汽车发动机怠速控制中的鲁棒控制方法研究
一种功率分流系统发动机起动μ综合鲁棒控制方法和装置[发明专利]
![一种功率分流系统发动机起动μ综合鲁棒控制方法和装置[发明专利]](https://img.taocdn.com/s3/m/21d6b43e3186bceb19e8bbfe.png)
专利名称:一种功率分流系统发动机起动μ综合鲁棒控制方法和装置
专利类型:发明专利
发明人:赵治国,范佳琦,李豪迪,陈溢,付靖
申请号:CN202010327854.6
申请日:20200423
公开号:CN111605541A
公开日:
20200901
专利内容由知识产权出版社提供
摘要:本发明涉及一种功率分流系统发动机起动μ综合鲁棒控制方法和装置,用于功率分流混合动力系统的发动机起动控制,方法包括以下步骤:第一步骤:采用动态规划求解发动机的最优拖转转速曲线;第二步骤:估计变速箱输出端参考转速曲线;第三步骤:通过预建立鲁棒控制闭环系统,对发动机的最优拖转转速曲线和变速箱输出端参考转速曲线进行跟踪,获取电机ISG和电机TM的期望转矩;第四步骤:根据电机ISG和电机TM的期望转矩,控制电机ISG和电机TM,实现发动机的起动。
与现有技术相比,本发明可有效实现发动机快速起动并提升驾驶平顺性,保证起动过程系统的鲁棒性及鲁棒稳定性,且降低了鲁棒控制的保守性。
申请人:同济大学
地址:200092 上海市杨浦区四平路1239号
国籍:CN
代理机构:上海科盛知识产权代理有限公司
代理人:王怀瑜
更多信息请下载全文后查看。
控制系统中的鲁棒控制算法研究

控制系统中的鲁棒控制算法研究鲁棒控制是控制系统中一种重要的控制算法,旨在使系统对外界扰动和参数变化具有一定的抵抗能力,从而保持系统的稳定性和性能指标。
鲁棒控制算法研究的主要目标是设计出能够使控制系统具备鲁棒性的控制器,在各种不确定因素影响下依然可以实现良好的控制效果。
鲁棒控制算法的研究诞生于上世纪80年代,是为了解决传统控制算法在面对不确定性时性能下降的问题。
传统的控制算法往往基于系统的精确模型,但现实中往往存在模型不准确、参数变化等问题,从而导致传统控制算法在实际应用中表现不佳。
鲁棒控制算法的出现填补了这一空白,使控制系统具备更好的适应性和鲁棒性。
在鲁棒控制算法的研究中,最具代表性的算法是H∞控制和μ合成控制。
H∞控制是一种基于最优控制理论的鲁棒控制方法,其主要思想是将系统的控制误差和鲁棒性约束综合考虑,通过最小化系统的最坏情况下的性能损失来设计控制器。
H∞控制在控制系统中广泛应用,尤其在航空航天、汽车等工程领域中具有重要意义。
与H∞控制不同,μ合成控制是一种基于频域方法的鲁棒控制算法。
μ合成控制的核心是利用鲁棒稳定性理论和鲁棒性约束函数来构造控制器,通过定义合适的性能指标来优化系统的鲁棒性。
μ合成控制适用于各种不确定性和复杂动态特性的控制系统,可以在设计阶段充分考虑系统的鲁棒性。
除了H∞控制和μ合成控制,还有其他一些鲁棒控制算法如小波分析控制、自适应控制等。
这些算法通过不同的方式实现系统的鲁棒控制,并在不同的应用场景中发挥作用。
例如,小波分析控制基于小波变换理论,将小波分析与控制策略相结合,可以对非线性和时变系统进行鲁棒控制;自适应控制则是利用系统的在线辨识能力,通过不断调整控制器参数来适应系统的变化情况。
在控制系统中,鲁棒控制算法的研究和应用不仅可以提高系统的稳定性和鲁棒性,还可以提高系统的性能和适应性。
鲁棒控制算法已经在许多领域得到应用,如机械控制、电力系统、化工过程控制等。
通过鲁棒控制算法的研究和应用,可以提高控制系统的抗干扰能力、适应性能力和稳定性,从而更好地满足实际工程应用的需求。
控制系统的鲁棒性分析与优化

控制系统的鲁棒性分析与优化为什么要关注控制系统的鲁棒性?控制系统的鲁棒性是指系统对于各种不确定性因素的响应能力,例如参数变化、噪声干扰、外部扰动等。
在实际工程应用中,不可避免地存在各种不确定性因素,因此控制系统的鲁棒性成为了一个至关重要的问题。
一个具备良好鲁棒性的控制系统可以更加稳定、精准地执行控制任务,避免系统失控或产生较大的误差,保证了安全稳定的工程运行。
常见的鲁棒性分析与控制方法鲁棒性分析主要是通过数学模型对系统的不确定性因素进行建模和分析,从而确定系统的稳定性、稳定域和敏感度等指标。
常见的鲁棒性分析方法包括Bode图法、根轨迹法、小波分析法等。
这些方法主要是通过对系统的传递函数进行分析,得出系统的稳定性和鲁棒性大小等指标,从而指导系统的控制方法选择和优化。
控制方法主要包括模型预测控制、自适应控制、滑模控制等。
这些方法是通过对控制器的设计和调整来实现对系统鲁棒性的优化和抑制不确定性的影响。
以滑模控制为例,滑模控制是一种适用于非线性、多变量、复杂和不确定的系统的控制方法,它通过建立“滑域”来实现对系统的控制。
滑模控制可以根据系统的鲁棒性要求,灵活调节控制参数、扰动抑制参数等,从而实现对系统的鲁棒性优化。
如何优化控制系统的鲁棒性?优化控制系统的鲁棒性需要针对不同系统情况和鲁棒性要求进行分析和选择适合的方法。
一般而言,可以从以下几个方面进行优化:1. 建立系统模型:在进行鲁棒性分析和控制优化之前,首先需要建立系统的数学模型。
建立准确的系统模型可以更好地反映实际系统的动态特性和不确定性因素,为鲁棒性分析提供重要的依据。
2. 分析系统的稳定性和鲁棒性:通过Bode图、根轨迹等方法,分析系统的稳定性和鲁棒性情况,评估系统对不确定性因素的响应能力并找出系统弱点。
3. 选择合适的控制方法:根据系统的鲁棒性要求和分析结果,选择合适的控制方法进行鲁棒性优化。
例如,在需要对非线性等复杂系统进行鲁棒性优化时,可采用非线性控制方法或者滑模控制等方法。
自动化控制系统的鲁棒优化设计方法研究现状分析论文素材

自动化控制系统的鲁棒优化设计方法研究现状分析论文素材自动化控制系统的鲁棒优化设计方法研究现状分析自动化控制系统是现代工业生产中不可或缺的一部分。
通过使用控制算法、传感器和执行器,自动化控制系统能够实现生产流程的自动化,并提高生产效率和质量。
在设计自动化控制系统时,鲁棒优化是一个重要的考虑因素。
本文将对自动化控制系统的鲁棒优化设计方法进行研究现状分析。
一、鲁棒优化概述鲁棒优化是指在面对系统不确定性和外部干扰时保持控制系统的稳定性和性能。
传统的优化方法往往是基于系统准确的数学模型,但实际的控制系统常常存在模型不确定性和外部干扰,因此,需要使用鲁棒优化方法来提高控制系统的稳定性和鲁棒性。
二、鲁棒优化设计方法1. 参数整定方法鲁棒参数整定方法是一种基于系统模型的优化方法。
通过对系统模型进行分析和建模,确定系统参数的取值范围,并通过试探法或迭代算法来优化系统参数。
常见的鲁棒参数整定方法有H∞优化、线性矩阵不等式(LMI)方法等。
2. 鲁棒控制设计方法鲁棒控制设计方法是通过引入鲁棒控制器来提高控制系统的性能和鲁棒性。
常见的鲁棒控制器设计方法有H∞控制、μ合成控制等。
这些方法通过对系统模型进行描述,并结合鲁棒控制理论,设计出满足性能指标和鲁棒性要求的控制器。
3. 鲁棒优化方法在非线性系统中的应用非线性系统的优化设计涉及到非线性系统的建模和分析,以及非线性控制器的设计。
鲁棒优化方法在非线性系统中的应用主要是通过引入鲁棒控制理论,将非线性系统转化为具有线性结构的模型,并利用线性控制理论进行设计。
三、鲁棒优化设计方法的应用领域鲁棒优化设计方法在各个领域都具有重要的应用价值。
例如,在工业生产过程中,自动化控制系统的鲁棒优化设计可以提高生产效率和产品质量;在飞行器控制系统中,鲁棒优化设计可以提高系统的稳定性和安全性;在机器人控制系统中,鲁棒优化设计可以提高机器人的灵活性和适应性。
四、研究现状分析目前,国内外学者在自动化控制系统的鲁棒优化设计方法方面做了大量的研究工作。
鲁棒控制方法

鲁棒控制方法鲁棒控制是一种能够在不确定因素存在的情况下保持系统稳定性和高性能的控制方法,能够有效地应对干扰、模型不确定性、测量误差等问题。
在工业自动化、航空航天、电力电子、汽车控制等众多领域都得到了广泛应用。
下面将介绍几种常见的鲁棒控制方法。
一、H∞控制方法H∞控制是一种基于H∞范数的优化设计方法,在保证系统稳定的前提下,同时最小化输出误差对系统控制的敏感性。
在应对不确定因素和干扰时,H∞控制具有良好的性能。
其基本思想是将控制系统中的不确定因素和干扰转化为一个被授权的、有界的、外部加入控制系统的信号,从而获得一个与系统扰动和不确定因素有关的李亚普诺夫函数,通过最小化该函数构建H∞控制器。
H2控制是一种线性鲁棒控制方法,通过最小化系统输出误差的均方值来保证系统控制的鲁棒性。
对于有利于系统稳定的外部干扰和参数扰动,可以采用H2控制增强系统鲁棒性。
该方法常用于工业自动化、电力电子、通信网络等领域。
三、μ-合成方法μ-合成方法是一种基于μ分析技术的鲁棒控制方法。
利用复杂的控制算法来确保系统的鲁棒性较强。
μ-合成方法的基本思想是将控制器的参数综合考虑到控制系统的所有可能变化,以及控制系统的不确定性和干扰,从而建立一个更加鲁棒的系统。
该方法的优点是具有较高的控制精度和鲁棒性,同时也适合于复杂的多变量系统。
四、经验模态分解鲁棒控制方法经验模态分解(EMD)是一种对非线性、非平稳数据进行处理的信号分析方法。
EMD鲁棒控制方法利用EMD分析信号的自适应性和鲁棒性,将系统的状态之间的相互作用显式地考虑在内,使控制器在不断改善的系统控制下不断优化控制效果,从而达到较好的控制效果和较高的鲁棒性。
综上所述,鲁棒控制方法可以有效地通过考虑控制系统中的不确定因素和干扰来提高系统的控制精度和鲁棒性。
选择合适的鲁棒控制方法取决于具体情况,需要根据控制目标、系统模型、预期性能和鲁棒性需求等因素进行选择。
控制系统的鲁棒优化控制方法

控制系统的鲁棒优化控制方法在现代工业领域中,控制系统起着至关重要的作用,用于实现对工艺过程的自动化控制和优化。
然而,由于工艺过程本身的复杂性和不确定性,传统的控制方法常常无法满足系统的要求。
因此,鲁棒优化控制方法应运而生,旨在提高系统的控制性能和稳定性。
本文将介绍控制系统的鲁棒优化控制方法及其应用。
一、鲁棒优化控制的基本概念鲁棒优化控制是一种针对不确定系统的自适应控制方法,其目标是在面对参数变化、环境扰动和不确定模型时,仍能实现系统的稳定性和优化性能。
鲁棒优化控制方法通过在控制器中引入鲁棒性设计和优化算法,以提高系统对不确定性的适应能力,并优化系统的控制性能。
二、鲁棒优化控制方法的原理及应用1. 鲁棒性设计鲁棒性设计是控制器设计中的关键环节,通过引入鲁棒性方法来抵抗系统模型不确定性。
鲁棒性设计常采用H∞控制理论、μ合成等方法,以提高系统的稳定性和鲁棒性能。
通过这些方法,控制器能够对参数扰动和未建模动态进行补偿,从而使系统具有良好的鲁棒性。
2. 优化算法优化算法在鲁棒优化控制中起到了重要的作用。
常用的优化算法包括PID控制器参数整定、遗传算法、模糊控制等。
通过这些算法的应用,可以使系统的控制性能得到改善,并且能够灵活应对不同的工况变化。
3. 应用领域鲁棒优化控制方法在许多领域都有广泛的应用,例如电力系统、化工过程、机械控制等。
以电力系统为例,由于电力系统的复杂性和不确定性,传统的控制方法往往无法满足实际需求。
而鲁棒优化控制方法通过引入鲁棒性设计和优化算法,能够实现对电力系统的稳定控制和优化运行。
三、鲁棒优化控制方法的优势与挑战1. 优势鲁棒优化控制方法能够有效应对系统的不确定性和复杂性,具有良好的鲁棒性和适应性。
通过引入鲁棒性设计和优化算法,能够提高系统的控制性能和稳定性。
2. 挑战鲁棒优化控制方法的应用还面临着一些挑战。
首先,鲁棒优化控制方法需要对系统进行建模和参数估计,这对于复杂系统来说是一项困难的任务。
自动控制系统中的鲁棒控制方法研究

自动控制系统中的鲁棒控制方法研究鲁棒控制方法是自动控制系统中一种重要的控制技术,旨在提高系统的稳定性和性能。
鲁棒控制方法可以有效地处理模型不确定性、外部扰动和控制器参数变化等问题,使得系统能够在各种不确定条件下保持稳定性和良好的性能。
1. 引言自动控制系统是指通过测量系统的状态变量,并根据预定的控制策略对系统进行调节,以使系统的输出满足一定的要求。
然而,现实中的系统往往受到各种不确定因素的影响,如模型误差、外部扰动、传感器噪声等。
这些不确定因素会导致控制系统的性能下降甚至失效。
因此,鲁棒控制方法的研究变得尤为重要,它能够提高控制系统的稳定性、鲁棒性和鲁棒性。
2. 鲁棒控制的基本概念鲁棒控制是指在不确定系统条件下设计控制器的方法。
其目标是确保系统在不确定性条件下依然能够满足性能要求。
鲁棒控制方法的基本概念包括不确定性建模、鲁棒稳定性和鲁棒性能等。
2.1 不确定性建模在鲁棒控制中,对不确定性的建模是非常关键的一步。
不确定性可以来源于多个方面,包括参数不确定性、外部扰动和测量噪声等。
常用的不确定性建模方法包括不确定参数集、不确定传递函数和不确定矩阵等。
2.2 鲁棒稳定性鲁棒稳定性是指系统在考虑不确定性的条件下保持稳定的能力。
对于存在不确定性的自动控制系统,鲁棒控制方法通过设计鲁棒稳定控制器来保证系统在不确定性条件下的稳定性。
2.3 鲁棒性能鲁棒性能是指系统在不确定性条件下满足一定性能要求的能力。
鲁棒控制方法通过设计鲁棒控制器来提高系统的鲁棒性能,如鲁棒追踪性能和鲁棒抑制性能等。
3. 常用的鲁棒控制方法在自动控制系统中,常用的鲁棒控制方法包括H∞控制、μ合成控制和自适应控制等。
3.1 H∞控制H∞控制是一种基于H∞优化理论的鲁棒控制方法,能够处理带有不确定性的系统。
该方法通过设计H∞鲁棒控制器,将系统的输出稳定性和鲁棒性能进行优化。
H∞控制方法的优点是能够处理模型不确定性和外部扰动,但其设计复杂度较高。
动力学控制系统中的鲁棒性研究

动力学控制系统中的鲁棒性研究1. 引言动力学控制系统广泛应用于机器人、飞机、汽车等自动化系统中。
这类系统具有参数变化和扰动等不确定性,对系统的控制产生了挑战。
因此,在动力学控制系统中鲁棒性研究是一个重要的研究领域。
本文将介绍动力学控制系统中的鲁棒性研究。
2. 动力学控制系统动力学控制系统是由动力学方程描述的系统,其基本形式为:$$\dot{x} = f(x,u)$$其中,$x$表示系统状态变量,$u$表示控制输入,$f(x,u)$表示状态变化率。
动力学控制系统具有高度的非线性性和复杂性,例如:机器人、汽车、飞行器等。
3. 鲁棒性概述鲁棒性是指系统对于未知扰动和参数变化具有稳定性和可控性。
鲁棒性的研究是一个重要的和实用的工程问题。
在动力学控制系统中,鲁棒性是在模型不确定性下对系统进行控制的能力。
4. 鲁棒控制方法4.1 鲁棒控制定义鲁棒控制是一种保持系统稳定和满足性能要求的控制方法,即使在不确定和随机环境下也能确保系统的可控性和可观性。
4.2 鲁棒控制常见方法(1) $H_\infty$ 控制:是一种常用的鲁棒控制方法,可处理具有有限频率和无限频率不确定性的系统。
(2) $μ$ 合成控制:该方法将控制器设计与系统不确定性和性能要求明确联系起来,使得控制器能够提供所需要的鲁棒性和性能。
(3) 自适应鲁棒控制:是一种能够应对不确定性的变化来保持系统稳定的控制方法。
5. 鲁棒控制在动力学控制系统中的应用动力学控制系统是复杂的、非线性的,具有较大的不确定性和非线性因素。
在该系统中,鲁棒控制方法是一种重要的研究方向。
5.1 $H_\infty$ 鲁棒控制在动力学控制系统中的应用$H_\infty$ 鲁棒控制方法广泛应用于动力学控制系统中,其目的在于设计一个控制器,使得系统的输出稳定,且被控制器产生的鲁棒性最大化。
5.2 自适应鲁棒控制在动力学控制系统中的应用自适应鲁棒控制是另一种在动力学控制系统中广泛应用的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对发动机怠速建模方法进行了讨论,建立了汽油机平均值怠速模型。利 用德国 TESIS 公司的发动机仿真软件 enDYNA,对发动机部分工作参数进 行了提取和拟合,并证明了模型的有效性。汽油机怠速工况下受到的干扰力 矩来自于车载设备,这类干扰力矩具有不确定性和能量有界的特点。利用微 分几何的方法使原非线性系统在该组状态变量下成为线性系统。本文对线性 化后的怠速模型的新状态变量在汽油机系统中的物理意义进行了分析,在此 基础上得出了存在外界力矩干扰的怠速模型的线性化形式。
工学硕士学位论文
汽车发动机怠速控制中的 鲁棒控制方法研究
朴明姬
哈尔滨工业大学
2008 年 6 月
国内图书分类号:TP273 国际图书分类号:681.5
工学硕士学位论文
汽车发动机怠速控制中的 鲁棒控制方法研究
硕 士 研 究 生:
导
师:
申 请 学 位:
学 科 、 专 业:所 在 单 位:答 辩 Nhomakorabea日 期:
授予学位单位:
朴明姬 刘志远 教授 工学硕士 控制科学与工程 控制科学与工程系 2008 年 6 月 哈尔滨工业大学
Classified Index: TP273 U.D.C.: 681.5
Dissertation for the Master Degree in Engineering
ROBUST CONTROL RESEARCH ON AUTOMOTIVE ENGINE IDLE-SPEED
This thesis talks about the idle-speed modeling methods and builds a meanvalue model. With the software of enDYNA from German TESIS Corporation, some engine parameters are picked up and the validity of the model is proved. The disturbances which mainly come from equipments are uncertain and have limited energy. The differential geometry method finds new state variables for the system which will make the nonlinear model to be linear. The physical meaning of the new state variables is analyzed and the linear model of the idle speed model with disturbances is given.
Dept. of Control Science and Engineering June, 2008
Harbin Institute of Technology
哈尔滨工业大学工学硕士学位论文
摘要
作为发动机的重要工况之一,怠速工况与发动机的燃油消耗及排放水平 有着密切的关系。怠速工况期间,会有一些突发的力矩干扰出现,例如,空 调的开启与关闭、动力转向器、自动变速器等装置的加载,会使转速输出产 生波动,严重时会导致熄火。发动机工作环境的变化,例如气压、温度,以 及由于摩损而造成的模型参数的变化,也会对怠速的稳定性产生影响。本文 主要围绕这两个控制问题,展开鲁棒控制器的分析研究。
Keywords Engine; Idle speed; H∞ idle speed controller; Output constraint; Moving horizon
哈尔滨工业大学工学硕士学位论文
目录
摘要 Abstract
第 1 章 绪论 .........................................................................................................1 1.1 课题背景 ....................................................................................................1 1.2 怠速控制系统功能 ....................................................................................1 1.3 怠速控制控制质量评价标准.....................................................................2 1.4 怠速工况控制策略研究现状.....................................................................2 1.5 本文的研究工作 ........................................................................................3
With the theory of LMI, H∞ controller subject to constrained system is designed. With engine idle-speed model in enDYNA as object, PID, Backstepping and H∞ controllers are compared. A H∞ state feedback strategy subject to constrained system in moving horizon is developed. With the some parameters and working environment, the H∞state feedback controller in moving horizon exceeds other controllers in transition time and output constraints. Its validity in output constraint and robust performance to model parameters’ uncertainty are proved, and the improvement in idle-speed stability is obvious. The simulation results show that this controller is very efficient.