一元二次方程的根的判别式练习题
(完整版)一元二次方程的根的判别式练习题

一元二次方程的根的判别式1、方程2x 2+3x -k=0根的判别式是 ;当k 时,方程有实根。
2、关于x 的方程kx 2+(2k+1)x -k+1=0的实根的情况是 。
3、方程x 2+2x+m=0有两个相等实数根,则m= 。
4、关于x 的方程(k 2+1)x 2-2kx+(k 2+4)=0的根的情况是 。
5、当m 时,关于x 的方程3x 2-2(3m+1)x+3m 2-1=0有两个不相等的实数根。
6、如果关于x 的一元二次方程2x(ax -4)-x 2+6=0没有实数根,那么a 的最小整数值是 。
7、关于x 的一元二次方程mx 2+(2m -1)x -2=0的根的判别式的值等于4,则m= 。
8、设方程(x -a)(x -b)-cx=0的两根是α、β,试求方程(x -α)(x -β)+cx=0的根。
9、不解方程,判断下列关于x 的方程根的情况:(1)(a+1)x 2-2a 2x+a 3=0(a>0)(2)(k 2+1)x 2-2kx+(k 2+4)=010、m 、n 为何值时,方程x 2+2(m+1)x+3m 2+4mn+4n 2+2=0有实根?11、求证:关于x 的方程(m 2+1)x 2-2mx+(m 2+4)=0没有实数根。
12、已知关于x 的方程(m 2-1)x 2+2(m+1)x+1=0,试问:m 为何实数值时,方程有实数根? 13、 已知关于x 的方程x 2-2x -m=0无实根(m 为实数),证明关于x 的方程x 2+2mx+1+2(m 2-1)(x 2+1)=0也无实根。
14、已知:a>0,b>a+c,判断关于x 的方程ax 2+bx+c=0根的情况。
15、m 为何值时,方程2(m+1)x 2+4mx+2m -1=0。
(1)有两个不相等的实数根;(2)有两个实数根;(3)有两个相等的实数根;(4)无实数根。
16、当一元二次方程(2k -1)x2-4x -6=0无实根时,k 应取何值? 17、已知:关于x 的方程x 2+bx+4b=0有两个相等实根,y 1、y 2是关于y 的方程y 2+(2-b)y+4=0的两实根,求以1y 、2y 为根的一元二次方程。
一元二次方程根的判别式练习题

2.3 一元二次方程根的判别式要点感知 关于x 的一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△= .(1)△>0⇔原方程有 的实数根,其根为x 1= ,x 2= .(2)△=0⇔原方程有 的实数根,这两个根为x 1=x 2=2b a -. (3)△<0⇔原方程 实数根.注意:在运用一元二次方程根的判别式时,要注意二次项系数a 的条件.预习练习1-1 (2013·昆明)一元二次方程2x 2-5x+1=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定1-2 (2013·大连)若关于x 的方程x 2-2x+m=0没有实数根,则实数m 的取值范围是( )A.m <-1B.m >-1C.m <1D.m >11-3 (2012·梧州)关于x 的一元二次方程(a+1)x 2-4x-1=0有两个不相等的实数根,则a 的取值范围是(B)A.a >-5B.a >-5且a ≠-1C.a <-5D.a ≥-5且a ≠-1知识点1 不解方程,判断根的情况1.(2013·泰州)下列一元二次方程中,有两个不相等实数根的方程是( )A.x 2-3x+1=0B.x 2+1=0C.x 2-2x+1=0D.x 2+2x+3=02.一元二次方程ax 2+bx+c=0中a ,c 异号,则方程的根的情况是( )A.b 为任意实数,方程有两个不等的实数根B.b 为任意实数,方程有两个相等的实数根C.b 为任意实数,方程没有实数根D.无法确定3.不解方程,判断下列一元二次方程的根的情况:(1)3x 2-2x-1=0; (2)2x2-x+1=0; (3)4x-x 2=x 2+2.知识点2 根据根的情况,确定字母系数的取值范围4.(2013·钦州)关于x 的一元二次方程3x 2-6x+m=0有两个不相等的实数根,则m 的取值范围是( )A.m <3B.m ≤3C.m >3D.m ≥35.已知(m-1)x 2+2mx+(m-1)=0有两个不相等的实数根,则m 的取值范围是( )A.m>12B.m<12且m ≠1C.m>12且m ≠1D.12<m <1 6.(2013·张家界)若关于x 的一元二次方程kx 2+4x+3=0有实数根,则k 的非负整数值是 .7.已知关于x 的方程2x 2-(4k+1)x+2k 2-1=0,问当k 取什么值时,(1)方程有两个不相等的实数根; (2)方程有两个相等的实数根;(3)方程没有实数根.8.(2013·成都)一元二次方程x 2+x-2=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根9.(2013·西宁)已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k-1=0根的情况是( )A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定10.(2013·广州)若5k+20<0,则关于x的一元二次方程x2+4x-k=0的根的情况是( )A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断11.(2013·潍坊)已知关于x的方程kx2+(1-k)x-1=0,下列说法正确的是( )A.当k=0时,方程无解B.当k=1时,方程有一个实数解C.当k=-1时,方程有两个相等的实数解D.当k≠0时,方程总有两个不相等的实数解12.(2013·新疆)如果关于x的一元二次方程x2-4x+k=0有实数根,那么k的取值范围是.13.(2013·兰州)若4a-=0,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是.14.不解方程,判别下列方程根的情况:(1)3x2-5x-1=0;(2)x2-8x+16=0;(3)2x2+3x+4=0.15.已知关于x的方程2x2+kx-1=0.(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是-1,求另一个根及k值.挑战自我16.(2013·乐山)已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根.第三边BC的长为5,当△ABC是等腰三角形时,求k 的值.参考答案课前预习要点感知b2-4ac (1)两个不相等242b b aca-+-242b b aca--(2)两个相等-(3)没有≠0预习练习1-1 A1-2 D1-3 B当堂训练1.A2.A3.(1)Δ=(-2)2-4×3×(-1)=16>0,∴方程有两个不相等的实数根.(2)Δ=(-1)2-4×2×1=-7<0,∴方程没有实数根.(3)原方程可整理为x 2-2x+1=0,∴Δ=(-2)2-4×1×1=0,∴方程有两个相等的实数根.4.A5.C6.17.∵a=2,b=-(4k+1),c=2k 2-1,∴Δ=b 2-4ac=[-(4k+1)]2-4×2×(2k 2-1)=8k+9.(1)∵方程有两个不相等的实数根,∴Δ>0,即8k+9>0,解得k >98-. (2)∵方程有两个相等的实数根,∴Δ=0,即8k+9=0,解得k=-98-. (3)∵方程没有实数根,∴Δ<0,即8k+9<0,解得k<-98-. 课后作业8.A 9.C 10.A 11.C 12.k ≤413.k ≤4且k ≠014.(1)Δ=(-5)2-4×3×(-1)=37>0,∴方程有两个不相等的实数根.(2)Δ=(-8)2-4×1×16=0,∴方程有两个相等的实数根.(3)Δ=32-4×2×4=-23<0,∴方程没有实数根.15.(1)∵b 2-4ac=k 2-4×2×(-1)=k 2+8,无论k 取何值,k 2≥0,∴k 2+8>0,即b 2-4ac >0, ∴方程2x 2+kx-1=0有两个不相等的实数根.(2)由题意得2×(-1)2-k-1=0,∴k=1,∴原方程为2x 2+x-1=0.解得x 1=12,x 2=-1. 即k=1,方程的另一个根为x=12. 16.(1)∵Δ=(2k+1)2-4(k 2+k)=1>0,∴方程有两个不相等的实数根.(2)一元二次方程x 2-(2k+1)x+k 2+k=0的解为x=212k +,即x 1=k ,x 2=k+1. 当AB=k ,AC=k+1,且AB=BC 时,△ABC 是等腰三角形,则k=5;当AB=k ,AC=k+1,且AC=BC 时,△ABC 是等腰三角形,则k+1=5,解得k=4. 所以k 的值为5或4.。
根的判别式练习题(含答案解析)

根的判别式练习题一.填空题(共8小题)1.若一元二次方程2x2﹣4x+m=0有两个相等的实数根,则m=.2.已知关于x的一元二次方程mx2﹣3x+1=0有两个实数根,则m的取值范围是.3.已知关于x的方程x2+2(m﹣1)x+m2=0有实数根,则m的最大整数值是.4.等腰三角形ABC的三条边长分别为4,a,b,若关于x的一元二次方程x2+(a+2)x+6﹣a=0有两个相等的实数根,则△ABC的周长是.5.等腰三角形三边长分别为a、b、2,且a、b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为.6.定义:如果两个一元二次方程有且只有一个相同的实数根,我们称这两个方程为“友好方程”,如果关于x的一元二次方程x2﹣2x=0与x2+3x+m﹣1=0为“友好方程”,则m 的值.7.若△ABC的一条边BC的长为5,另两边AB、AC的长是关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0的两个实数根,当k=时,△ABC是等腰三角形;当k=时,△ABC是以BC为斜边的直角三角形.8.若关于x的方程ax2+4x﹣3=0有唯一实数解,则a的值为.二.解答题(共2小题)9.已知关于x的一元二次方程(m﹣1)x2+2x﹣1=0有两个不相等的实数根,求m的取值范围.10.已知关于x的方程mx2+(3m+1)x+3=0.(1)求证:不论m为任何实数,此方程总有实数根;(2)若方程mx2+(3m+1)x+3=0有两个不同的整数根,且m为正整数,求m的值.参考答案与试题解析一.填空题(共8小题)1.若一元二次方程2x2﹣4x+m=0有两个相等的实数根,则m=2.【分析】根据方程的系数结合根的判别式,即可得出Δ=16﹣8m=0,解之即可得出结论.【解答】解:∵一元二次方程2x2﹣4x+m=0有两个相等的实数根,∴Δ=16﹣8m=0,解得:m=2.∴m=2.故答案为:2.【点评】本题考查了根的判别式以及解一元一次方程,牢记“当Δ=0时,方程有两个相等实数根”是解题的关键.2.已知关于x的一元二次方程mx2﹣3x+1=0有两个实数根,则m的取值范围是m≤且m≠0.【分析】根据判别式的意义得到m≠0,b2﹣4ac=(﹣3)2﹣4m≥0,然后解不等式即可.【解答】解:∵关于x的一元二次方程mx2﹣3x+1=0有两个实数根,∴Δ=(﹣3)2﹣4m≥0且m≠0,解得:m≤且m≠0,故答案为:m≤且m≠0.【点评】本题主要考查根的判别式,掌握方程根的情况与判别式的关系是解题的关键.3.已知关于x的方程x2+2(m﹣1)x+m2=0有实数根,则m的最大整数值是0.【分析】根据方程有实数根可知△≥0,据此求出m的取值范围,从而得到m的最大整数值.【解答】解:∵关于x的方程x2+2(m﹣1)x+m2=0有实数根,∴△≥0,∴[2(m﹣1)]2﹣4m2≥0,∴﹣8m+4≥0,解得,m≤,故m的最大整数值是0.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.4.等腰三角形ABC的三条边长分别为4,a,b,若关于x的一元二次方程x2+(a+2)x+6﹣a=0有两个相等的实数根,则△ABC的周长是10.【分析】根据根的判别式的意义得到Δ=(a+2)2﹣4(6﹣a)=0,进而可由三角形三边关系定理确定等腰三角形的三边长,即可求得其周长.【解答】解:根据题意得Δ=(a+2)2﹣4(6﹣a)=0,解得a1=﹣10(负值舍去),a2=2,在等腰△ABC中,①4为底时,则b=a=2,∵2+2=4,∴不能组成三角形;②4为腰时,b=4,∵2+4>4,∴能组成三角形,∴△ABC的周长=4+4+2=10.综上可知,△ABC的周长是10.故答案为:10.【点评】此题考查了根的判别式、等腰三角形的性质及三角形三边关系定理;在求三角形的周长时,不能盲目的将三边相加,而应在三角形三边关系定理为前提条件下分类讨论,以免造成多解、错解.5.等腰三角形三边长分别为a、b、2,且a、b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为10.【分析】讨论:当a=2或b=2时,把x=2代入x2﹣6x+n﹣1=0可求出对应的n的值;当a=b时,根据判别式的意义得到Δ=(﹣6)2﹣4×(n﹣1)=0,解得n=10.【解答】解:当a=2或b=2时,把x=2代入x2﹣6x+n﹣1=0得4﹣12+n﹣1=0,解得n=9,此时方程的根为2和4,而2+2=4,故舍去;当a=b时,Δ=(﹣6)2﹣4×(n﹣1)=0,解得n=10,故答案为10.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac 有如下关系:当Δ>0时,方程有两个不相等的两个实数根;当Δ=0时,方程有两个相等的两个实数根;当Δ<0时,方程无实数根.也考查了等腰三角形的性质.6.定义:如果两个一元二次方程有且只有一个相同的实数根,我们称这两个方程为“友好方程”,如果关于x的一元二次方程x2﹣2x=0与x2+3x+m﹣1=0为“友好方程”,则m 的值1或﹣9..【分析】通过解方程x2﹣2x=0,可得出方程的根,分x=0为两方程相同的实数根或x =2为两方程相同的实数根两种情况考虑:①若x=0是两个方程相同的实数根,将x=0代入方程x2+3x+m﹣1=0中求出m的值,将m的值代入原方程解之可得出方程的解,对照后可得出m=1符合题意;②若x=2是两个方程相同的实数根,将x=2代入方程x2+3x+m﹣1=0中求出m的值,将m的值代入原方程解之可得出方程的解,对照后可得出m=2符合题意.综上此题得解.【解答】解:解方程x2﹣2x=0,得:x1=0,x2=2.①若x=0是两个方程相同的实数根.将x=0代入方程x2+3x+m﹣1=0,得:m﹣1=0,∴m=1,此时原方程为x2+3x=0,解得:x1=0,x2=﹣3,符合题意,∴m=1;②若x=2是两个方程相同的实数根.将x=2代入方程x2+3x+m﹣1=0,得:4+6+m﹣1=0,∴m=﹣9,此时原方程为x2+3x﹣10=0,解得:x1=2,x2=﹣5,符合题意,∴m=﹣9.综上所述:m的值为1或﹣9.故答案为:1或﹣9.【点评】本题考查了一元二次方程的解,代入x求出m的值是解题的关键.7.若△ABC的一条边BC的长为5,另两边AB、AC的长是关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0的两个实数根,当k=3或4时,△ABC是等腰三角形;当k=2时,△ABC是以BC为斜边的直角三角形.【分析】(1)此题要分两种情况进行讨论,若AB=BC=5时,把5代入方程即可求出k 的值,若AB=AC时,则Δ=0,列出关于k的方程,解出k的值即可;(2)若△ABC是以BC为斜边的直角三角形,则根据勾股定理,AB2+AC2=25,再根据根与系数的关系求得k的值即可.【解答】解:(1)因为Δ=b2﹣4ac=[﹣(2k+3)]2﹣4×1×(k2+3k+2)=1>0,所以方程总有两个不相等的实数根.若AB=BC=5时,5是方程x2﹣(2k+3)x+k2+3k+2=0的实数根,把x=5代入原方程,得k=3或k=4.∵无论k取何值,Δ>0,∴AB≠AC,故k只能取3或4;(2)根据根与系数的关系:AB+AC=2k+3,AB•AC=k2+3k+2,则AB2+AC2=(AB+AC)2﹣2AB•AC=25,即(2k+3)2﹣2(k2+3k+2)=25,解得k=2或k=﹣5.根据三角形的边长必须是正数,因而两根的和2k+3>0且两根的积k2+3k+2>0,解得k >﹣1,∴k=2.故答案为:3或4;2.【点评】本题主要考查了一元二次方程根与系数的关系和根的判别式,一元二次方程根的情况与判别式△的关系是:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.在解题的过程中注意不要忽视三角形的边长是正数这一条件8.若关于x的方程ax2+4x﹣3=0有唯一实数解,则a的值为0.【分析】根据关于x的方程ax2+4x﹣3=0有唯一实数解,可知是一元一次方程,依此求出a的值.【解答】解:∵关于x的方程ax2+4x﹣3=0有唯一实数解,∴a=0.故答案为:0.【点评】此题主要考查了根的判别式,关键是掌握Δ>0时,方程有两个不相等的实数根,Δ=0时,方程有两个相等的实数根,Δ<0时,方程没有实数根.二.解答题(共2小题)9.已知关于x的一元二次方程(m﹣1)x2+2x﹣1=0有两个不相等的实数根,求m的取值范围.【分析】根据判别式的意义得到Δ=22﹣4(m﹣1)×(﹣1)>0,然后解不等式即可.【解答】解:根据题意得Δ=22﹣4(m﹣1)×(﹣1)>0,解得m>0,且m﹣1≠0,解得:m≠1,所以m>0且m≠1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.也考查了一元二次方程的定义.10.已知关于x的方程mx2+(3m+1)x+3=0.(1)求证:不论m为任何实数,此方程总有实数根;(2)若方程mx2+(3m+1)x+3=0有两个不同的整数根,且m为正整数,求m的值.【分析】(1)分类讨论:当m=0时,方程变形一元一次方程,有一个实数解;当m≠0时,方程为一元二次方程,再进行判别式得到Δ=(3m﹣1)2,易得△≥0,故判别式的意义得到方程有两个实数根,然后综合两种情况得到不论m为任何实数,此方程总有实数根;(2)先利用求根公式得到x1=﹣3,x2=﹣,再利用方程有两个不同的整数根,且m 为正整数和整数的整除性易得m=1.【解答】(1)证明:当m=0时,方程变形为x+3=0,解得x=﹣3;当m≠0时,Δ=(3m+1)2﹣4m•3=9m2﹣6m+1=(3m﹣1)2,∵(3m﹣1)2,≥0,即△≥0,∴此时方程有两个实数根,所以不论m为任何实数,此方程总有实数根;(2)解:根据题意得m≠0且Δ=(3m+1)2﹣4m•3=(3m﹣1)2>0,x=,所以x1=﹣3,x2=﹣,∵方程有两个不同的整数根,且m为正整数,∴m=1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.也考查了一元二次方程的定义.。
一元二次方程根的判别式基础练习30题含详细答案

(3)设该方程的两个实数根为x1,x2,若x12+x22+m(x1+x2)=m2+1,求m的值.
21.已知关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有两个不相等的实数根.
(1)求实数k的取值范围;
(2)若方程的两根x1,x2满足x12+x22=16,求k的值.
【点睛】
此题主要考查一元二次方程根的情况,解题的关键是熟知根的判别式特点.
5.B
【分析】
先根据一元二次方程的解的定义得到α2+2α﹣2015=0,则α2+2α=2015,于是α2+3α+β可化为2015+α+β,再利用根与系数的关系得到α+β=﹣2,然后利用整体代入的方法计算.
【详解】
解:∵α是方程x2+2x﹣2015=0的根,
16.若关于x的一元二次方程kx2-4x+3=0有实数根,则k的取值范围是_____.
三、解答题
17.关于x的一元二次方程x2+3x﹣k=0有两个不相等的实数根.
(1)求k的取值范围.
(2)若x1+2x2=3,求|x1﹣x2|的值.
18.已知关于x的方程x2+(2m﹣1)x+m2=0有实数根.
(1)若方程的一个根为1,求m的值;
7.D
【分析】
要判断所给方程是有两个不相等的实数根,只要找出方程的判别式,根据判别式的正负情况即可作出判断.有两个不相等的实数根的方程,即判别式的值大于0的一元二次方程.
【详解】
解:A、x2+1=0中 ,没有实数根,故本选项错误;
一元二次方程的根的判别式练习题

一元二次方程的根的判别式一、新课预习关于x的一元二次方程ax2+bx+c=0(a≠0)的根的判别式及求根公式.(1)b2-4ac>0⇔方程有_______个_________的实数根,x=_______________.(2)b2-4ac=0⇔方程有________个________的实数根,x1=x2=______________.(3)b2-4ac<0⇔方程__________实数根.二、例变讲练例1 方程3x2-2x-1=0的根的判别式为b2-4ac=16,此方程有两个__________的实数根.变1 下列关于x的一元二次方程中,有两个不相等的实数根的方程是( )A.x2+4=0 B.4x2-4x+1=0 C.x2+x+3=0 D.x2+2x-1=0例2 已知关于x的方程x2-3x+2-m2=0.(1)求方程的根的判别式(用含m的代数式表示);(2)说明不论m取何值,方程总有两个不相等的实数根.变2 已知关于x的一元二次方程x2+(m-3)x-3m=0.求证:无论实数m取何值,方程总有两个实数根.例3 若一元二次方程x2+2x-m=0有实数解,则m的取值范围是______________.变3 已知关于x的方程x2-2x+m=0没有实数根,则m的取值范围是__________.例4 若关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根,则k的取值范围是_______________.变4 若关于x的一元二次方程(k-1)x2+4x+1=0有实数根,则k的取值范围是__________三、课堂训练一级1. 若关于x的方程x2-4x-c=0的根的判别式Δ=4,则c=_________.2. 下列方程中有两个不相等的实数根的方程是( )A.(x-1)2=0 B.x2+2x-19=0 C.x2+4=0 D.x2+x+1=03. 如果关于x的一元二次方程x2+4x-m=0没有实数根,那么m的取值范围是_________.4. 若关于x的方程x2-x-k=0有两个相等的实数根,则k=______,方程的两根为x=x=_____________5. 若关于x的方程x2+x-94a=0有两个不相等的实数根,则实数a的取值范围是__________.6. 已知关于x的一元二次方程(m-1)x2-2x+1=0有实数根,则m的取值范围是( ) A.m≤2 B.m≥2C.m≤2且m≠1 D.m≥-2且m≠17. 若关于x的一元二次方程(k-1)x2-4x-5=0没有实数根,则k的取值范围是_________.8. 求证:不论m为任何实数,关于x的一元二次方程x2+(4m+1)x+2m-1=0总有两个不相等的实数根.四、能力提升9. 已知关于x的一元二次方程x2-(m+2)x+2m=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求出以此两根为边长的直角三角形的周长.10. 等腰三角形的边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,求n的值.第7课时 一元二次方程的根的判别式一、新课预习关于x 的一元二次方程ax 2+bx +c =0(a≠0)的根的判别式及求根公式.(1)b 2-4ac >0⇔方程有_______个_________的实数根,x =_______________. 两,不相等,-b±b2-4ac 2a(2)b 2-4ac =0⇔方程有________个________的实数根,x 1=x 2=______________.(3)b 2-4ac <0⇔方程__________实数根.两,相等,-b 2a,无 二、例变讲练例1 方程3x 2-2x -1=0的根的判别式为b2-4ac =16,此方程有两个__________的实数根.不相等变1 下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A .x 2+4=0B .4x 2-4x +1=0C .x 2+x +3=0D .x 2+2x -1=0 D例2 已知关于x 的方程x 2-3x +2-m 2=0.(1)求方程的根的判别式(用含m 的代数式表示);解:b 2-4ac =4m 2+1;(2)说明不论m 取何值,方程总有两个不相等的实数根.解:b 2-4ac =4m 2+1≥1>0,∴无论m 取何值,方程总有两个不相等的实数根.变2 已知关于x 的一元二次方程x 2+(m -3)x -3m =0.求证:无论实数m 取何值,方程总有两个实数根.解:Δ=(m -3)2-4×(-3m)=m 2-6m +9+12m=m 2+6m +9=(m +3)2,∵无论实数m 取何值,总有(m +3)2≥0,即Δ≥0,∴无论实数m 取何值,方程总有两个实数根.例3 若一元二次方程x 2+2x -m =0有实数解,则m 的取值范围是______________.m≥-1变3 已知关于x 的方程x 2-2x +m =0没有实数根,则m 的取值范围是__________. m>1例4 若关于x 的一元二次方程kx 2+2x -1=0有两个不相等的实数根,则k 的取值范围是_______________.k>-1且k≠0变4 若关于x 的一元二次方程(k -1)x 2+4x +1=0有实数根,则k 的取值范围是__________,k≤5且k≠1三、课堂训练一级1. 若关于x 的方程x 2-4x -c =0的根的判别式Δ=4,则c =_________.-32. 下列方程中有两个不相等的实数根的方程是( )A .(x -1)2=0B .x 2+2x -19=0C .x 2+4=0D .x 2+x +1=0B 3. 如果关于x 的一元二次方程x 2+4x -m =0没有实数根,那么m 的取值范围是_________.m<-44. 若关于x 的方程x 2-x -k =0有两个相等的实数根,则k=______,方程的两根为 x =x=_____________-14, x 1=x 2=125. 若关于x 的方程x 2+x -94a =0有两个不相等的实数根,则实数a 的取值范围是__________.a>-196. 已知关于x 的一元二次方程(m -1)x 2-2x +1=0有实数根,则m 的取值范围是( )A .m≤2B .m≥2C .m≤2且m≠1D .m≥-2且m≠1C7. 若关于x 的一元二次方程(k -1)x2-4x -5=0没有实数根,则k 的取值范围是_________.k <158. 求证:不论m 为任何实数,关于x 的一元二次方程x 2+(4m +1)x +2m -1=0总有两个不相等的实数根.证明:根据题意得:Δ=(4m +1)2-4(2m -1)=16m 2+8m +1-8m +4=16m 2+5,∵m2≥0,∴16m 2+5>0,即Δ>0,∴不论m 为任何实数,原方程总有两个不相等的实数根.四、能力提升9. 已知关于x 的一元二次方程x 2-(m +2)x +2m =0.(1)求证:不论m 为何值,该方程总有两个实数根;证明:Δ=[-(m +2)]2-4×1×2m =m 2-4m +4=(m -2)2.∵(m -2)2≥0,即Δ≥0,∴不论m 为何值,该方程总有两个实数根.(2)若此方程的一个根是1,请求出方程的另一个根,并求出以此两根为边长的直角三角形的周长.解:将x =1代入原方程,得:1-(m +2)+2m =0,∴m =1,∴方程的另一个根为2×11=2. 当1,2为直角边长时,斜边长=12+22=5,∴围成直角三角形的周长=1+2+5=3+5;当2为斜边长时,另一直角边长=22-12=3,∴围成直角三角形的周长=1+2+3=3+ 3.综上所述:以此两根为边长的直角三角形的周长为3+5或3+ 3.10. 等腰三角形的边长分别为a ,b ,2,且a ,b 是关于x 的一元二次方程x 2-6x +n -1=0的两根,求n 的值.解:∵三角形是等腰三角形,∴①a =2或b =2,②a =b 两种情况,①当a =2或b =2时,∵a ,b 是关于x 的一元二次方程x2-6x +n -1=0的两根,∴x =2,把x =2代入x 2-6x +n -1=0得22-6×2+n -1=0,解得:n =9,当n =9时,方程的两根是2和4,而2,4,2不能组成三角形,故n =9不合题意,②当a =b 时,方程x2-6x +n -1=0有两个相等的实数根,∴Δ=(-6)2-4(n -1)=0,解得:n =10,综上所述:n =10.。
一元二次方程之判别式专项练习60题(有答案)ok

一元二次方程之判别式专项练习60题(有答案)ok1.1) 对于方程2x-5x-a=0,根据一元二次方程的求根公式,判别式为Δ=25+8a,要使方程有两个不相等的实数根,即Δ>0,所以25+8a>0,解得a>-25/8,所以a的取值范围为a>-25/8.2) 当方程的两个根互为倒数时,根据一元二次方程的求根公式,有x1x2=-a/2,又因为x1x2=1/x1,所以x1^2=-a/2,代入原方程得2x-5x-2x1^2=0,解得x1=±√(5/2),代入x1x2=-a/2得a=5.2.1) 将方程展开得x^2-5x+6-p=0,根据一元二次方程的求根公式,判别式为Δ=25-24+4p=1+4p,要使方程有两个不相等的实数根,即Δ>0,所以1+4p>0,解得p>-1/4,所以p的取值范围为p>-1/4.2) 当p=2时,代入方程得(x-3)(x-2)=2,展开得x^2-5x+4=0,根据一元二次方程的求根公式,解得x1=1,x2=4.3.将方程化简得2kx+k-2=0,由于方程有两个相等的实数根,所以判别式Δ=0,解得k=1,代入方程得3x-1=0,解得x=1/3.4.1) 将方程化简得x^2+(4-a)x+3=0,根据一元二次方程的求根公式,判别式为Δ=(4-a)^2-12,要使方程有实数根,即Δ≥0,所以(4-a)^2-12≥0,解得a∈(-∞,4-2√3]∪[4+2√3,+∞)。
2) 当a=4-2√3时,代入方程得x^2+(4-4+2√3)x+3=0,解得x1=√3-1,x2=-(√3+1)。
5.1) 将方程化简得4x^2-4mx+m^2-4m+1=0,根据一元二次方程的求根公式,判别式为Δ=16m-4m^2,要使方程有两个不相等的实数根,即Δ>0,所以m∈(-∞,0)∪(1,4]。
2) 当m=4时,代入方程得4x^2-16x+17=0,根据一元二次方程的求根公式,解得x1=(4-√3)/2,x2=(4+√3)/2.6.1) 将方程化简得4x^2-3x-m=0,由于方程有两个不相等的实数根,所以判别式Δ=9+16m>0,解得m>-9/16,所以m的最小整数值为-1.2) 当m=-1时,代入方程得4x^2-3x+1=0,根据一元二次方程的求根公式,解得x1=1/4,x2=1.7.根据一元二次方程的求根公式,判别式Δ=25-12m,要使判别式为1,即Δ=1,解得m=2或m=1/3.当m=2时,代入方程得2x^2-10x+3=0,根据一元二次方程的求根公式,解得x1=(5-√13)/2,x2=(5+√13)/2.当m=1/3时,代入方程得x^2-5/3x+1=0,根据一元二次方程的求根公式,解得x1=(5-√5)/6,x2=(5+√5)/6.8.删除此段落。
完整版)一元二次方程的根的判别式练习题

完整版)一元二次方程的根的判别式练习题1.方程2x+3x-k=0的根的判别式为b^2-4ac,即(3+2)^2-4(2)(-k)=k+13,当k>-13时,方程有实根。
2.关于x的方程kx+(2k+1)x-k+1=0可以化简为(3k+1)x-k+1=0,根的判别式为(2k+1)^2-4(k)(-k+1)=8k^2+8k+1,当k 不等于0时,方程有实根。
3.方程x+2x+m=0有两个相等实数根,即b^2-4ac=0,即4-4m=0,解得m=1.4.关于x的方程(k+1)x-2kx+(k+4)=0可以化简为(x-k)(x+k+4)=0,根的情况为一个实根为-k,一个实根为k+4.5.当m=-1时,关于x的方程3x-2(3m+1)x+3m-1=0化简为3x+7x-1=0,有两个不相等的实数根。
6.将2x(ax-4)-x+6=0化简为2ax^2-(8+a)x+6=0,根的判别式为(8+a)^2-4(2a)(6)=a^2+16a-23,要使方程没有实数根,根的判别式小于0,即a的最小整数值为-15.7.方程mx^2+(2m-1)x-2=0的根的判别式为(2m-1)^2-4(m)(-2)=16m+1,解得m=1或m=-1/4,但由于题目中要求判别式的值等于4,所以m=-1/4.8.将(x-α)(x-β)+cx=0展开化简得x^2-(α+β)x+αβ+cx=0,根据韦达定理,α+β=-c,αβ=c,所以方程的两个根为α和β。
9.1) 当a>0时,判别式为4a^4-4a^3,即a^3>1时有两个实数根,否则无实数根。
2) 判别式为4k^2-4(k^2+4),即-16,所以方程无实数根。
10.将方程x+2(m+1)x+3m+4mn+4n+2=0化简为x+(2m+2)x+(3m+4mn+2)=0,根的判别式为(2m+2)^2-4(3m+4mn+2)=4(m-n+1)^2-8,要使方程有实数根,根的判别式大于等于0,即(m-n+1)^2>=2,解得m-n=-1+sqrt(2),即m=n-1+sqrt(2)。
一元二次方程根的判别式练习题

一元二次方程根的判别式1、解一元二次方程(1)y 2+2y -4=0 (2)y 2+2y +4=0;2、概括:并不是所有一元二次方程都有实数解,满足什么样的条件才会有实数解呢?我们在一元二次方程的配方过程中得到(x +ab 2)2=2244a ac b -. (1) 发现只有当 ≥0时,才能直接开平方,得22442aac b a b x -±=+. 也就是说,一元二次方程ax 2+bx +c =0(a ≠0)只有当系数a 、b 、c 满足条件 时才有实数根.观察(1)式我们不难发现一元二次方程的根有三种情况:① 当b 2-4ac 0时,方程有两个不相等的实数根;② 当b 2-4ac 0时,方程有两个相等的实数要x 1=x 2=ab 2-; ③ 当b 2-4ac 0时,方程没有实数根.这里的 叫做一元二次方程的根的判别式,通常记作:Δ=3、用它可以直接判断一个一元二次方程是否有实数根。
例1:判断一元二次方程x 2-x +1=0是否有实数根由b 2-4ac=0(填< 、>、 = )所以它 (有、没有)实数根。
4、可以应用判别式来确实方程中的待定系数,例如:例2:m 取什么值时,关于x 的方程2x 2-(m +2)x +2m -2=0有两个相等的实数根?求出这时方程的根.解:因为方程有两个相等的实数根,所以Δ 0,即Δ== 0解这个关于m的方程得练习1、用判别式直接判断一元二次方程是否有实数根。
(1)y2+y-4=0 (2)y2+y+4=0;(3)y2-y-4=0 (4)y2-y+4=0;2、m取什么值时,关于x的方程2x2-4mx+2m2-m=0(1)有两个相等的实数根?(2)有两个不相等的实数根?(3)没有实数根?3、m取什么值时,关于x的方程mx2-(2m-1)x+m-2=0(1)有两个相等的实数根?(2)有两个不相等的实数根?(3)没有实数根?还有另外的情况吗?一元二次方程根与系数的关系解下列方程,将得到的解填入下面的表格中,你发现表格中两个解的和与积和原来的方程有什么联系?(1)x2-2x=0;(2)x2+3x-4=0;(3)x2-5x+6=0.探索一般地,对于关于x的方程x2+px+q=0(p,q为已知常数,p2-4q≥0),用求根公式求出它的两个根x1、x2,能得出以下结果:太妙了!我想知道为什么?x 1+x 2= 即:两根之和等于x 1•x 2= 即:两根之积等于由一元二次方程ax 2+bx +c =0的求根公式知1x =.22b x a -= 12x x +==12.x x =练习1、(1)x 2-x -4=0 (2)x 2-4x+1=0;12x x += 12x x +=12.x x = 12.x x =2、已知关于x 的方程x 2-px +q =0的两个根是0和-3,求p 和 q 的值;3、已知方程x 2+k x=0的一个根是-1,求k 的值及另一个根.4、如果2x 2- m x -4=0的两个根分别是1x 、2x ,且1211x x +=2,那么实数m 的值是?5、如果2x 2- 5x -4=0的两个根分别是α、β,那么α+β+αβ=?5、已知关于x的方程x2-6x+p2-2p+5=0的一个根是2,求方程的另一个根和p的值.和同学讨论一下,上述两个问题有几种解法?1 2 3 4 5 6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程的根的判别式练习题
一、填空题
1.若方程ax2+bx+c=0(a≠0),则根的判别式为_________;当_________时,方程有两个不相等的实数根,当_______时,方程有两个相等的实数根,则_______时,方程无实数根.
2.利用根的判别式,判断方程根的情况,首先将方程(x-2)(x-5)-16=0化成一般形式是_________,再代入判别式为_________,则方程根的情况___________.
3.不解方程,判断方程根的情况:
(1) 4p(p-1)-3=0.△_________,则方程____________:
(2) △_________,则方程__________________.
(3) △___________,则方程_________________.
4.当k_________时,方程x2-2(k+1)x+(k2-2)=0有两个不相等的实数根.
5.当m________时,方程x2-(m+1)x+4=0有两个相等的实数根.
6.如果方程x2-2x+=0没有实数根,那么c的取值是__________.
二、解答题
7.已知关于x的方程(m2-2)x2-2(m+1)x+1=0有两个不相等的实数根,求m的取值范围.
8.证明关于x的方程x2+(k-1)x+(k-3)=0有两个不相等的实数根.
9.已知关于x的方程a(1-x2)+2bx+c(1+x2)=0有两个相等的实数根,且a,b,c 是△ABC的三条边,判断△ABC的形状.
三、选择题
10.关于x的方程x2-2有两个不相等的实数根,则k的取值范围是(). (A)k≥0(B)k>0 (C)k>-1 (D)k≥-1
11.关于x的方程mx2-mx+1=0有两个相等的实数根,则m的取值范围是(). (A)m=0 (B)m=7 (C)m=4 (D)m>4且m≠0
12.若关于x的二次方程2x(kx-4)-x2+6=0无实数根,则k的最小整数应是().
(A)-1 (B)2 (C)3 (D)4
13.关于x的方程nx2-(2n-1)x+n=0有两个实数根,则n的值为( ).
(A)n≤(B)≤且n≠0(C)n≥-(D)n≥-或n≠0
14.若关于y的方程y2-19y+k=0有两个相等的实数根,那么方程y2+19y-k=0的根的情况是( ).
(A)有两个不相等的实数根(B)有两个相等的实数根
(C)无实数根(D)无法判定
四、填空题
15.若方程组有一个实数根,则m值为__________.
16.已知方程x2-有两个相等的实数根,求锐角a=_________.
五、解答题
17.判断关于y的方程y2+3(m-1)y+2m2-4m+=0的根的情况.
18.当m>3时,讨论关于x的方程(m-5)x2-2(m+2)x+m=0的实数根的个数. 19.关于x的方程x2+3x+a=0中有整数解,a为非负整数,求方程的整数解.
20.当m=1时,求证关于x的方程(k-3)x2+kmx-m2+6m-4=0有实数根.。