2014年汕头市初中毕业生学业模拟考试数学参考答案
2014年初中毕业学业考试模拟考数学试卷含答案

2014年初中毕业学业考试模拟考数学试卷一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求) 1如图,已知⊙O 的两条弦AC ,BD 相交于点E ,∠A =75°,∠C =45°, 那么sin ∠AEB 的值为( ) A.12 B. 33 C. 22D. 32 2.下列商标是轴对称图形的是 ( ▲ )(A ) (B ) (C ) (D )3.下列计算错误..的是 ( ▲ ) (A )33--=- (B )222235x x x += (C )822= (D )235()x x =4.如图,是用八块相同的小正方体搭建的一个积木,它的左视图是 ( ▲ )(A ) (B ) (C ) (D )5. 如图,E 、F 分别是正方形ABCD 的边AB 、BC 上的点,BE =CF ,连结CE 、DF .将△BCE 绕着正方形的中心O 按逆时针方向旋转到△CDF 的位置,则旋转角可以是 ( ▲ )(A ) ︒45 (B )︒60 (C )︒90 (D )︒1206如图为某班35名学生10次数学考试中获得优秀次数的条形统计图,其中上面部分数据 破损导致数据不完全.已知此班学生优秀次数的中位数是5,则根据图形,无法..确定的是 下列哪一选项中的数值 ( ▲ ) (A )3次及以下的人数 (B )4次及以下的人数 (C )5次及以下的人数 (D )6次及以下的人数2 3 4 5 6 78 9 10 个数 (人) BE FC ADO (第7题图)(第6题图)E2D2E1D1EDCAB7.下面给出了一些关于相似的命题,其中真命题有 ( ▲ ) (1)菱形都相似 (2)等腰直角三角形都相似(3)正方形都相似 (4)矩形都相似 (5)正六边形都相似(A ) 1 个 (B ) 2个 (C ) 3个 (D ) 4个 8在平面直角坐标系中,已知两点A (1,2),B (2,0),把线段AB 平移后得线段CD , 其中A 点对应点是C (3,a ),B 点对应点是D (b ,1),则a -b 的值为 ( ▲ ) (A )1- (B )0 (C )1 (D )29两个完全相同的矩形如图放置,每个矩形的面积为28,图中阴影部分的面积为20,则每个矩形的周长是 ( ▲ ) (A )18 (B )22 (C )26 (D )3210.如图,在△ABC 中,AB =AC ,且∠A =108°,点P 为△ABC 所在平面内一点,且点P 与△ABC 的任意两个顶点构成△PAB 、△PBC 、△PAC 均是等腰三角形,则满足上述条件的所有点P 个数为 ( ▲ )(A )4 (B )6 (C )8 (D )10二、填空题(每小题4分,共24分)13.分解因式:22x x - = ▲ .14.若一个正多边形的一个外角是30,则这个正多边形的边数是 ▲ .15.为了缓解江北区内一些主要路段交通拥挤的现状,交警队在一些主要路口设立了交通路况显示牌(如图).已知立杆AB 的高度是3m ,从侧面D 点测得显示牌顶端C 点和底端B 点的仰角分别是60和45.则路况显示牌的宽度BC 是 ▲ 米.(结果保留根号) 16如图,在△ABC 中,∠C =90°,以AB 上一点O 为圆心,OA 长为半径的圆与BC 相切于点D ,分别交AC 、AB 于点E 、F .若AC =6,AB =10,则⊙O 的半径为______________.17.如图,在正方形网格中,点O 、A 、B 均在格点上,则∠AOB 的正弦值是 ▲ . 18.如图,已知等边ABC △,D 是边BC 的中点,过D 作DE ∥AB 于E , 连结BE 交AD 于D 1;过D 1作D 1E 1∥AB 于E 1,连结BE 1交AD 于D 2;过D 2作D 2E 2∥AB 于E 2,…,如此继续,若记BDE S △为S 1,记11B D E S △为S 2,记22B D E S △为S 3…,若ABC S △面积为Scm 2,则Sn =_________cm 2. (用含n 与S 的代数式表示)三、解答题(本大题有8小题,共78分)(第15题图)CAB(第12题图)B(第17题图)19.(本题6分)请先化简:xx x ---2111,再选择一个合适的x 值代入求值.20.(本题8分)如图,已知一次函数与反比例函数的图象交于点 A (-3,-1)和B (a ,3).(1)求反比例函数的解析式和点B 的坐标;(2)连结AO 和BO ,判断△ABO 的形状,请说明理由,并求出它的面积.21.(本题6分)已知:如图,斜坡BQ 坡度为i =1︰2.4(即为QC 与BC 的长度之比),在斜坡BQ 上有一棵香樟树PQ ,柳明在A 处测得树顶点P 的仰角为α,并且测得水平的AB =8米,另外BQ =13米,tanα=0.75.点A 、B 、P 、Q 在同一平面上,PQ ⊥AB 于点C .求香樟树PQ 的高度.22.(本题10分)如图,在△ABC 中,AB =AC ,以AB为直径的O 分别交AC 、BC 于点D 、E ,点F在AC 的延长线上,且12CBF CAB ∠=∠.(1)求证:直线BF 是O 的切线;(2)若AB =5,5sin 5CBF ∠=,求BC 和BF 的长.(第20题图)OFEDCBA(第22题图)C(第21题)23.(本题10分)如图,△ABC 的边长分别为21、23、1,正六边形网格是由24个边长为1的正三角形组成,每个正三角形的顶点称为网格的格点.在下面三个正六边形网格中各画出一个三角形(画出三角形,并用阴影填充),使其同时满足下面三个条件:(1)三个三角形的顶点都在格点上;(2)三个三角形都与△ABC 相似;(3)三个三角形的面积大小都不同.并直接写出三个三角形与△ABC 的相似比.相似比: 相似比: 相似比:24.(本题12分)如图,在矩形ABCD 中,AB =1,BC =3,F 为线段..AD 上一点(不与端点A ,D 重合),过F 的直线交矩形的另一边于点E ,且该直线满足21tan =∠DFE ,设AF 长度为x . (1)记BEF △的面积为S ,求S 与x 的函数关系式;(2)当点E 在线段BC 上时,若矩形ABCD 关于直线EF 的对称图形为矩形A ’B ’C ’D ’,试说明矩形ABCD与矩形A ’B ’C ’D ’理由.CB A25.(本题14分)如图,已知二次函数图象的顶点为P(0,-1),且过点(2,3).点A是抛物线上一点,过点A作y轴的垂线,交抛物线于另一点B,分别过点B、A作x轴的垂线,垂足分别为C、D,连结PA、PD.(1)求此二次函数的解析式;x轴交点记为E,证明:(2)当点A在第一象限....内时,PA与①PED PDA△∽△;②∠APC=90°;(3)若∠APD=45°,当点A在y.轴右侧...时,请直接写出点A的坐标.(第26题图)(备用图)参考答案及评分标准一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DADBDACCCABC二、填空题(每小题4分,共24分) 题号 1314 15 16 17 18答案()2-x x12333-3662++π54 911a b c -++三、解答题(第19题6分,第20、21题各8分,第22-24题各10分,第25题12分,第26题14分,共78分)注: 1. 阅卷时应按步计分,每步只设整分;2. 如有其它解法,只要正确,都可参照评分标准,各步相应给分.19. (本题6分)2111x x x111(1)x x x =--- 1分 1(1)x x x -=-1x= 4分满足1,0x ≠的值代入都可 6分20.(本题8分):(1)设xky =,将A (﹣3,﹣1)代入,求得k =3, 1分 xy 3=2分 将B (a ,3)代入,求得a =1 3分 B (1,3) 4分(2)AO =BO =10 5分 等腰三角形 6分 S ABC △=4 8分21.(本题8分)(1)列表如下:哥哥 弟弟 3453 3+3=6 4+3=7 5+3=84 3+4=7 4+4=8 5+4=9 53+5=8 4+5=9 5+5=104分总共有9种结果,每种结果出现的可能性相同,而两数和为8的结果有3种,因此P (两数和为8)=135分 (2)答:这个游戏规则对双方不公平.理由:因为P (和为奇数)=49, 6分 P (和为偶数)=59, 7分而4599≠, 所以这个游戏规则对双方是不公平的. 8分 22.(本题10分)相似比:2:1 相似比:1:32 相似比:4:1画对1个给2分,2个4分,3个都对得7分,每个相似比正确得1分,共3分。
2014年汕头市中考数学试卷与答案

2014年汕头市数学中考试卷-(word 整理版)一、选择题(本大题10小题,每小题3分,共30分) 1、在1,0,2,-3这四个数中,最大的数是( )A 、1B 、0C 、2D 、-32、在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )A B C D 3、计算3a -2a 的结果正确的是( )A 、1B 、aC 、-aD 、-5a 4、把39x x -分解因式,结果正确的是( )A 、()29x x -B 、()23x x - C 、()23x x + D 、()()33x x x +-5、一个多边形的内角和是900°,这个多边形的边数是( )A 、10B 、9C 、8D 、76、一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )A、47 B 、37C 、34D、137、如图7图,□ABCD 中,下列说法一定正确的是( ) A 、AC=BD B、AC ⊥BDC 、AB=CD D 、AB=BC题7图8、关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为( )A 、94m >B 、94m <C 、94m =D 、9-4m <9、一个等腰三角形的两边长分别是3和7,则它的周长为( )A 、17B 、15C 、13D 、13或17 10、二次函数()20y ax bx c a =++≠的大致图象如题10图所示,关于该二次函数,下列说法错误的是( )A 、函数有最小值B 、对称轴是直线x =21C 、当x <21,y 随x 的增大而减小 D 、当 -1 < x < 2时,y >0二、填空题(本大题6小题,每小题4分,共24分)11、计算32x x ÷= ;12、据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学计数法表示为 ;13、如题13图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,若BC=6,则DE= ;题13图 题14图14、如题14图,在⊙O 中,已知半径为5,弦AB 的长为8,那么圆心O 到AB 的距离为 ;15、不等式组2841+2x x x ⎧⎨-⎩<>的解集是 ;16、如题16图,△ABC 绕点A 顺时针旋转45°得到△'''A B C ,若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于 。
2014广东省初中毕业生学业考试数学模拟试卷

2014广东省初中毕业生学业考试数学模拟试卷时间:100分钟 满分:120分一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的)1.下面四个数中比-2小的数是( ) A .- 3 B .0 C .-1 D .-3 2.下列运算正确的是( )A .a +a =a 2B .(-a 3)2=a 5C .3a ·a 2=a 3D .(2a )2=2a 23.分别由5个大小相同的正方体组成的甲、乙两个几何体如图M1-1所示,它们的三视图中完全一致的是( )A .主视图B .俯视图C .左视图D .三视图图M1-1 图M1-24.若分式x 2-4x 2-2x的值为零,则x 的值为( )A .-2B .2C .0D .-2或25.下列图形中,既是轴对称图形又是中心对称图形的是( )A B C D6.已知点P (a +1,2a -3)关于x 轴的对称点在第一象限,则a 的取值范围是( )A .a <-1B .-1<a <32C .-32<a <1D .a >327.小刚同学把一个含有45°角的直角三角板放在如图M1-2所示的两条平行线m ,n 上,测得∠α=110°,则∠β的度数是( )A .75°B .65° C. 55° D. 45° 8.下列说法不正确的是( )A .方程x 2=x 有一根为0B .方程x 2-1=0的两根互为相反数C .方程(x -1)2-1=0的两根互为相反数D .方程x 2-x +2=0无实数根 9.一艘轮船和一艘快艇沿相同路线从甲港出发到乙港,行驶过程随时间变化的图象如图M1-3,下列结论错误的是( )A .轮船的速度为20千米/时B .快艇的速度为803千米/时C .轮船比快艇先出发2小时D .快艇比轮船早到2小时图M1-3 图M1-410.如图M1-4,将矩形ABCD 对折,得折痕PQ ,再沿MN 翻折,使点C 恰好落在折痕PQ 上的点C ′处,点D 落在D ′处,其中M 是BC 的中点.连接AC ′,BC ′,则图中共有等腰三角形的个数是( )A .1个B .2个C .3个D .4个二、填空题(本大题共6个小题,每小题4分,共24分) 11.分解因式3x 3-12x = ____________.12.使式子m -2有意义的最小整数m 是________________________________. 13.如图M1-5,分别以n 边形的顶点为圆心,以1 cm 为半径画圆,则图中阴影部分的面积之和为______ cm 2.图M1-5 图M1-6 图M1-714.如图M1-6,∠AOE =∠BOE =15°,EF ∥OB ,EC ⊥OB ,若EC =1,则EF =__________. 15.袋中装有2个红球和2个白球,它们除了颜色外都相同.随机从中摸出一球,记下颜色后放回袋中,再随机摸出一球,则两次都摸到红球的概率是________.16.一个边长为4 cm 的等边三角形ABC 与⊙O 等高,按图M1-7放置,⊙O 与BC 相切于点C ,⊙O 与AC 相交于点E ,则CE 的长为__________cm.三、解答题(一)(本大题共3小题,每小题5分,共15分)17.计算:2-2sin45°-(1+8)0+2-1+18.18.如图M1-8,在△ABC 中,AB =AC ,∠ABC =72°.(1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法); (2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.图M1-819.已知下列关于x 的分式方程:方程1:1x -1=2x ;方程2:2x =3x +1;方程3:3x +1=4x +2;…;方程n …(1)填空:分式方程1的解为________,分式方程2的解为__________; (2)解分式方程3;(3)根据上述方程的规律及解的特点,直接写出方程n 及它的解.四、解答题(二)(本大题共3小题,每小题8分,共24分)20.如图M1-9,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A,B的坐标分别是A(3,2),B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(直接填写答案)图M1-9(1)点A关于点O中心对称的点的坐标为________________;(2)点A1的坐标为__________;(3)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为__________.21.如图M1-10,有一个晾衣架放置在水平地面上.在其示意图中,支架OA,OB的长均为160 cm,支架两个着地点之间的距离AB为120 cm.(1)求支架OA与地面AB的夹角∠BAO的度数(结果精确到0.1°);(2)小丽的连衣裙穿在衣架后的总长度达到140 cm,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.(可用计算器计算,参考数据:sin68.0°≈0.927,cos68.0°≈0.375,tan68.0°≈2.475)图M1-1022.体力、腿力测试将健康状况分为四个等级:如一步迈两个台阶,能快速登上五层楼,说明健康状况良好;一级一级登上5层楼,没有明显的气喘现象,说明健康状况不错.如果气喘吁吁,呼吸急促,为较差型;登上三楼就感到又累又喘,意味着身体虚弱.某数学学习小组随机抽查本校初一年级若干名同学进行测试,并将测试结果制成了不完整统计图如图M1-11:(1) (2)图M1-11(1)该数学学习小组抽查了多少名初一同学进行测试?(2)补全图M1-11(1)中的条形统计图,并求出图M1-11(2)中健康状况良好所在扇形的圆心角度数;(3)若该校初一年级有1000名同学,请你估算初一年级大约有多少名同学属于健康状况虚弱?五、解答题(三)(本大题共3小题,每小题9分,共27分)23.如图M1-12,直线y =k 1x +b (k 1≠0)与双曲线y =k 2x(k 2≠0)相交于A (1,m ),B (-2,-1)两点.(1)求直线和双曲线的解析式.(2)若A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3)为双曲线上的三点,且x 1<x 2<0<x 3,请直接写出y 1,y 2,y 3的大小关系式.图M1-1224.如图M1-13,已知抛物线L 1:y 1=34x 2,平移后经过点A (-1,0),B (4,0)得到抛物线L 2,与y 轴交于点C .(1) 求抛物线L 2的解析式;(2) 判断△ABC 的形状,并说明理由;(3) 点P 为抛物线L 2上的动点,过点P 作PD ⊥x 轴,与抛物线L 1交于点D ,是否存在PD =2OC ,若存在,求出点P 的坐标;若不存在,说明理由.图M1-1325.在一张长方形纸片ABCD中,AB=25 cm,AD=20 cm,现将这张纸片按下列图示方法折叠,请解决下列问题.(1)如图M1-14(1),折痕为DE,点A的对应点F在CD上,求折痕DE的长;(2)如图M1-14(2),H,G分别为BC,AD的中点,A的对应点F在HG上,折痕为DE,求重叠部分的面积;(3)如图M1-14(3),在图M1-14(2)中,把长方形ABCD沿着HG对开,变成两张长方形纸片,将两张纸片任意叠合后,判断重叠四边形的形状,并证明;(4)在(3)中,重叠四边形的周长是否存在最大值或最小值?如果存在,试求出来;如果不存在,试简要说明理由.(1)(2)(3)图M1-14广东省初中毕业生学业考试数学模拟试卷1.D2.D3.C4.A5.B6.B7.B8.C 9.B 10.C 11.3x (x +2)(x -2) 12.2 13.π14.2 15.1416.317.解:原式=2-2×22-1+12+3 2=-12+3 2.18.解:(1)作图如图110.(2)∵在△ABC 中,AB =AC ,∠ABC =72°, ∴∠A =180°-2∠ABC =180°-144°=36°. ∵BD 是∠ABC 的平分线,∴∠ABD =12∠ABC =12×72°=36°.∵∠BDC 是△ABD 的外角, ∴∠BDC =∠A +∠ABD =36°+36°=72°.图11019.解:(1)x =2 x =2(2)方程3去分母,得3(x +2)=4(x +1), 解得x =2.检验:当x =2时,公分母不为0, ∴x =2是原方程的解.(3)方程n :nx +n -2=n +1x +n -1,解为x =2.20.(1)(-3,-2) (2)(-2,3) (3)102π21.解:(1)如图111,过点O 作OD ⊥AB 于D ,图111∵OA =OB ,∴AD =12AB =60.在Rt △ADO 中,∠ADO =90°,cos ∠OAD =AD OA =60160=0.375,∴∠DAO ≈68.0°.(2)(方法一)在Rt △ADO 中, OD = 1602-602≈148.3. ∵148.3>140,∴垂挂在晒衣架上是不会拖落到地面.(方法二)在Rt △ADO 中,sin ∠DAO =ODOA,OD =sin68.0° ×160≈0.927×160≈148.3.∵148.3>140,∴垂挂在晒衣架上是不会拖落到地面. 22.解:(1)50(2)补全条形统计图如图112,图112健康状况良好所在扇形的圆心角度数为360°×(1-48%-16%-6%)=108°. (3)1000×6%=60(名).23.解:(1)∵B (-2,-1)在双曲线上,∴-1=k 2-2,解得k 2=2.∴双曲线的解析式为y=2x ,又点A (1,m )在双曲线上,∴m =21=2.∴A (1,2). ∵A ,B 两点在直线上,∴⎩⎪⎨⎪⎧ k 1+b =2,-2k 1+b =-1,解得⎩⎪⎨⎪⎧k 1=1,b =1,∴直线的解析式为y =x +1.(2)∵对于双曲线,在第三象限内y 随x 的增大而减小,且x 1<x 2<0,∴y 2<y 1<0. 又0<x 3,∴y 3>0,∴y 2<y 1<y 3.24.解:(1)设抛物线L 2的解析式为y =34x 2+bx +c ,经过点A (-1,0),B (4,0),根据题意,得⎩⎪⎨⎪⎧ 34-b +c =0,12+4b +c =0,解得⎩⎪⎨⎪⎧b =-94,c =-3.∴抛物线L 2的解析式为y =34x 2-94x -3.(2)△ABC 的形状是等腰三角形. 理由:根据题意,得C (0,-3),∵AB =4-(-1)=5,BC =42+32=5,AC =12+32=10,∴△ABC 的形状是等腰三角形.(3)存在PD =2OC .设P ⎝⎛⎭⎫a ,34a 2-94a -3,D ⎝⎛⎭⎫a ,34a 2, 根据题意,得PD =⎪⎪⎪⎪34a 2-94a -3-34a 2=⎪⎪⎪⎪94a +3,OC =3, 当⎪⎪⎪⎪94a +3=6时,解得a 1=43,a 2=-4.∴P 1⎝⎛⎭⎫43,-143,P 2(-4,18). 25.解:(1)∵四边形ADFE 是正方形,∴DE =20 2.(2)∵由折叠可知DG =12AD =12DF ,∴在Rt △DGF 中,∠GFD =30°,∠GDF =60°, ∵∠GDE =∠EDF ,∴∠EDA =30°.∴在Rt △ADE 中,tan ∠EDA =AEAD,∴AE =AD ·tan30°=20 33.∴S △DEF =12AE ·AD =12×20×20 33=200 33.(3)重叠四边形MNPQ 的形状是菱形. 证明:因纸片都是矩形,则重叠四边形的对边互相平行,则四边形MNPQ 是平行四边形. 如图113,过Q 作QL ⊥NP 于点L ,QK ⊥NM 于点K , 又QL =QK , ∴S MNPQ =PN ·QL =MN ·QK .∴MN =NP ,∴四边形MNPQ 的形状是菱形.图113 图114(4)当矩形纸片互相垂直时,这个菱形的周长最短是40 cm. 最大的菱形如图114所示放置时,重叠部分的菱形面积最大. 设GK =x ,则HK =25-x .在Rt △KHB 中,x 2=(25-x )2+102, 解得x =14.5.则菱形的最大周长为58 cm.。
2014年广东省粤西地区初中毕业生学业模拟考试(一)数学试题及参考答案

2014年广东省粤西地区初中毕业生学业模拟考试(一)数 学说明:① 全卷共4页,五大题;②考试时间100分,试卷满分120分,请在答题卡上作答。
一 选择题:(本大题10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一 项是符合题目要求的) 1.-12的绝对值是( )A 、-2B 、-12C、12D 、22.下列运算正确的是( ) A 、()4520xx -= B 、824x x x ÷= C 、m n nm x x x =· D 、3362x x x +=3.2014年湛江市春节黄金周商贸销售总额约340000000元,这个数据用科学记数法可表示为( ) A 、91034.0⨯B 、8104.3⨯C 、71034⨯D 、7104.3⨯4.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是( )5.五箱苹果的质量分别为(单位:千克):18,20,21,22,19.则这五箱苹果质量的平均数和中位数分别为( ) A 、 19和20 B 、 20和19 C 、20和21 D 、20和206.如图,AB 是⊙O 的直径,点C 、D 都在⊙O 上,若50ABC ∠=, 则BDC ∠=( )A 、50 B 、30 C 、45D 、407.如图,在△ABC 中,∠C =90°,若BD ∥AE ,∠DBC =20°, 则∠CAE 的度数是( ) A 、80° B 、70° C 、60° D 、40°8.在一个不透明的口袋中,有大小、形状完全相同,颜色不同的球共15个,从中摸出红球的概率为13,则袋中红球的个数为( ) A 、3 B 、5C 、10D 、159.在Rt △ABC 中,∠C=90°,cosA=23,则tanB 等于( ) A 、35 BC 、25 D7题图A B CD10.如图,正比例函数x k y 11=和反比例函数xk y 22=的图象交于 )2,1(-A 、),(21-B 两点,若21y y <,则x 的取值范围是( )A 、01<<-x 或1>xB 、1-<x 或1>xC 、01<<-x 或10<<xD 、1-<x 或10<<x二 填空题:(本大题共6小题,每小题4分,共24分) 11.函数y =x 的取值范围是 . 12. 分解因式39x x -=______________。
2014年广东省粤西地区初中毕业生学业模拟考试(六)数学试题及参考答案

2014年广东省粤西地区初中毕业生学业模拟考试(八)数 学说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔在答题卡填写自己的准考证号、姓名、试室号、座位号.用2B 铅笔把对应号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.实数2-的倒数是A.2B.2-C.21D.21- 2.要使分式12-x 有意义,则x 的取值范围是 A.0≠x B.1≠x C.1-≠x D.2≠x 3.如图,已知∠1=70°,如果CD ∥BE ,那么∠B 的度数为 A.70° B.100° C.110° D.120°4.中共中央总书记、中央军委主席习近平要求厉行节约反对浪费.据统计数据显示,我国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为 A .2.1×109B .0.21×109C .2.1×108D .21×1075.下列运算正确的是 A .2325a a a += B .632a a a =⋅C .()2222a b a ab b +=++ D .()()2222x y x y x y +-=-6.某同学参加飞镖训练,共射六镖,击中的环数分别为3,4,5,7,7,10.则下列说法错误的是A .其众数为7B .其中位数为7C .其平均数为6D .其中位数为6 7. 下列“表情图”中,属于轴对称图形的是8.下列四个几何体中,俯视图为四边形的是A B C D9.如图,已知:OA 、OB 是⊙O 的两条半径,且OA ⊥OB , 点C 在⊙O 上,则∠ACB 的度数为A.︒45B.︒35C.︒25D.︒20 10.如图,矩形ABCD 在第一象限,AB 边在x 轴正半轴上, AB =3,BC =1,直线121-=x y 经过点C ,双曲线ky x=经过点D则该反比例函数的解析式是 A .4y x =B .2y x =C .1y x= D .12y x =二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算:1)21()13(---+|2-3|+sin 245°所得结果为12.分解因式:=8-22a13.一次函数1)2(-+=x m y ,若y 随x 的增大而增大,则m 的取值范围是___________. 14.半径为3cm 的圆中,一条弦长为4cm ,则圆心到这条弦的距离是__________. 15.如图,菱形ABCD 的两条对角线相交于o ,若m BD m AC 4,8==,则菱形ABCD 的周长是16.如图,ABC ∆中,=∠C 90°,34tan =A , 以C 为圆心的圆与AB 相切于D .若圆C 的 半径为1,则阴影部分的面积=S .三、解答题(一)(本大题3小题,每小题6分,共18分) 17. (本题满分6分)解分式方程3121x x =-18.(本小题满分6分)如图,在矩形ABCD 中,以顶点B 为圆心、边BC 长为半径作弧,交AD 边于点E ,连结BE ,过C 点作CF ⊥BE 于F . 求证:BF =AE .F E DC BA x第15题图第16题图O C ABD CB(第19题图) 19.(本题满分6分)如图,在Rt △ABC 中,∠C =90º,∠BAC 的角平分线AD 交BC 边于D .(1)以AB 边上一点O 为圆心,过A ,D 两点作⊙O ; (用圆规、直尺作图,不写作法,但要保留作图痕迹) (2)判断直线BC 与⊙O 的位置关系,并说明理由.四、解答题(二)(本大题3小题,每小题7分,共21分) 20、(本题满分7分)某市为缓解城市交通压力,决定修建人行天桥,如图所示,原设计天桥的楼梯AB 长28m ,∠ABC=45°,后考虑到安全因素,将楼梯脚B 移到CB 延长线上点D处, 使∠ADC=30°. (1)求天桥的高度AC ;(2)求BD 的长(结果精确到0.1m).21.(本题满分7分)“校园手机”现象越来越受到社会的关注.“五一”期间,小记者刘凯随机调查了城区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图①; (2)求图②中表示家长“赞成”的圆心角的度数;(3)从这次接受调查的学生中,随机抽查一个,恰好是“无所谓”态度的学生的概率是多少?图① 图②A CBD︒30︒45(1)求抛物线的函数解析式.(2)设点D在抛物线上,点E在抛物线的对称轴上,且以AO为边的四边形AODE是平行四边形,求点D的坐标.(3)P是抛物线上第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P,M,A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.DCBA(第19题图)模拟测试卷答题卡班别________________ 姓名_______________ 座号_____________ 分数_____________ 二、填空题(本题有6小题,每小题4分,共24分) 三、解答题一(本题3小题,每小题6分,共18分.) 17、 18、19、F EDCB A25、数学参考答案一、 选择题(本大题10小题,每小题3分,共30分)二、填空题(本大题6小题,每小题4分,共24分)11.2112. )2)(2(2-+a a 13. 2- m 14. cm 5 15. m 58 16. 24625π-三、解答题:(一)(本大题3小题,每小题6分,共18分)17.解:方程两边同乘以)1(2-x x ,得 x x 2)1(3=---------------------1分 去括号,得 x x 233=----------------------2分移项,得 323=-x x ---------------------3分合并,得 3=x ---------------------4分经检验3=x 是原分式方程的解 ---------------------5分 ∴原分式方程的解是3=x ---------------------6分18. 证明:∵ABCD 是矩形.∴∠A=90°.AD∥BC----------------2分 ∴∠AEB=∠FBC----------------3分 ∵CF ⊥BE .∴∠A=∠BFC=90°. ----------------4分 ∵BC=BE (同一半径).∴△BFC ≌△EAB .----------------5分 ∴BF=AE .----------------6分19.解:(1)如图,⊙O 为所求作的圆------------3分 (2)BC 与⊙O 相切.---------------------------------4分 连结OD ,∵OA=OD ,∴∠OAD =∠ODA , ∵∠OAD=∠DAC , ∴∠ODA=∠DAC ,∴OD ∥AC ,---------------------------------------------5分 ∵∠C =90º,∴∠BDO =90º,∴BC 与⊙O 相切.------------------------------------6分(第19题图)四、解答题:(二)(本大题3小题,每小题7分,共21分)20.解:(1)在Rt△ABC中,∠ABC=45o(可用不同解法)21.(1)家长人数为 80÷20%=400400-40-80=280 (人)-----------2分(正确补全图①) -----------3分(2)表示家长“赞成”的圆心角的度数为40400×360°=36°-----------5分(3)学生恰好持“无所谓”态度的概率是301403030++=0.15 -----------7分22.解:(1))80(100x x ---------------2分 (2)根据表格提供的数据,可以知道x ≥50 ,根据9月份用水情况可以列出方程:25)85(10010=-+x x --------------4分 解得,25,6021==x x --------------5分50≥x∴x =60--------------6分答:该水厂规定的x 吨是60吨.--------------7分五、解答题(三)(本大题3小题,每小题9分,共27分)23. 解:(1)将A (1,2)代入一次函数解析式得:k+1=2,即k=1,∴一次函数解析式为y=x +1; --------------1.5分将A (1,2)代入反比例解析式得:m=2, ∴反比例解析式为x y 2=--------------3分 (2)∵N (3,0),∴到B 横坐标为3, --------------4分将x =3代入一次函数解析式得:y=4,将x=3代入反比例函数解析式得:32=y --------------5分 ∴B (3,4) C (3,32) --------------6分 (3)由(2)可知 31032432=-==BC CN , --------------7分 A 到BC 的距离为:2 --------------8分∴S △ABC =310231021=⨯⨯ --------------9分由(2)得△ABE≌△DAF25.(1)设抛物线的解析式为)0(y 2≠++=a c bx ax∵抛物线过A (-2,0),B (-3,3),O(0,0)可得⎪⎩⎪⎨⎧==+-=+-0339024c c b a c b a 解得⎪⎩⎪⎨⎧===021c b a∴抛物线的解析式为:x x y 22+=;-----------------3分(2)①当AE 为边时四边形AODE 为平行四边形∴2==AO DE ,点D 不可能在x 轴下方,只能在上方,则),(,33)3,1(21-D D ; ②当AO 为对角线时,则DE 与AO 互相平分,∵点E 在对称轴上,且线段AO 的中点横坐标为-1,由对称性知,符合条件的点D 只有一个,与点C 重合,即C (-1,-1),故符合条件的点D 有三个,分别是D 1(1,3),D 2(-3,3),C (-1,-1)。
(理科数学)2014年汕头二模参考答案

理科数学参考答案
一、选择题: D B A C 二、填空题: 9. x CBDC
1 3 i 2 2
12.211
10.“ x R ,使得 x 2 1 1”;
11. a | 5 a 7
13. [4,)
14.
16 ; 5
15.
1 3
三、解答题:本大题共 6 小题,满分 80 分.解答须写出文字说明、证明过程和演算步骤. 16. 解:(1)由函数最大值为 2 ,得 A=2 ,…………………1 分 由图可得周期 T 4[
( )] ,…………………2 分 12 6
………………………….3 分
由
2
,得 2 。 2k
2 2 ln k ln k 2 ln k 2k ln k ln(k 2) 2 2 2
所以 bk bk 2
………………11 分
ln k 12 2 ln k 1 bk21 .………………13 分 2
2
| PF1 |2 | PF2 |2 F1F2 2 | PF2 | F1F2 cos F1F2 P F1F2 2 F1F2 24 0
2
2
……………2 分
所以
F1F2 6
或
F1F2 4
(舍去)∴ c 3
………………3 分
第 5 页 共 8 页
∴ b2 a 2 c2 27 ∴所以,所求的椭圆方程 C :
= 2(
ቤተ መጻሕፍቲ ባይዱ
汕头市澄海区2013-2014学年第一学期七年级数学期末试卷及答案

2013-2014学年度第一学期期末质量检查七年级数学科试卷【说明】本卷满分120分,考试时间100分钟.一、选择题(本大题共10小题,每小题3分,共30分) 1.某地气温由-3℃上升2℃后是 ( )A .-1℃B .1℃C .5℃D .-5℃2.13-的倒数是( )A .3B .-3C .13- D .133.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为( ) A .1.94×1010B .0.194×1011C .19.4×109D .1.94×1094.若1=x 是方程013=+-m x 的解,则m 的值是( ) A .-4 B .4 C .2 D .-2 5.下面的计算正确的是( )A .156=-a aB .3232a a a =+ C .b a b a +-=--)( D .b a b a +=+2)(2 6.如果单项式31y xa +-与22x yb 是同类项,那么a 、b 的值分别为( )A .a =2,b =3B .a =1,b =2C .a =1,b =3D .a =2,b =27.下列图形中可以作为一个正方体的展开图的是( )8.实数a ,b 在数轴上的对应点如图所示,则下列各式中错误..的是( ) A .0ab > B .0a b +< C .0a b -< D .1ab< 9.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多( ) A .60元 B .80元 C .120元D .180元A .D .C .B .a第8题图10.若||3a =,42=b ,且0<ab ,则a b +的值为( ) A .5± B .-1 C .1 D .1± 二、填空题(本大题共6小题,每小题4分,共24分) 11.如果a 的相反数数是1,那么a2013等于 .12.若1=x ,则=-|4|x . 13.方程0251x =.的解是 .14.如图,已知点D 为线段AC 的中点,点B 为线段DC 的中点,DB =2cm ,则线段AB 的长度是 .15.若6=+b a ,则1822a b --= .16.观察一列单项式:x ,22x -,34x ,48x -,…根据你发现的规律,第7个单项式为 ;第n 个单项式为 .三、解答题(一)(本大题共3小题,每小题5分,共15分) 17.计算:)3()4()2(8102-⨯---÷+-.18.化简:)3(22622ab a ab a +--.第14题图19.解方程:232143+=-y y .四、解答题(二)(本大题共3小题,每小题8分,共24分)20.如图,已知直线AB 和CD 相交于点O ,90COE ∠=︒,OF 平分.AOE ∠(1)写出AOC ∠与BOD ∠的大小关系: ,判断的依据是 ; (2)若35COF ∠=︒,求BOD ∠的度数.21.先化简,再求值:)]2(22[52222b a ab b a ab +--,其中a 、b 满足0)1(|2|2=++-b a 。
2014年学业水平考试模拟考试数学试卷(含答案)

2014年学业水平考试模拟考试数学试题(含答案)第1卷(选择题共45分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.-6的绝对值是D.67如图,所给图形中是中心对称图形但不是轴对称图形的是3.直线口,6被直线c所截,的度数是A. 1290B. 510C. 490D. 4004.下列运算,正确的是A.3x2-2x2=1B.(2ab)2=2a2b2C.(a+b)2=a2+b2D. -2(a-l)=-2a+25.不等式的解集在数轴上表示正确的是6.己知点P(2,m)在直线y=x-n的函数图象上,则m+n的值为7.已知等腰三角形两边的长分别为4,9,则这个等腰三角形的周长为A. 13 B. 17 C. 22 D. 17或228.计算的结果为:9.一组数据:3,2,1,2,2的众数,中位数分别是A.2,1 B.2,2 C.3,l D.2,310.在Rt△ABC中,∠C=900, sinA=4/5,则 cosB的值等于11.下表为某公司200名职员年龄的人数分配表,其中36~42岁及50~56岁的人数因污损而无法看出.若36~42岁及50~56岁职员人数所占的百分比分别为a%、b%,则a+b的值A.10 B.45 C.55 D.9912.对于一次函数y=-2x+4,下列结论错误的是A.函数值随自变量的增大而减小B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得y=-2x的图象D.函数的图象与x轴的交点坐标是(0.,4)13.如图,AB是点D是AC上一点,于点E,且CD=2,DE=1,则BC的长为14.如图,将一张边长为4的正三角形纸片剪成四个全等的小正三角形,得到4个小正三角形,然后将其中的一个三角形再剪成四个全等的小正三角形,得到7个小正三角形.根据以上操作,若得到2014个小正三角形时,则最小正三角形的面积等于15.如图,在平面直角坐标系中,A(1,0),B(3,0),C(O,-3),CB平分/ACP,则直线PC 的解析式为第II卷(非选择题共75分)16.分解因式:X2 +X=17.近期我国雾霾天气多发,PM2.5颗粒物被称为大气污染的元凶.PM2.5是指直径小于或等于2.5微米的颗粒物,已知l毫米=1000微米,用科学记数法表示2.5微米是____ 毫米.18.不等式组的解集是____19.如图,在的角平分线DE与BC交于点E.若BE=CE则∠DAE=____度.20.函数的图象的交点坐标为(口,6),则的值为21.如图所示,点P(m,n)为抛物线上的任意一点,以点P为圆心,1为半径作圆,当与x轴相交时,则m的取值范围为三、解答题(本大题共7个小题.共57分.解答应写出文字说明、证明过程或演算步骤.)22(1)(本小题满分3分)22(2)(本小题满分4分)解方程组:如图,四边形ABCD是平行四边形,点E、A、C、F在同一直线上,且AE=CF求证:BE=DF.23(2)(本小题满分4分)如图,在弦AB与半径OC相交于点D,AB=12,CD=2.24(本小题满分8分)某校为了创建书香校园,购进了一批科普书和文学书.其中科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等,则文学书有多少本?25.(本小题满分8分)小亮和小明对一个问题观点不一致,小亮认为:从2,-2,4,-4这四个数中任取两个不同的数分别作为点P(x,y)的横、纵坐标,则点P(x,y)落在反比例函数图象上的概率一定大于落在正比例函数y= -x图象上的概率,而小明认为两者的概率相同,你赞成谁的观点?说明你的理由,已知:AB为的直径,P为AB延长线上的任意一点,过点P作的切线,切点为C,∠APC的平分线PD与AC交于点D.(1)如图l,若∠CPA恰好等于300,求∠CDP的度数;(2)如图2,若点P位于(1)中不同的位置,(1)的结论是否仍然成立?说明你的理由,27.(本小题满分9分)己知一次函数y= -x +1与抛物线交于A(O,1),B两点,B点纵坐标为10,抛物线的顶点为C.(1)求b,c的值;(2)判断△ABC的形状并说明理由;(3)点D、E分别为线段AB、BC上任意一点,连接CD,取CD的中点,连接AF,EF.当四边形ADEF为平行四边形时,求平行四边形ADEF的周长,如图,等腰的直角边长为点D为斜边AB的中点,点P为AB上任意点,连接PC,以PC为直角边作等腰(1)求证:(2)请你判断AC与BD有什么位置关系?并说明理由.(3)当点P在线段AB上运动时,设AP=x,△PBD的面积为S,求S与x之间的函数关系式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年汕头市初中毕业生学业模拟考试数学参考答案
通知:请有关学校于5月21日上午安排两节课连堂进行测试,组织老师严格按评分标准改卷,认真做好分析工作,填写《考试质量分析表表》,于考后两天内将该表上传至89932281QQ 群共享,具体通知和表格已经上传在该Q 群. 汕头市初中考备考课题组 一.选择题(每小题3分,共30分)
1.C
2.C
3.B
4.B
5.D
6.C
7. A
8.A
9.C 10.B 二.填空题(每小题4分,共24分)
11.()()22y y x y x +- 12.1 13.AD=AE (答案不唯一) 14.9 15.10 16.4 三.解答题(一)(每小题6分,共18分) 17.解:原式=1-4+3+2-3 4分 =-1 6分 18.解:原式=x 2+4x+4+4x 2-1-4x 2-4x 3分
=x 2+3, 4分
当x=-2时,原式=2+3 5分
=5. 6分
19. 解:(1)如图.直线DE 即为所求. 3分 (2)连接CD ,∵在Rt △ABC 中,∠C=90°,AC=6,BC=8, ∴AB=
222268AC BC +=+=10, 4分
∵DE 是AB 的垂直平分线, ∴CD=
1
2
AB=5. 6分 四.解答题(二)(每小题7分,共21分)
20.解:设乙工厂每天可加工生产x 顶帐蓬,则甲工厂每天可加工生产1.5x 顶帐蓬, 1分 根据题意得:
240240
21.5x x
-=, 3分 解得:x=40, 4分 经检验x=40是原方程的解, 5分 则甲工厂每天可加工生产1.5×40=60(顶), 6分 答:甲、乙两个工厂每天分别可加工生产60顶和40顶帐蓬. 7分
21. 解:(1)200; 1分 (2)15, 2分
40%; 3分 (3)设男生人数为x 人,则女生人数为1.5x 人,由题意得: 4分 x+1.5x=1500×20%, 5分 解得:x=120, 6分 当x=120时,1.5x=180. 7分 答:该校最喜爱丙类图书的女生和男生分别有180人,120人. 22.(1)证明:∵四边形ABCD 和四边形AEFG 是矩形, ∴∠B=∠G=∠BAD=∠EAG=90°, 1分 又∵∠BAE+∠EAD=∠EAD+∠DAG=90°,
∴∠BAE=∠DAG , 3分 ∴△ABE ∽△AGD ; 4分 (2)法一:证明:∵△ABE ∽△AGD , ∴
AB AE
AG AD
=
, 5分 ∴AB•AD=AG•AE , 6分 ∴矩形AEFG 与矩形ABCD 的面积相等. 7分 法二:连结ED. 5分 ∵2AEFG ADE
S S
=矩形,2ABCD ADE
S S
=矩形, 6分
∴AEFG ABCD S S =矩形矩形. 7分 五.解答题(三)(每小题9分,共27分)
23. (1)解:把x=3代入得32+3p+q+2=0,∴q=-3p-11; 2分 (2)证明:∵一元二次方程x 2+px+q=0的判别式△=p 2-4q , 3分 由(1)得q=-3p-11,
∴△=p 2+4(3p+11)=p 2+12p+44=(p+6)2+8>0, 4分 ∴一元二次方程x 2+px+q=0有两个不相等的实根.
∴抛物线y=x 2+px+q 与x 轴有两个交点; 5分 (3)解:∵x 1,x 2是方程x 2+px+q=0的两个根,
∴12x x p +-=,12x x q =, 6分 ∵1212510x x x x +-+=,
∴510p q --+=, 7分 由(1)得q=-3p-11,
解得41p q =-⎧⎨=⎩
, 8分
∴抛物线的解析式为y=x 2
12CDE
S
CE =。