考查了算术平方根、立方根的定义及表示方法,熟练掌握这些定义是解题的关键.16.的所有整数值是_________________【答案】±2,±1,0.【解析】【分析】的取值范围,进而可得出结论.【详解】解:∵4<8<9,∴23,∴绝对值小于8的所有整数是:±2,±1,0.故答案为±2,±1,0.【点睛】本题考查的是估算无理数的大小,先根据题意估算出8的取值范围是解答此题的关键.17.已知a,b为两个连续的整数,且a<57<b,则a+b=___________.【答案】15【解析】【分析】估算出在哪两个相邻的整数之间,即可求出a与b的值,然后代入a+b计算即可.【详解】∵72<57<82,∴7<57<8,∴a=7,b=8,∴a+b=7+8=15.故答案为15.【点睛】此题主要考查了估算无理数的大小,注意首先估算被开方数在哪两个相邻的平方数之间,再估算该无理数在哪两个相邻的整数之间.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.18.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF 的位置,AB=10,DH=4,平移距离为6,则阴影部分面积是_____【答案】48【解析】【分析】根据平移的性质可知:AB=DE,BE=CF;由此可求出EH和CF的长.由于CH∥DF,根据成比例线段,可求出EC的长.由EH、EC,DE、EF的长,即可求出△ECH和△EFD的面积,进而可求出阴影部分的面积.【详解】根据题意得:DE=AB=10;BE=CF=6;CH∥DF,∴EH=10﹣4=6;EH:HD=EC:CF,即6:4=EC :6,∴EC =9,∴S △EFD =12×10×(9+6)=75;S △ECH =12×9×6=27,∴S 阴影部分=75﹣27=48.故答案为48. 【点睛】本题考查了平移的性质、由平行判断成比例线段及有关图形的面积计算,有一定的综合性.三.解答题19.(1)|-(2)21(1)4x -=;(3)11-; (4)()334375x -=-.【答案】(1)12;(2)32x =,12x =;(3)0;(4)x=-1. 【解析】【分析】(1)根据数的开方计算即可;(2)根据平方根的定义解答;(3)先开平方、去绝对值、括号,然后合并.(4)先化原方程为(x-4)3=-125,然后求立方根;【详解】(1)原式= 1322--=12; (2)解: 112x -=±, 32x =或12x =;(3)解:原式=))211+-211=+=0(4)解: ()34125x -=- 45x -=-1x =-【点睛】本题考查了实数的运算和平方根、立方根的求法.在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.20.根据语句画图,并回答问题,如图,∠AOB内有一点P.(1)过点P画PC∥OB交OA于点C,画PD∥OA交OB于点D.(2)写出图中与∠CPD互补的角.(写两个即可)(3)写出图中∠O相等的角.(写两个即可)【答案】(1)画图见解析;(2)∠ODP,∠PCO(答案不唯一);(3)∠ACP,∠BDP(答案不唯一).【解析】试题分析:(1)根据平行线的画法画图即可;(2)直接利用平行线的性质以及结合互补的定义得出答案;(3)根据平行线的性质可得∠O=∠PCA,∠BDP=∠O.试题解析:(1)如图所示:PC,PD,即为所求;(2)∵PC∥BO,∴∠CPD+∠ODP=180°,∵PD∥AO,∴∠CPD+∠PCO=180°与∠CPD互补的角有:∠ODP,∠PCO;故答案为∠ODP,∠PCO(答案不唯一).(3)∵PD∥AO,∴∠O=∠BDP,∵CP∥BO,∴∠ACP=∠O,∴∠O相等的角有:∠ACP,∠BDP.故答案为∠ACP,∠BDP(答案不唯一).21.完成下面推理过程:如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:∵DE∥BC(已知)∴∠ADE=()∵DF、BE分别平分∠ADE、∠ABC,∴∠ADF=12()∠ABE=12()∴∠ADF=∠ABE∴∥()∴∠FDE=∠DEB.()【答案】∠ABC,两直线平行,同位角相等;∠ADE,∠ABC,角平分线的定义;DF,BE,同位角相等,两直线平行;两直线平行,内错角相等【解析】【分析】根据平行线的性质由DE∥BC得∠ADE=∠ABC,再根据角平分线的定义得到∠ADF=12∠ADE,∠ABE=12∠ABC,则∠ADF=∠ABE,然后根据平行线的判定得到DF∥BE,最后利用平行线的性质得∠FDE=∠DEB.【详解】∵DE∥BC,∴∠ADE=∠ABC,∵DF、BE分别平分∠ADE、∠ABC,∴∠ADF=12∠ADE,∠ABE=12∠ABC,∴∠ADF=∠ABE,∴DF∥BE,∴∠FDE=∠DEB.故答案为∠ABC,两直线平行,同位角相等;∠ADE,∠ABC,角平分线的定义;DF,BE,同位角相等,两直线平行;两直线平行,内错角相等.【点睛】本题考查了平行线的判定与性质:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.22. (1)在平面直角坐标系中,描出下列3个点:A (-1,0),B (3,-1),C (4,3);(2) 顺次连接A,B,C,组成△ABC,求△ABC的面积.【答案】(1)图形见解析(2)8.5【解析】【分析】(1)建立平面直角坐标系,然后画图;(2)用三角形所在的长方形的面积减去四周的三个三角形的面积即可得.【详解】(1)如图(2)如图所示,ABC EFHC EAC AFB BHC S S S S S ∆∆∆∆=---X=20-7.5-2-2=8.5答:△ABC 的面积为8.5.23.如图,已知∠AED =60°,∠2=30°,EF 平分∠AED ,可以判断EF ∥BD 吗?为什么?【答案】EF∥BD ,理由见解析.【解析】【详解】试题分析:本题可通过证直线EF 与BD 的内错角∠1和∠2相等,来得出EF∥BD 的结论. 试题解析:EF∥BD ;理由如下:∵∠AED=60°,EF 平分∠AED ,∴∠FED=30°,又∵∠FED=∠2=30°,∴EF∥BD 考点:平行线的判定.24.已知a 、b 、c 2a 2(c a)-+|b+c|.【答案】-a .【解析】【分析】直接利用数轴得出a <0,a+b <0,c-a >0,b+c <0,进而化简得出答案.【详解】解:如图所示:a <0,a+b <0,c-a >0,b+c <0, 故2a -|a+b|+2(c a) +|b+c|=-a+a+b+c-a-b-c=-a .【点睛】此题主要考查了二次根式的性质和数轴,正确得出各部分符号是解题关键.25.已知AB ∥DE ,∠ABC =800,∠CDE =1400.请你探索出一种(只须一种)添加辅助线求出∠BCD 度数的方法,并求出∠BCD 的度数.【答案】∠BCD =40°【解析】【分析】过点C 作FG ∥AB ,根据平行线的传递性得到FG ∥DE ,根据平行线的性质得到∠B=∠BCF ,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=80°,由等式性质得到∠DCF=40°,于是得到结论.【详解】解:过C 作CF ∥DE∵CF ∥DE (作图)AB ∥DE (已知)∴AB ∥DE ∥CF (平行于同一条直线的两条直线平行)∴∠BCF =∠B =80°(两直线平行,内错角相等)∠DCF+∠D=180°(两直线平行,同旁内角互补)又∵∠D=140°(已知)∴∠DCF=40°(等量代换)又∵∠BCD=∠BCF-∠DCF(角的和差定义)∴∠BCD=80°-40°(等量代换)即∠BCD=40°【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省无锡市锡山区2019-2020学年七年级下学期
期中数学试题
学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 若=8,=4,则=()
A.12 B.4 C.32 D.2
2. 下列计算中,正确的是()
A.B.C.D.
3. 下列各式计算正确的是()
A.(x+y)2=x2+y2B.(x+3)(x﹣3)=x2﹣3
C.(m﹣n)(n﹣m)=n2﹣m2D.(x﹣y)2=(y﹣x)2
4. 如果一个多边形的内角和比外角和多180°,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形
5. 如图,下列结论中错误的是()
A.与是同旁内角B.与是内错角
C.与是内错角D.与是同位角
6. 如图,下列条件能判断的是()
A.B.
C.D.
7. 如图,在△ABC中,AD是高,AE是角平分线,AF是中线,则下列说法中错误的是()
A.BF=CF B.∠C+∠CAD=
90°
C.∠BAF=∠CAF D.
8. 如图,把一个长方形纸片沿EF折叠后,点C、D分别落在M、N的位置.若∠EFB=65°,则∠AEN等于()
A.25°B.50°C.65°D.70°
9. 如图,在中,,与的平分线交于点,得
;与的平分线相交于点,得;……;与
的平分线交于点,要使的度数为整数,则的最大值为
()
A.4 B.5 C.6 D.7
10. 将4张长为a、宽为b(a≥b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图中空白部分的面积为m,阴影部分的面积为n.若m=3n,则a、b满足()
A.a=b或a=3b B.a=b或a=4b C.a=b或a=5b D.a=b或a=6b
二、填空题
11. 科学家发现冠状肺炎病毒颗粒平均直径约为,数据0.00000012用科学记数法表示_______.
12. 已知是一个完全平方式,则k的值是____________.
13. 若计算(x+2)(3x+m)的结果中不含关于字母x的一次项,则m的值为
____________.
14. △的两边长分别是2和5,且第三边为奇数,则第三边长为
_____________.
15. 若,则的值是__________.
16. 在△ABC中,点D是BC上一点,∠ADB=130°,∠CAD=54°,则∠C=
____________°.
17. 若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧
数”(如3=,5=).已知“智慧数”按从小到大顺序构成如下数列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,….则第2020个“智慧数”是____________.
18. 已知大正方形的边长为5厘米,小正方形的边长为2厘米,起始状态如图所示. 大正方形固定不动,把小正方形以1厘米/秒的速度向右沿直线平移,设平移的时间为秒,两个正方形重叠部分的面积为平方厘米. 当时,小正方形平移的时间为_________秒.
三、解答题
19. 计算:
(1)(-3)0++(-2)3;
(2)(-2a3)2·3a3+6a12÷(-2a3) ;
(3)(x+1)(x﹣2)﹣(x﹣2)2.
20. 把下列各式因式分解:
(1)
(2);
(3).
21. 在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.
(1)请画出平移后的△A′B′C′,并求△A′B′C′的面积;
(2)在图中找出格点D,使△ACD的面积与△ABC的面积相
等.
22. 先化简,再求值:(2a+b)2-(3a-b)2+5a(a-b),其中a =1,b=—1.
23. 如图,在△ABC中,BD是∠ABC的角平分线,DE∥BC,交AB于点E,∠A=
60°,∠BDC=95°,求∠BED的度数.
24. 先阅读材料,再解答问题:
例:已知x=123456789×123456786,y=123456788×123456787,试比较x、y 的大小.
解:设123456788=a,则x=(a+1)(a-2)=,y =a(a-1)=,
∵x-y==-2,
∴x<y.
问题:已知x=20182018×20182022-20182019×20182021,y=
20182019×20182023-20182020×20182022,试比较x、y的大小.
25. 如图,分别是四边形(四条边不相等)的内角平分线,交于点交于点.
(1)猜想与有怎样的数量关系,并说明理由.
(2)与有没有可能相等?若能相等,四边形的边有何特殊要求?若不能相等,请说明理由.
26. 探究与发现:
如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:
(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;
(2)请你直接利用以上结论,解决以下三个问题:
①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ 恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX=°;
②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度数;
③如图4,∠ABD,∠ACD的10等分线相交于点G
1、G
2
…、G
9
,若∠BDC=
140°,∠BG
1
C=77°,求∠A的度数.。

相关文档
最新文档