图的深度和广度

合集下载

深度优先算法和广度优先算法的时间复杂度

深度优先算法和广度优先算法的时间复杂度

深度优先算法和广度优先算法的时间复杂度深度优先算法和广度优先算法是在图论中常见的两种搜索算法,它们在解决各种问题时都有很重要的作用。

本文将以深入浅出的方式从时间复杂度的角度对这两种算法进行全面评估,并探讨它们在实际应用中的优劣势。

1. 深度优先算法的时间复杂度深度优先算法是一种用于遍历或搜索树或图的算法。

它从图中的某个顶点出发,沿着一条路径一直走到底,直到不能再前进为止,然后回溯到上一个节点,尝试走其他的路径,直到所有路径都被走过为止。

深度优先算法的时间复杂度与图的深度有关。

在最坏情况下,深度优先算法的时间复杂度为O(V+E),其中V表示顶点的数量,E表示边的数量。

2. 广度优先算法的时间复杂度广度优先算法也是一种用于遍历或搜索树或图的算法。

与深度优先算法不同的是,广度优先算法是从图的某个顶点出发,首先访问这个顶点的所有邻接节点,然后再依次访问这些节点的邻接节点,依次类推。

广度优先算法的时间复杂度与图中边的数量有关。

在最坏情况下,广度优先算法的时间复杂度为O(V+E)。

3. 深度优先算法与广度优先算法的比较从时间复杂度的角度来看,深度优先算法和广度优先算法在最坏情况下都是O(V+E),并没有明显的差异。

但从实际运行情况来看,深度优先算法和广度优先算法的性能差异是显而易见的。

在一般情况下,广度优先算法要比深度优先算法快,因为广度优先算法的搜索速度更快,且能够更快地找到最短路径。

4. 个人观点和理解在实际应用中,选择深度优先算法还是广度优先算法取决于具体的问题。

如果要找到两个节点之间的最短路径,那么广度优先算法是更好的选择;而如果要搜索整个图,那么深度优先算法可能是更好的选择。

要根据具体的问题来选择合适的算法。

5. 总结和回顾本文从时间复杂度的角度对深度优先算法和广度优先算法进行了全面评估,探讨了它们的优劣势和实际应用中的选择。

通过对两种算法的时间复杂度进行比较,可以更全面、深刻和灵活地理解深度优先算法和广度优先算法的特点和适用场景。

第15讲图的遍历

第15讲图的遍历

V6
V8
V8
V7
V5 深度优先生成树
V8 V1
V2
V3
V4 V5 V6 V7
V8 广度优先生成树
27
例A
B
CD E
F
GH
I
K
J
L
M
A
D
G
LCF
KI E
H M
JB
深度优先生成森林
28
二、图的连通性问题
▪1、生成树和生成森林
▪ 说明
G
▪ 一个图可以有许多棵不同的生成树
KI
▪ 所有生成树具有以下共同特点:
g.NextAdjVex(v, w))
{
if (g.GetTag(w) == UNVISITED)
{
g.SetTag(w, VISITED);
g.GetElem(w, e);
Visit(e);
q.InQueue(w);
}
}}}
24
一、图的遍历 两种遍历的比较
V0
V1 V4
V0
V1 V4
V3
V2 V5
16
一、图的遍历
广度优先遍历序列?入队序列?出队序列?
V1
V2
V3
V1
V4
V5 V6
V7
V8
遍历序列: V1
17
一、图的遍历
广度优先遍历序列?入队序列?出队序列?
V1
V2
V3
V2 V3
V4
V5 V6
V7
V8
遍历序列: V1 V2 V3
18
一、图的遍历
广度优先遍历序列?入队序列?出队序列?
V1
V2

第7章图的深度和广度优先搜索遍历算法

第7章图的深度和广度优先搜索遍历算法
7.3 图的遍历
和树的遍历类似,我们希望从图中某顶点出发对图中每个顶点访问一次,而且只访问 一次,这一过程称为图的遍历(traversing graph)。 本节介绍两种遍历图的规则:深度优先搜索和广度优先搜索。 这两种方法既适用于无向图,也适用于有向图。
7.3.1 深度优先搜索遍历 一.思路: 从图中某一点(如A)开始,先访问这一点,然后任选它的一个邻点(如V0) 访问,访问完该点后,再任选这个点V0的一个邻点 ( 如 W )访问,如此向 纵深方向访问。直到某个点没有其他未访问的邻点为止,则返回到前一个点。 再任选它的另一个未访问过的邻点 ( 如X )继续重复上述过程的访问,直到全 部点访问完为止。 图(a)的遍历的结果:V1V2V4V8V5V3V6V7 或V1V3V7V6V2V5V8V4
p
v0 w x v 1
V
0
v 2
V
0
typedef struct {VEXNODE adjlist[MAXLEN]; // 邻接链表表头向量 int vexnum, arcnum; // 顶点数和边数 int kind; // 图的类型 }ADJGRAPH;
W W
X
X
7.3.2 广度优先搜索遍历 一.思路:
V
0
A V
0
W W
XXΒιβλιοθήκη 二.深度优先搜索算法的文字描述: 算法中设一数组visited,表示顶点是否访问过的标志。数组长度为 图的顶点数,初值均置为0,表示顶点均未被访问,当Vi被访问过,即 将visitsd对应分量置为1。将该数组设为全局变量。 { 确定从G中某一顶点V0出发,访问V0; visited[V0] = 1; 找出G中V0的第一个邻接顶点->w; while (w存在) do { if visited[w] == 0 继续进行深度优先搜索; 找出G中V0的下一个邻接顶点->w;} }

dfs和bfs算法

dfs和bfs算法

dfs和bfs算法深度优先搜索(DFS)和广度优先搜索(BFS)是图论中常用的两种搜索算法,也是许多算法题中的基础算法。

本文将从什么是图、什么是搜索算法开始介绍DFS、BFS的基本原理以及应用场景。

一、图的概念图是由节点集合以及它们之间连线所组成的数据结构。

图分为有向图和无向图两种,有向图中的边具有一定的方向性,而无向图中的边是没有方向的。

二、DFS(深度优先搜索)深度优先搜索从一个点开始,根据规定的遍历方式始终向着深度方向搜索下去,直到到达目标节点或者无法继续搜索为止。

具体实现可以用递归或者非递归的方式进行。

1、深度优先搜索的框架def dfs(v,visited,graph):visited[v] = True #将节点v标记为已经被访问#遍历v的所有连接节点for w in graph[v]:if not visited[w]:dfs(w,visited,graph)2、深度优先搜索的应用DFS常用来解决最长路径问题、拓扑排序问题以及判断图是否存在环。

三、BFS(广度优先搜索)广度优先搜索是从一个点开始,逐层扩散的搜索方式。

具体实现可以用队列实现。

1、广度优先搜索的框架def bfs(start,graph):visited = [False] * len(graph) #标记所有节点为未访问queue = [start] #队列存储已经访问过的节点visited[start] = True #起始点被标记为已经访问过while queue:v = queue.pop(0) #弹出队列首节点#遍历该节点的所有连接节点for w in graph[v]:if not visited[w]:visited[w] = True #标记该节点已经被访问queue.append(w) #加入队列2、广度优先搜索的应用BFS常用来解决最短路径问题,如迷宫问题、网络路由问题等。

四、DFS和BFS的区别DFS从一个节点开始,向下深度优先搜索,不断往下搜索直到无路可走才返回,因此将搜索过的节点用栈来存储。

图的概念

图的概念

V3
//第一行给给出边数和顶点数:n,m 。n和m的值均小于100 //第二行到n+1行,每一个行2个数,分别表示边的起点,终点。 //如 3,3 // 1 2 // 2 3 // 3 1 /*以邻接矩阵来存储。 #include <iostream> using namespace std; bool juzhen[101][101]; int main() { int m,n; cin>>m>>n; int a,b; for(int i=0;i<m;i++) { cin>>a>>b; juzhen[a][b]=1;// juzhen[b][a]=1; } }
如何用计算机来存储图的信息,这是图的存储结构 要解决的问题。 第一种:边集数组表示法。 定义一个结构体,存储边的起点和终点。 Struct bian { int s;//边的起点 int e;//边的终点 int v;//边的权值 } 然后定义一个该结构体的数组,存储图中所有的边。
第二种:邻接矩阵表示法。矩阵即二维数组。 设G=(V,E)是一个n阶图,顶点为 (V0,V1,……Vn-1).则可以定义一个n阶矩 阵arr[n][n]。即n行n列的二维数组。如果存 在边(Vi,Vj),则矩阵中arr[i][j]=1,否则 arr[i][j]=0.
这是著名的柯尼斯堡七桥问题。在一段时间内都没 有人能够给出正确答案。后来,欧拉证明了此题 是无解的。从而,引出了著名的“欧拉问题”或 “图的一笔画问题”。欧拉得出的结论是: 1.如果一个图中没有奇点,则该图可以从起点 出发经过所有边一次,再回到起点。 2.如果一个图中有且只有两个奇点,则该图可 以一个奇点出发,经过所有边一次,到达另一个 奇点。 欧拉开启了人们研究图的历史。

广度优先和深度优先的例子

广度优先和深度优先的例子

广度优先和深度优先的例子广度优先搜索(BFS)和深度优先搜索(DFS)是图遍历中常用的两种算法。

它们在解决许多问题时都能提供有效的解决方案。

本文将分别介绍广度优先搜索和深度优先搜索,并给出各自的应用例子。

一、广度优先搜索(BFS)广度优先搜索是一种遍历或搜索图的算法,它从起始节点开始,逐层扩展,先访问起始节点的所有邻居节点,再依次访问其邻居节点的邻居节点,直到遍历完所有节点或找到目标节点。

例子1:迷宫问题假设有一个迷宫,迷宫中有多个房间,每个房间有四个相邻的房间:上、下、左、右。

现在我们需要找到从起始房间到目标房间的最短路径。

可以使用广度优先搜索算法来解决这个问题。

例子2:社交网络中的好友推荐在社交网络中,我们希望给用户推荐可能认识的新朋友。

可以使用广度优先搜索算法从用户的好友列表开始,逐层扩展,找到可能认识的新朋友。

例子3:网页爬虫网页爬虫是搜索引擎抓取网页的重要工具。

爬虫可以使用广度优先搜索算法从一个网页开始,逐层扩展,找到所有相关的网页并进行抓取。

例子4:图的最短路径在图中,我们希望找到两个节点之间的最短路径。

可以使用广度优先搜索算法从起始节点开始,逐层扩展,直到找到目标节点。

例子5:推荐系统在推荐系统中,我们希望给用户推荐可能感兴趣的物品。

可以使用广度优先搜索算法从用户喜欢的物品开始,逐层扩展,找到可能感兴趣的其他物品。

二、深度优先搜索(DFS)深度优先搜索是一种遍历或搜索图的算法,它从起始节点开始,沿着一条路径一直走到底,直到不能再继续下去为止,然后回溯到上一个节点,继续探索其他路径。

例子1:二叉树的遍历在二叉树中,深度优先搜索算法可以用来实现前序遍历、中序遍历和后序遍历。

通过深度优先搜索算法,我们可以按照不同的遍历顺序找到二叉树中所有节点。

例子2:回溯算法回溯算法是一种通过深度优先搜索的方式,在问题的解空间中搜索所有可能的解的算法。

回溯算法常用于解决组合问题、排列问题和子集问题。

例子3:拓扑排序拓扑排序是一种对有向无环图(DAG)进行排序的算法。

图的搜索与应用实验报告(附源码)(word文档良心出品)

图的搜索与应用实验报告(附源码)(word文档良心出品)

哈尔滨工业大学计算机科学与技术学院实验报告课程名称:数据结构与算法课程类型:必修实验项目名称:图的搜索与应用实验题目:图的深度和广度搜索与拓扑排序设计成绩报告成绩指导老师一、实验目的1.掌握图的邻接表的存储形式。

2.熟练掌握图的搜索策略,包括深度优先搜索与广度优先搜索算法。

3.掌握有向图的拓扑排序的方法。

二、实验要求及实验环境实验要求:1.以邻接表的形式存储图。

2.给出图的深度优先搜索算法与广度优先搜索算法。

3.应用搜索算法求出有向图的拓扑排序。

实验环境:寝室+机房+编程软件(NetBeans IDE 6.9.1)。

三、设计思想(本程序中的用到的所有数据类型的定义,主程序的流程图及各程序模块之间的调用关系)数据类型定义:template <class T>class Node {//定义边public:int adjvex;//定义顶点所对应的序号Node *next;//指向下一顶点的指针int weight;//边的权重};template <class T>class Vnode {public:T vertex;Node<T> *firstedge;};template <class T>class Algraph {public:Vnode<T> adjlist[Max];int n;int e;int mark[Max];int Indegree[Max];};template<class T>class Function {public://创建有向图邻接表void CreatNalgraph(Algraph<T>*G);//创建无向图邻接表void CreatAlgraph(Algraph<T> *G);//深度优先递归搜索void DFSM(Algraph<T>*G, int i);void DFS(Algraph<T>* G);//广度优先搜索void BFS(Algraph<T>* G);void BFSM(Algraph<T>* G, int i);//有向图的拓扑排序void Topsort(Algraph<T>*G);/得到某个顶点内容所对应的数组序号int Judge(Algraph<T>* G, T name); };主程序流程图:程序开始调用关系:主函数调用五个函数 CreatNalgraph(G)//创建有向图 DFS(G) //深度优先搜索 BFS(G) //广度优先搜索 Topsort(G) //有向图拓扑排序 CreatAlgraph(G) //创建无向图其中 CreatNalgraph(G) 调用Judge(Algraph<T>* G, T name)函数;DFS(G)调用DFSM(Algraph<T>* G , int i)函数;BFS(G) 调用BFSM(Algraph<T>* G, int k)函数;CreatAlgraph(G) 调选择图的类型无向图有向图深 度 优 先 搜 索广度优先搜索 深 度 优 先 搜 索 广度优先搜索拓 扑 排 序程序结束用Judge(Algraph<T>* G, T name)函数。

图的各种算法(深度、广度等)

图的各种算法(深度、广度等)

vex next 4 p
3
2 ^
2
^
5
5 5 4 3 2 1 0 ^
^
4 ^
top
4
输出序列:6 1
1 2 3 4 5 6
in link 0 2 ^ 1 0 2 0
vex next 4 p
3
2 ^
2
^
5
5 5 4 3 2 1 0 ^
^
4 ^
top 4
输出序列:6 1
1 2 3 4 5 6
in link 0 2 ^ 1 0 2 0
c a g b h f d e
a
b h c d g f
e
在算法中需要用定量的描述替代定性的概念
没有前驱的顶点 入度为零的顶点 删除顶点及以它为尾的弧 弧头顶点的入度减1
算法实现
以邻接表作存储结构 把邻接表中所有入度为0的顶点进栈 栈非空时,输出栈顶元素Vj并退栈;在邻接表中查找 Vj的直接后继Vk,把Vk的入度减1;若Vk的入度为0 则进栈 重复上述操作直至栈空为止。若栈空时输出的顶点个 数不是n,则有向图有环;否则,拓扑排序完毕
^
4
^
top
输出序列:6 1 3 2 4
1 2 3 4 5 6
in link 0 0 ^ 0 0 0 0
vex next 4
3
2 ^
2
^
5
5 5 4 3 2 1 0 ^ p
^
4
^topBiblioteka 5输出序列:6 1 3 2 4
1 2 3 4 5 6
in link 0 0 ^ 0 0 0 0
vex next 4
w2 w1 V w7 w6 w3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图的深度优先遍历和广度优先遍历Java实现收藏一图的基本概念及存储结构图G是由顶点的有穷集合,以及顶点之间的关系组成,顶点的集合记为V,顶点之间的关系构成边的集合EG=(V,E).说一条边从v1,连接到v2,那么有v1Ev2(E是V上的一个关系)《=》<v1,v2>↔E.图有有向图,无向图之分,无向图的一条边相当于有向图的中两条边,即如果无向图的顶点v1和v2之间有一条边,那么既有从v1连接到v2的边,也有从v2连接到v1的边,<v1,v2>↔E 并且<v2,v1>↔E,而有向图是严格区分方向的。

一般图的存储有两种方式1)相邻矩阵,用一个矩阵来保持边的情况,<v1,v2>↔E则Matrix[v1][v2]=Weight.2)邻接表,需要保存一个顺序存储的顶点表和每个顶点上的边的链接表。

这里的实现采用第二种方案,另外图又复杂图,简单图之分,复杂图可能在两点之间同一个方向有多条边,我们考虑的都是无环简单图,无环简单图是指顶点没有自己指向自己的边的简单图,即任取vi属于V => <vi,vi>不属于E并且没有重复边。

我们先给出图的ADT:package algorithms.graph;/*** The Graph ADT* @author yovn**/public interface Graph {//markpublic static interface Edge{public int getWeight();}int vertexesNum();int edgeNum();boolean isEdge(Edge edge);void setEdge(int from,int to, int weight);Edge firstEdge(int vertex);Edge nextEdge(Edge edge);int toVertex(Edge edge);int fromVertex(Edge edge);String getVertexLabel(int vertex);void assignLabels(String[] labels);void deepFirstTravel(GraphVisitor visitor);void breathFirstTravel(GraphVisitor visitor);}其中的方法大多数比较一目了然,其中1)Edge firstEdge(int vertex)返回指定节点的边的链表里存的第一条边2)Edge nextEdge(Edge edge),顺着边链表返回下一条边3)fromVertex,toVertex很简单返回该边的起始顶点和终结顶点4)getVertexLabel返回该定点对应的标号,assignLabels给所有顶点标上号GraphVisitor是一个很简单的接口:package algorithms.graph;/*** @author yovn*-*/public interface GraphVisitor {void visit(Graph g,int vertex);}OK,下面是该部分实现:package algorithms.graph;import java.util.Arrays;/*** @author yovn**/public class DefaultGraph implements Graph {private static class _Edge implements Edge{private static final _Edge NullEdge=new _Edge();int from;int to;int weight;_Edge nextEdge;private _Edge(){weight=Integer.MAX_V ALUE;}_Edge(int from, int to, int weight){this.from=from;this.to=to;this.weight=weight;}public int getWeight(){return weight;}}private static class _EdgeStaticQueue{_Edge first;_Edge last;}private int numVertexes;private String[] labels;private int numEdges;private _EdgeStaticQueue[] edgeQueues;//tag the specified vertex be visited or notprivate boolean[] visitTags;/****/public DefaultGraph(int numVertexes) {if(numVertexes<1){throw new IllegalArgumentException();}this.numVertexes=numVertexes;this.visitTags=new boolean[numVertexes];bels=new String[numVertexes];for(int i=0;i<numVertexes;i++){labels[i]=i+"";}this.edgeQueues=new _EdgeStaticQueue[numVertexes];for(int i=0;i<numVertexes;i++){edgeQueues[i]=new _EdgeStaticQueue();edgeQueues[i].first=edgeQueues[i].last=_Edge.NullEdge;}this.numEdges=0;}/* (non-Javadoc)* @see algorithms.graph.Graph#edgeNum()*/@Overridepublic int edgeNum() {return numEdges;}/* (non-Javadoc)* @see algorithms.graph.Graph#firstEdge(int)*/@Overridepublic Edge firstEdge(int vertex) {if(vertex>=numVertexes) throw new IllegalArgumentException();return edgeQueues[vertex].first;}/* (non-Javadoc)* @see algorithms.graph.Graph#isEdge(algorithms.graph.Graph.Edge)*/@Overridepublic boolean isEdge(Edge edge) {return (edge!=_Edge.NullEdge);}/* (non-Javadoc)* @see algorithms.graph.Graph#nextEdge(algorithms.graph.Graph.Edge)*/@Overridepublic Edge nextEdge(Edge edge) {return ((_Edge)edge).nextEdge;}/* (non-Javadoc)* @see algorithms.graph.Graph#vertexesNum()*/@Overridepublic int vertexesNum() {return numVertexes;}@Overridepublic int fromVertex(Edge edge) {return ((_Edge)edge).from;}@Overridepublic void setEdge(int from, int to, int weight) {//we don't allow ring existif(from<0||from>=numVertexes||to<0||to>=numVertexes||weight<0||from==to)throw newIllegalArgumentException();_Edge edge=new _Edge(from,to,weight);edge.nextEdge=_Edge.NullEdge;if(edgeQueues[from].first==_Edge.NullEdge)edgeQueues[from].first=edge;elseedgeQueues[from].last.nextEdge=edge;edgeQueues[from].last=edge;}@Overridepublic int toVertex(Edge edge) {return ((_Edge)edge).to;}@Overridepublic String getVertexLabel(int vertex) {return labels[vertex];}@Overridepublic void assignLabels(String[] labels) {System.arraycopy(labels, 0, bels, 0, labels.length);}//to be continue}二深度优先周游即从从某一点开始能继续往前就往前不能则回退到某一个还有边没访问的顶点,沿这条边看该边指向的点是否已访问,如果没有访问,那么从该指向的点继续操作。

那么什么时候结束呢,这里我们在图的ADT实现里加上一个标志数组。

该数组记录某一顶点是否已访问,如果找不到不到能继续往前访问的未访问点,则结束。

你可能会问,如果指定图不是连通图(既有2个以上的连通分量)呢?OK,解决这个问题,我们可以让每一个顶点都有机会从它开始周游。

下面看deepFirstTravel的实现:/* (non-Javadoc)* @see algorithms.graph.Graph#deepFirstTravel(algorithms.graph.GraphVisitor)*/@Overridepublic void deepFirstTravel(GraphVisitor visitor) {Arrays.fill(visitTags, false);//reset all visit tagsfor(int i=0;i<numVertexes;i++){if(!visitTags[i])do_DFS(i,visitor);}}private final void do_DFS(int v, GraphVisitor visitor) {//first visit this vertexvisitor.visit(this, v);visitTags[v]=true;//for each edge from this vertex, we do one time//and this for loop is very classical in all graph algorithmsfor(Edge e=firstEdge(v);isEdge(e);e=nextEdge(e)){if(!visitTags[toVertex(e)]){do_DFS(toVertex(e),visitor);}}}三广度优先周游广度优先周游从每个指定顶点开始,自顶向下一层一层的访问。

相关文档
最新文档