17届初二下数学《第14周周练》试卷

合集下载

2017年哈尔滨市名校八年级下学期月考数学试卷(无答案)四边形与勾股定理

2017年哈尔滨市名校八年级下学期月考数学试卷(无答案)四边形与勾股定理

2016-2017学年度下学期八年级4月份月考数学试题一、选择题(共30分,每题3分)1. 以下列各组数据为三角形三边,能构成直角三角形的是( ) A.4cm ,8cm ,7cm B.2cm ,2cm ,2cm C .2cm ,2cm ,4cm D .13cm ,12cm ,5cm2.在下面给出的条件中,能判定四边形ABCD 是平行四边形的是( ) A.AB =BC ,AD =CD B.AB ∥CD ,AD =BC C.AB ∥CD ,AB =CD D.∠A =∠B ,∠C =∠D3.如图,□ABCD 中,对角线AC 、BD 交于点O ,点E 是BC 的中点.若OE=3cm ,则CD 的长为 ( ) cmA. 3B.4C. 5D.64.如图,在□ABCD 中,∠B=80º,AE 平分∠BAD 交BC 于点E ,CF//AE 交AD 于点 F ,则∠1=( ) A. 40º B. 50º C. 60º D. 80º5. 已知一个直角三角形的两边长分别为3和4,则第三边长是( ) A .5 B .25 C .7 D .5或76. 如图,长方形ABCD 中,AB=3,AD=9,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则AE 的长为( )A .3B .4C .5D .6 7.如图,在△ABC 中,AD⊥BC 于D ,AB=3,BD=2,DC=1,则AC=( ) A. 6 B. 6 C. 5 D. 48.下列说法错误的是( ) A. 四个角都相等的四边形是矩形;B. 一组对边平行且一组对角相等的四边形是平行四边形;C. 两条对角线相等的四边形是矩形;D. 三角形的中位线平行于三角形的第三边且等于第三边的一半.9. 如图,矩形ABCD 中,AB =3,AD =4,点P 在AD 上,PE⊥AC 于E ,PF⊥BD 于F ,则PE+PF 等于( ) A .75 B .125 C .135 D .2第3题图第4题图第7题图ADBcEFPC /F ECDBA第6题图线段AD 的延长线于G ,下面结论:①BE ; ②∠A=∠BHE ; ③AB=BH ; ④∠BHD=∠BDG;其中正确的个数是( )A.1B.2C.3D.4 二、填空题(共30分,每题3分)11. 在平行四边形ABCD 中,∠A :∠B=3:2,则∠C=______.12. 三角形三边长分别为6,8,10,那么它最长边上的高等于 .13. 矩形的一条边长是32,一条对角线的长是4,则这个矩形的面积是___ ___.14. 如图,一个长为10米的梯子AB ,斜靠在一竖直的墙AO 上,这时AO 的长为8米,如果梯子的顶端A 沿墙下滑2米到点C 处,那么梯子底端B 将外移到D ,则线段BD 的长为__________米. 15.如图,所示,DE 是△ABC 的中位线,△ABC 的周长为8,则△A DE 的周长为________.16. 如图,在平行四边形ABCD 中,DE 平分∠ADC ,AD=6,BE=2,则平行四边形ABCD 的周长是 .17.等边三角形的边长为2,则该三角形的面积为__________.18.如图,在矩形ABCD 中,AE ⊥BD 于E ,BE:DE=1:3,则∠EAD=_____ .第18题图 第20题图19.矩形的一个角的平分线分一边为3cm 和4cm 两部分,则这个矩形的对角线的长度是___ ___cm.20.如图,在四边形ABCD 中,∠B =30°,∠BA D=120°,点E 为AB 的中点, DE ⊥CE ,若BC=4,CD=132,则AD=___ _ ____.三、解答题(共60分) 21. (本题6分)先化简,再求代数式22424412x x xx x x x -+÷--++-的值,其中x =2+2.B AC在正方形网格中,每个小正方形的边长为1.=90°,使它的三条边均为整数,且较短的直角边长为3,要求它的顶点均在 (1)在图①中,画直角△ABC ,C格点上.(2)在图②中,画平行四边形ABCD,使它的面积为12 且有一锐角为45°,要求它的顶点均在格点上.①②23.(本题8分)如图,某港口P位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.他们离开港口一个半小时后分别位于点Q、R 处,且相距30海里.已知“远航”号沿北偏东60°方向航行.(1)说明“海天”号沿哪个方向航行?(2)请直接写出此时“海天”号到海岸线的距离.如图,△ABC中,D、E分别是AB、AC的中点,延长DE到点F,使得EF=2DE,连接CF.(1)求证:四边形BCFE是平行四边形;(2)若BE=EF,CE=4,∠BCF=120°,求平行四边形BCFE的面积.25.(本题10分)某服装店老板到厂家选购A、B两种品牌的儿童服装,每套A品牌服装进价比B品牌服装每套进价多25元,用2000元购进A种服装的数量是用750元购进B种服装数量的2倍.(1)求A、B两种品牌服装每套进价分别是多少元?(2)若A品牌服装每套售价为130元,B品牌服装每套售价为95元,服装店老板决定,购进B品牌服装的数量比购进A品牌服装的数量的2倍还多4套,两种服装全部售出后,要使总的获利不少于1200元,则最少购进A品牌服装多少套?图1图2图3D 26.(本题10分)如图,AD 是△ABC 的中线,AE∥BC,BE 交AD 于点F ,且AF=DF . (1)如图1,求证:四边形ADCE 是平行四边形;(2)如图2,在(1)的条件下,∠ADB=120°,设对角线AC 、DE 交于点O ,过点O 作OQ⊥AC 交∠A DB 的角平分线于点Q. OQ 与AD 交于P 点.求证:AD-DC=DQ ;(3)如图3,在(2)的条件下,若CE=3,QD=1,求AP 的长.27. (本题10分)如图,在平面直角坐标系中,矩形OABC的顶点A、C分别落在x轴、y轴正半轴上,点E在边OA上,点F在2).边OC上,且AE=EF,已知B(6,8),F(0,3(1)求点E的坐标;(2)点E关于点A的对称点为点D,点P从C点出发,以每秒1个单位的速度沿射线CB运动,设P点的运动时间为t秒,△PBD的面积为S,用含t的代数式表示S;(3)在(2)的条件下,点M为平面内一点,点P在线段BC上运动时,作∠PDO的平分线交y轴于点N,t为何值时,四边形DPNM为矩形?并求此时点M的坐标.。

人教新版八年级下册数学《第17章 勾股定理》单元测试卷和答案详解(PDF可打印)

人教新版八年级下册数学《第17章 勾股定理》单元测试卷和答案详解(PDF可打印)

人教新版八年级下册《第17章勾股定理》单元测试卷(1)一、选择题(本题共计7小题,每题3分,共计21分,)1.(3分)已知直角三角形的两条直角边的长分别为3和5,则斜边的长为()A.3B.4C.5D.2.(3分)下列定理中,有逆定理的个数是()①有两边相等的三角形是等腰三角形;②若两个数互为相反数,他们的奇次幂也互为相反数;③面积相等的长方形周长也一定相等;④若a=b,则a2=b2.A.1个B.2个C.3个D.4个3.(3分)如图,在Rt△ABC中,∠ACB=90°,正方形AEDC,BCFG的面积分别为25和144,则AB的长度为()A.13B.169C.12D.54.(3分)下列给出的三条线段的长,其中能组成直角三角形的是()A.62、82、102B.6、8、9C.2、、D.、、5.(3分)下列命题的逆命题不成立的是()A.如果a>b,那么a﹣b>0B.如果a+b=0,那么a2=b2C.等边对等角D.如果△ABC是直角三角形(两直角边为a,b,斜边为c),那么a2+b2=c26.(3分)下列各组数分别为一个三角形三边的长,其中不能构成直角三角形的一组是()A.8,10,12B.3,4,5C.5,12,13D.7,24,25 7.(3分)在下列各组数中能组成直角三角形的有();(1)9、80、81(2)10、24、25(3)15、20、25(4)8、15、17.A.1组B.2组C.3组D.4组二、填空题(本题共计7小题,每题3分,共计21分,)8.(3分)如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm和cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是cm.9.(3分)如图所示,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=5,S3=15,则S2=.10.(3分)如图,一根旗杆于离地面3m处断裂,倒向地面,旗杆顶落于离旗杆底部4m处,旗杆断裂之前高米.11.(3分)如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,几分钟后船到达点D的位置,此时绳子CD的长为10米,问船向岸边移动了米.12.(3分)如图是单位长度为1的网格图,A、B、C、D是4个网格线的交点,以其中两点为端点的线段中,任意取3条,能够组成个直角三角形.13.(3分)如图,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0.7米,当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3米,木板顶端向下滑动了0.9米,则小猫在木板上爬动了米.14.(3分)如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积,S2=2π,则S3是.三、解答题(本题共计7小题,共计78分,)15.如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯足向外移0.8米,那么梯子的顶端沿墙下滑多少米?16.我校有两个课外小组的同学到校外去采集植物标本,已知第一组的速度为30米/分钟,第二组的速度为40米/分钟,且两组行走的路线为直线,半小时后,两组同学同时停下来,这时两组同学正好相距1500米.(1)请你判断一下两组同学行走的夹角是否为直角?并说明理由.(2)如果接下来两组同学以原来的速度相向而行,那么经过多长时间后才能相遇?17.已知图中的每个方格都是边长为1的小正方形,每个小正方形的顶点称为格点,△ABC的顶点在格点上,称为格点三角形,请按要求完成下列各题(1)填空:AB=,BC=,AC=;(2)试判断△ABC的形状,并说明理由.18.如图,台风过后,一颗白杨树在高地某处断裂,白杨树的顶部落在离白杨树根部8米处,已知白杨树高16米,你能求出白杨树在离根部多少米的位置断裂吗?19.如图,在四边形ABCD中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.20.如图,公路MN和公路PQ在点P处交汇,公路PQ上点A处有学校,点A到公路MN 的距离为80m,现有一拖拉机在公路MN上以18km/h的速度沿PN方向行驶,拖拉机行驶时周围100m以内都会受到噪音声的影响,试问该校受影响的时间为多少秒?21.为了加强农村“疫情防控”知识,某镇政府采用了移动宣传的形式进行宣传:如图,笔直公路l的一侧有一村庄P,P到公路l的距离为1200米,宣传车M匀速在l上行驶,在车周围1300米以内能听到广播宣传,若至少连续宣传5分钟才有效果,宣传车最高时速是多少?人教新版八年级下册《第17章勾股定理》单元测试卷(1)参考答案与试题解析一、选择题(本题共计7小题,每题3分,共计21分,)1.(3分)已知直角三角形的两条直角边的长分别为3和5,则斜边的长为()A.3B.4C.5D.【考点】勾股定理.【分析】直接利用勾股定理计算得出答案.【解答】解:∵直角三角形的两条直角边的长分别为3和5,∴斜边的长为:=.故选:D.2.(3分)下列定理中,有逆定理的个数是()①有两边相等的三角形是等腰三角形;②若两个数互为相反数,他们的奇次幂也互为相反数;③面积相等的长方形周长也一定相等;④若a=b,则a2=b2.A.1个B.2个C.3个D.4个【考点】命题与定理.【分析】分别写出各个命题的逆命题,逐项判断即可.【解答】解:①有两边相等的三角形是等腰三角形的逆命题是等腰三角形的两边相等,正确,有逆定理;②有两边相等的三角形是等腰三角形的逆命题是若两个数的奇次幂互为相反数,这两个数互为相反数,正确,有逆定理;③面积相等的长方形周长也一定相等的逆命题是周长相等的长方形面积也相等,为假命题,无逆定理;④若a=b,则a2=b2的逆命题是若a2=b2,则a=b,为假命题,无逆定理;故有逆定理的个数是2个,故选:B.3.(3分)如图,在Rt△ABC中,∠ACB=90°,正方形AEDC,BCFG的面积分别为25和144,则AB的长度为()A.13B.169C.12D.5【考点】勾股定理.【分析】根据勾股定理即可得到结论.【解答】解:AB==13,故选:A.4.(3分)下列给出的三条线段的长,其中能组成直角三角形的是()A.62、82、102B.6、8、9C.2、、D.、、【考点】勾股定理的逆定理.【分析】先找出两小边,求出两小边的平方和,求出大边的平方,再根据勾股定理的逆定理判断即可.【解答】解:A、(62)2+(82)2≠(102)2,即组成的三角形不是直角三角形,故本选项错误;B、62+82≠92,即组成的三角形不是直角三角形,故本选项错误;C、22+()2≠()2,即组成的三角形不是直角三角形,故本选项错误;D、()2+()2=()2,即组成的三角形是直角三角形,故本选项正确;故选:D.5.(3分)下列命题的逆命题不成立的是()A.如果a>b,那么a﹣b>0B.如果a+b=0,那么a2=b2C.等边对等角D.如果△ABC是直角三角形(两直角边为a,b,斜边为c),那么a2+b2=c2【考点】命题与定理.【分析】写出各个命题的逆命题,然后判断正误即可.【解答】解:A、逆命题为:如果a﹣b>0,那么a>b,逆命题成立;B、逆命题为:如果a2=b2,那么a+b=0,逆命题不成立;C、逆命题为:等角对等边,逆命题成立;D、逆命题为:如果三角形三边满足a2+b2=c2,那么该三角形是直角三角形,逆命题成立;故选:B.6.(3分)下列各组数分别为一个三角形三边的长,其中不能构成直角三角形的一组是()A.8,10,12B.3,4,5C.5,12,13D.7,24,25【考点】勾股定理的逆定理.【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【解答】解:A、∵82+102≠122,∴三条线段不能组成直角三角形,故A选项符合题意;B、∵32+42=52,∴三条线段能组成直角三角形,故B选项不符合题意;C、∵52+122=132,∴三条线段能组成直角三角形,故A选项不符合题意;D、∵72+242=252,∴三条线段能组成直角三角形,故D选项不符合题意;故选:A.7.(3分)在下列各组数中能组成直角三角形的有();(1)9、80、81(2)10、24、25(3)15、20、25(4)8、15、17.A.1组B.2组C.3组D.4组【考点】勾股数.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:(1)92+802≠812,根据勾股定理的逆定理,故不是直角三角形;(2)102+242≠252,根据勾股定理的逆定理,故不是直角三角形;(3)152+202=252,根据勾股定理的逆定理,故是直角三角形;(4)82+152=172,根据勾股定理的逆定理,故是直角三角形.故选:B.二、填空题(本题共计7小题,每题3分,共计21分,)8.(3分)如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm和cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是5cm.【考点】勾股定理的应用.【分析】由题意可知长方体对角线是最长的,当木条在盒子里对角放置的时候露在外面的长度最小,利用勾股定理求解即可.【解答】解:由题意知:盒子底面对角长为=10cm,盒子的对角线长:=20cm,细木棒长25cm,故细木棒露在盒外面的最短长度是:25﹣20=5cm.故答案为:5.9.(3分)如图所示,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=5,S3=15,则S2=10.【考点】勾股定理.【分析】由勾股定理得AB2=BC2+AC2,再结合正方形面积公式得到S3=S1+S2,即可求出S2的值.【解答】解:∵△ABC为直角三角形,∠ACB=90°,∴AB2=BC2+AC2,∵以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S3=15,S1=5,∴BC2=5,AB2=15,S3=S1+S2,则S2=S3﹣S1=15﹣5=10,故答案为:10.10.(3分)如图,一根旗杆于离地面3m处断裂,倒向地面,旗杆顶落于离旗杆底部4m处,旗杆断裂之前高8米.【考点】勾股定理的应用.【分析】如图,由题意,AC⊥BC,AC=3米,BC=4米,旗杆折断之前的高度高度就是AC+AB,根据勾股定理求出AB即可解决问题.【解答】解:如图,由题意,AC⊥BC,AC=3米,BC=4米,旗杆折断之前的高度高度就是AC+AB.在Rt△ACB中,∠C=90°,AC=3米,BC=4米,AB===5(米),∴旗杆折断之前的高度高度=AC+AB=3+5=8(米),故答案为:8.11.(3分)如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,几分钟后船到达点D的位置,此时绳子CD的长为10米,问船向岸边移动了9米.【考点】勾股定理的应用.【分析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB﹣AD可得BD长.【解答】解:在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB===15(米),∵CD=10(米),∴AD==6(米),∴BD=AB﹣AD=15﹣6=9(米),答:船向岸边移动了9米,故答案为:9.12.(3分)如图是单位长度为1的网格图,A、B、C、D是4个网格线的交点,以其中两点为端点的线段中,任意取3条,能够组成2个直角三角形.【考点】勾股定理的逆定理;勾股定理.【分析】由勾股定理求出线段AD、AC、AB、BC、BD、CD的平方,由勾股定理的逆定理即可得出结果.【解答】解:由勾股定理得:AD2=BD2=12+32=10,AC2=12+22=5,AB2=22+42=20,BC2=CD2=25,∵AD2+BD2=AB2,AC2+AB2=BC2,∴能够组成2个直角三角形.故答案为:2.13.(3分)如图,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0.7米,当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3米,木板顶端向下滑动了0.9米,则小猫在木板上爬动了 2.5米.【考点】勾股定理的应用.【分析】要求小猫在木板上爬动的距离,即求木板长,可以设CD=x,AB=DE=y,则根据木板长不会变这个等量关系列出方程组,即可求BC的长度,在直角△ABC中,根据BC,AC即可求AB.【解答】解:已知AE=1.3米,AC=0.7米,BD=0.9米,设CD=x,AB=DE=y,则BC=0.9+x则在直角△ABC中,y2=(0.9+x)2+0.72,在直角△CDE中,y2=x2+(1.3+0.7)2,解方程组得:x=1.5米,y=2.5米,故答案为 2.5.14.(3分)如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积,S2=2π,则S3是.【考点】勾股定理.【分析】在直角三角形中,利用勾股定理得到a2+b2=c2,在等式两边同时乘以,变形后得到S2+S3=S1,将已知的S1与S2代入,即可求出S3的值.【解答】解:在直角三角形中,利用勾股定理得:a2+b2=c2,∴a2+b2=c2,变形为:()2π+()2π=()2π,即S2+S3=S1,又S1=,S2=2π,则S3=S1﹣S2=﹣2π=.故答案为:三、解答题(本题共计7小题,共计78分,)15.如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯足向外移0.8米,那么梯子的顶端沿墙下滑多少米?【考点】勾股定理的应用.【分析】在直角三角形ABC中,已知AB,BC根据勾股定理即可求AC的长度,根据EC =EB+BC即可求得EC的长度,在直角三角形DEC中,已知DE,EC即可求得DC的长度,根据AD=AC﹣DC即可求得AD的长度.【解答】解:在直角△ABC中,AC==2.4(m),∴EC=BC+BE=1.5m在直角△DEC中,DC===2(m),∴AD=AC﹣DC=0.4(m),答:梯子的顶端沿墙下滑0.4m.16.我校有两个课外小组的同学到校外去采集植物标本,已知第一组的速度为30米/分钟,第二组的速度为40米/分钟,且两组行走的路线为直线,半小时后,两组同学同时停下来,这时两组同学正好相距1500米.(1)请你判断一下两组同学行走的夹角是否为直角?并说明理由.(2)如果接下来两组同学以原来的速度相向而行,那么经过多长时间后才能相遇?【考点】勾股定理的逆定理.【分析】(1)先分别求出两个小组走的路程,再根据勾股定理的逆定理即可作出判断;(2)根据路程和÷速度和=相遇的时间,列式计算即可求解.【解答】解:(1)第一组的路程:30×30=900(米),第二组的路程:40×30=1200(米),∵9002+12002=15002,∴两组同学行走的夹角是直角;(2)1500÷(30+40)=1500÷70=21(分钟).答:经过21分钟后才能相遇.17.已知图中的每个方格都是边长为1的小正方形,每个小正方形的顶点称为格点,△ABC 的顶点在格点上,称为格点三角形,请按要求完成下列各题(1)填空:AB=3,BC=2,AC=;(2)试判断△ABC的形状,并说明理由.【考点】勾股定理的逆定理;勾股定理.【分析】(1)根据勾股定理即可求得△ABC的三边的长;(2)由勾股定理的逆定理即可作出判断.【解答】解:(1)根据勾股定理即可得到:AB2=62+32=45,BC2=42+22=20,AC2=72+42=65,则AB=3,BC=2,AC=.故答案为3,2,;(2)△ABC是直角三角形,理由如下:∵AB2=45,BC2=20,AC2=65,AB2+BC2=45+20=65,∴AB2+BC2=AC2,∴△ABC是直角三角形.18.如图,台风过后,一颗白杨树在高地某处断裂,白杨树的顶部落在离白杨树根部8米处,已知白杨树高16米,你能求出白杨树在离根部多少米的位置断裂吗?【考点】勾股定理的应用.【分析】根据题意结合勾股定理求出答案.【解答】解:设白杨树在离根部x米的位置断裂,根据题意可得:x2+82=(16﹣x)2,解得:x=6.答:白杨树在离根部6米的位置断裂.19.如图,在四边形ABCD中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.【考点】勾股定理的逆定理;勾股定理.【分析】连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出△ACD是直角三角形,分别求出△ABC和△ACD的面积,即可得出答案.【解答】解:连接AC,在△ABC中,∵∠B=90°,AB=3,BC=4,∴AC==5,S△ABC=AB•BC=×3×4=6,在△ACD中,∵AD=13,AC=5,CD=12,∴CD2+AC2=AD2,∴△ACD是直角三角形,=AC•CD=×5×12=30.∴S△ACD+S△ACD=6+30=36.∴四边形ABCD的面积=S△ABC20.如图,公路MN和公路PQ在点P处交汇,公路PQ上点A处有学校,点A到公路MN 的距离为80m,现有一拖拉机在公路MN上以18km/h的速度沿PN方向行驶,拖拉机行驶时周围100m以内都会受到噪音声的影响,试问该校受影响的时间为多少秒?【考点】勾股定理的应用.【分析】设拖拉机开到C处刚好开始受到影响,行驶到D处时结束,在Rt△ACB中求出CB,继而得出CD,再由拖拉机的速度可得出所需时间.【解答】解:设拖拉机开到C处刚好开始受到影响,行驶到D处时结束了噪声的影响.则有CA=DA=100m,在Rt△ABC中,,∴CD=2CB=120m,∵18km/h=18000m/3600s=5m/s,∴该校受影响的时间为:120÷5=24(s).答:该校受影响拖拉机产生的噪声的影响时间为24秒.21.为了加强农村“疫情防控”知识,某镇政府采用了移动宣传的形式进行宣传:如图,笔直公路l的一侧有一村庄P,P到公路l的距离为1200米,宣传车M匀速在l上行驶,在车周围1300米以内能听到广播宣传,若至少连续宣传5分钟才有效果,宣传车最高时速是多少?【考点】勾股定理;一元一次不等式的应用.【分析】作PH⊥l,垂足为H,由勾股定理求出MH=500,则MM'=1000,由题意可得5x≤1000,解不等式可得出答案.【解答】解:作PH⊥l,垂足为H,∵PM=1300米,PH=1200米,∠PHM=90°,∴MH===500(米),根据对称性可知,M'H=MH,∴MM'=1000米,即宣传车能够让P点有效听到的距离为1000米,设宣传车时速是x米/分钟,由题意可得5x≤1000,∴x≤200,200米/分钟=12km/h.答:宣传车最高时速是12km/h.。

八年级(下)数学培优17

八年级(下)数学培优17

八年级(下)数学培优17-------期末仿真试题一、选择题(每小题4分,共48分) 1. 下列计算正确的是( )A.632=+ B.62322=⋅ C. 33-12= D. 5351=÷2. 下列各数据中,不能组成直角三角形的是( )A.3, 4, 5B.8, 15, 16C.6,8, 10D. 321,, 3. 下列条件中能判断四边形ABCD 为平行四边形的是( )A .AB=BC ;CD=DAB .AB ∥CD ;AB=CDC .AD ∥BC ;AB=CD D .AD ∥BC ;∠B=∠C 4. 一次函数x 3-5y =的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限5. 2014年8月26日,第二届青奥会将在南京举行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极准备,在某天“110米跨栏”训练中,每人各跑5次,据统计,它们的平均成绩都是13.2秒,甲、乙、丙、丁成绩的方差分别是0.11、0.03、0.05、0.02.则当天这四位运动员“110米跨栏”训练成绩最稳定的是( )A. 甲B. 乙C. 丙D. 丁6. 小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文章,录入一段时间后因事暂停,过了一会儿,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x ,录入字数为y ,下面能反映y 与x 的函数关系的大致图象是( )7.如图,△ABC 中,BC=18,若BD ⊥AC 于D ,CE ⊥AB 于E ,F 、G 分别为BC 、DE 的中点,若ED=10,则FG 的长为( ) A. 142 B.9 C. 10 D. 无法确定(第7题) (第8题) (第9题)8. 如图,函数y=2x 和y=ax+8的图象相交于点A (m ,6),则不等式ax >2x-8的解集为( )A .x <3B .x >3C .x <6D .x >69. 如图,一根长为2.5米的梯子斜靠在垂直于地面的墙上,这时梯子的底端B 离开墙根为0.7米,如果梯子的底端向外(远离墙根方向)移动0.8米至D 处,则梯子的顶端将沿墙向下移动( )A .0.8米B .0.7米C .0.4米D .0.3米与a 217-有意义的 x 的取值范围是( )A .x ≤10B .x ≥10C .x <10D .x >10 11.如图,已知直线l :x y 33=,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点 B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直 线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为( )A .(0,64)B .(0,128)C .(0,256)D .(0,512)AB ,AE 平分∠BAD ,DF ⊥AE 于F ,BF 交DE 、CD 于O 、H ,下列结论:①∠DEA=∠DEC ;②BF=FH ;③OE=OD ;④BC-CH=2EF .其中正确结论的个数是( )A.1个B.2个C.3个D.4个A B CD(第11题)(第12题)二、填空题(每小题4分,共24分)14. 如图,A 、B 两点表示位于一池塘两端的两棵树,为了测量A 、B 两点间的距离,某同学先在地面上取一个可以直接到达A 、B 点C ,确定AC 、BC的中点D 、E ,15. 如图,菱形ABCD 中,∠A=60°,BD=7,则菱形ABCD 的周长为 .16. 若3155+-+-=x x y 17. 一次函数y=kx+b 的图象过点A (-1,2),且与y 轴交于点B ,△OAB的面积18.如图,正方形ABCD 的边长为6,点O 是对角线AC 、BD 的交点.点E 在CD 上,且DE=2CE ,连接BE.过点C 作CF ⊥BE ,垂足是F ,连接OF ,则OF 的长为.三、计算题(每小题5分,共10分)()10261420143-⎪⎭⎫⎝⎛+-⨯--+ (2))(714-1852253÷+⨯20. 已知:一次函数y=kx+b 的图象经过M (0,2),N (1,3)两点. (1)求k 、b 的值;(2)若一次函数y=kx+b 的图象与x 轴交点为A (a ,0),求a的值.21. 先化简,后求值:2222(2)a b a b ab a b+-+÷-, 其中1,1a b ==.22. 如图,矩形ABCD ,过对角线BD 的中点O 作BD 的垂线交AD 于E ,交BC 于F , 连结EB、DF .(1)试判断四边形DEBF 是什么四边形,并证明你的结论;23.为增强学生身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(14题图) (15题图)24. 一火车货运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往广州,这列货车可挂A 、B 两种不同规格的货厢50节,已知用一节A 型货厢的运费是0.5万元,用一节B 型货厢的运费是0.8万元。

人教版初中数学八年级下册《17.1 勾股定理》同步练习卷(含答案解析

人教版初中数学八年级下册《17.1 勾股定理》同步练习卷(含答案解析

人教新版八年级下学期《17.1 勾股定理》同步练习卷一.填空题(共19小题)1.在凸四边形ABCD中,AD=,AB+CD=2,∠BAD=60°,∠ADC=120°.M是BC的中点,则DM=.2.如图所示,A、B是4×5网络中的格点,网格中的每个小正方形的边长为1,请在图中清晰标出使以A、B、C为顶点的三角形是等腰三角形的所有格点C 的位置.3.如图,已知,直角△ABC中,∠ACB,从直角三角形两个锐角顶点所引的中线的长AD=5,BE=2,则斜边AB之长为.4.如图,有一个直角三角形ABC,∠C=90°,AC=10,BC=5,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,当AP=时,才能使△ABC与△QPA全等.5.如图,P是长方形ABCD内一点,已知PA=3,PB=4,PC=5,那么PD2等于.6.如图所示的螺旋形是由一系列直角三角形组成的,则第10个直角三角形的斜边长为.7.直角三角形的两条直角边分别为3和4,则斜边上的高为.8.若一个直角三角形的其中两条边长分别为6和8,则第三边长为.9.如图,在△ABC中,∠C=90°,AD平分∠CAB,AD=10cm,AC=8cm,那么D 点到直线AB的距离是cm.10.直角三角形中,以直角边为边长的两个正方形的面积分别为7cm2,8cm2,则以斜边为边长的正方形的面积为cm2.11.两边长分别为3和5的直角三角形的第三边长为.12.课堂上,老师给同学们出了一道题:“有一直角三角形的两边长分别为6cm 和8cm,你们知道第三边的长度吗”刘飞立刻回答;“第三边是10cm.”你认为第三边应该是cm.13.已知:如图,△ABC中,过AB的中点F作DE⊥BC,垂足为E,交CA的延长线于点D.若EF=3,BE=4,∠C=45°,则DF:FE的值为.14.直角三角形的两条直角边长分别为cm、cm,则这个直角三角形的斜边长为,面积为.15.如图所示,以直角三角形ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=4,S2=8,则S3=.16.已知:如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形,若斜边AB=5,则图中阴影部分的面积为.17.已知,如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,若AC=4,BC=3,则CD=.18.如图,每个小方格都是边长为1的正方形,点A,B是方格纸的两个格点(即正方形的顶点),在这个4×4的方格纸中,找出格点C,使△ABC是等腰三角形,这样的点C共有个.19.如图,三个正方形A,B,C如图放置,且正方形A,B的面积分别是2cm2和3cm2,则正方形C的面积等于cm2.二.解答题(共31小题)20.如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?21.如图,Rt△ABC的斜边AB=5,cosA=,(1)用尺规作图作线段AC的垂直平分线l(保留作图痕迹,不要求写作法、证明);(2)若直线l与AB、AC分别相交于D、E两点,求DE的长.22.如图,在边长为c的正方形中,有四个斜边为c的全等直角三角形,已知其直角边长为a,b.利用这个图试说明勾股定理.23.如图,四个全等的直角三角形的拼图,你能验证勾股定理吗?试试看.的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:.(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积.(3)如图3,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13、10、17①试说明△PQR、△BCR、△DEQ、△AFP的面积相等;②请利用第2小题解题方法求六边形花坛ABCDEF的面积.25.如图,在△ABC中,D为BC边上的一点,已知AB=13,AD=12,AC=15,BD=5,求CD的长.26.如图,△ABC中,AB=13,BC=14,AC=15,求BC边上的高AD.的面积.小明同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)△ABC的面积为.(2)若△DEF的三边DE、EF、DF长分别为,,,请在图2的正方形网格中画出相应的△DEF,并求出△DEF的面积为.(3)在△ABC中,AB=2,AC=4,BC=2,以AB为边向△ABC外作△ABD(D 与C在AB异侧),使△ABD为等腰直角三角形,则线段CD的长为.28.如图,AD⊥AB,BC⊥AB,AB=20,AD=8,BC=12,E为AB上一点,且DE=CE,求AE.29.如图,在△ABC中,∠BAC=90°,AB=20,AC=15,AD⊥BC,垂足为D,(1)求BC的长;(2)求AD的长.30.如图,已知△ABC中,∠ACB=90°,AC=BC,BE⊥CE,垂足为E,AD⊥CE,垂足为D,(1)判断直线BE与AD的位置关系是;BE与AD之间的距离是线段的长;(2)若AD=6cm,BE=2cm,求BE与AD之间的距离及AB的长.31.如图,将在Rt△ABC绕其锐角顶点A旋转90°得到在Rt△ADE,连接BE,延长DE、BC相交于点F,则有∠BFE=90°,且四边形ACFD是一个正方形.(1)判断△ABE的形状,并证明你的结论;(2)用含b代数式表示四边形ABFE的面积;(3)求证:a2+b2=c2.32.如图,在Rt△ABC中,∠ACB=90°,AC=BC=10,CD是射线,∠BCF=60°,点D在AB上,AF、BE分别垂直于CD(或延长线)于F、E,求EF的长.33.如图,直角坐标系中,已知A(2,4),B(5,0),动点P从B点出发,沿BO向终点O移动;动点Q从点A点出发,沿AB向终点B移动.两点同时出发,速度均为每秒1个单位.设从出发起运动了x秒.(1)点P的坐标是(,);(2)点Q的坐标是(,);(3)x为何值时,△APQ是以AP为腰的等腰三角形?34.在如图的5×5网格中,小方格的边长为1.(1)图中格点正方形ABCD的面积为;(2)若连接AC,则以AC为一边的正方形的面积为;(3)在所给网格中画一个格点正方形,使其各边都不在格线上且面积最大,你所画的正方形面积为.35.在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小宝同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上;思维拓展:(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为、、(a>0),请利用图2的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积填写在横线上;探索创新:(3)若△ABC中有两边的长分别为、(a>0),且△ABC的面积为2a2,试运用构图法在图3的正方形网格(每个小正方形的边长为a)中画出所有符合题意的△ABC(全等的三角形视为同一种情况),并求出它的第三条边长填写在横线上.36.已知:在四边形ABCD中,∠D=90°,DC=3cm,AD=4cm,AB=12cm,BC=13cm.求四边形ABCD的面积.37.已知a、b是一个直角三角形两条直角边的长,且(a2+b2)(a2+b2+1)=12,求这个直角三角形的斜边长.38.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,所得的差就是小数部分.又例如:因为,即,所以的整数部分为2,小数部分为.请解答:(1)如果的整数部分为a,那么a=.如果,其中b是整数,且0<c<1,那么b=,c=.(2)将(1)中的a、b作为直角三角形的两条直角边,请你计算第三边的长度.39.如图,正方形MNPQ网格中,每个小方格的边长都相等,正方形ABCD的顶点在正方形MNPQ的4条边的小方格顶点上.(1)设正方形MNPQ网格内的每个小方格的边长为1,求:①△ABQ,△BCM,△CDN,△ADP的面积;②正方形ABCD的面积;(2)设MB=a,BQ=b,利用这个图形中的直角三角形和正方形的面积关系,你能验证已学过的哪一个数学公式或定理吗?相信你能给出简明的推理过程.40.在第六册课本的阅读材料中,介绍了一个第七届国际数学教育大会的会徽.它的主题图案是由一连串如图所示的直角三角形演化而成的.设其中的第一个直角三角形OA1A2是等腰三角形,且OA1=A1A2=A2A3=A3A4=…=A8A9=1,请你先把图中其它8条线段的长计算出来,填在下面的表格中,然后再计算这8条线段的长的乘积.41.如图,是4个完全相同的直角三角形适当拼接后形成的图形,这些直角三角形的两直角边分别为a、b,斜边为c.你能利用这个图形验证勾股定理吗?42.在数轴上作出表示的点.43.在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AC=6,BC=8,(1)求AB的长;(2)求CD的长.44.如图已知,每个小方格是边长为1的正方形,求△ABC的周长(结果用根号表示).45.图1、图2中的每个小正方形的边长都是1,在图1中画出一个面积是3的直角三角形;在图2中画出一个面积是5的四边形.46.问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形BC边上的高.杰杰同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处).借用网格等知识就能计算出这个三角形BC边上的高.(1)请在正方形网格中画出格点△ABC;(2)求出这个三角形BC边上的高.47.美国第二十届总统加菲尔德也曾经给出了勾股定理的一种证明方法,如图,他用两个全等的直角三角形和一个等腰直角三角形拼出了一个直角梯形,请你利用此图形验证勾股定理.48.在图中,BC长为3,AB长为4,AF长为12,求正方形的面积.(其中∠FAC 和∠ABC都为直角.)49.用直尺和圆规在如图所示的数轴上作出的点.50.我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所知道的特殊四边形中是勾股四边形的两种图形的名称,.(2)如下图(1),请你在图中画出以格点为顶点,OA、OB为勾股边,且对角线相同的所有勾股四边形OAMB.(3)如图(2),以△ABC边AB作如图正三角形ABD,∠CBE=60°,且BE=BC,连接DE、DC,∠DCB=30°.求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.人教新版八年级下学期《17.1 勾股定理》同步练习卷参考答案与试题解析一.填空题(共19小题)1.在凸四边形ABCD中,AD=,AB+CD=2,∠BAD=60°,∠ADC=120°.M是BC的中点,则DM= 1.5.【分析】本题要靠辅助线的帮助.根据题意画出图形,作出辅助线,根据各边的关系求解.【解答】解:如图,延长DM、AB,交于E,在AE上取中点F,连接DF.∵∠BAD=60°,∠ADC=120°,∴∠BAD+∠ADC=180°,∴AB∥CD,∴∠EBM=∠DCM;在△EMB和△DMC中,,∴△EMB≌△DMC,∴BE=CD;∵AB+CD=2,点F为EA的中点,∠BAD=60°,AD=AF=EF=,∴∠EDA=90°;根据勾股定理可得ED=AD,∴ED=3∵M为ED的中点∴MD=1.5.【点评】本题是一道根据三角形的中线定义结合勾股定理求解的综合题,有利于锻炼学生综合分析、解答问题的能力.2.如图所示,A、B是4×5网络中的格点,网格中的每个小正方形的边长为1,请在图中清晰标出使以A、B、C为顶点的三角形是等腰三角形的所有格点C 的位置.【分析】根据等腰三角形的性质在表格中找出C点.【解答】解:以A为圆心,AB长为半径画圆,圆弧经过格点C2、C3;以B为圆心,AB长为半径画圆,圆弧经过格点C1,∴BC1=AC2=AC3=AB==,∵因为AB的中点不在格点上,因此AB的垂直平分线不会经过格点∴C1、C2、C3是所要找的点.【点评】心动不如行动,赶快拿起圆规,画出图形,根据数形结合思想,利用全等三角形的性质解答此题.3.如图,已知,直角△ABC中,∠ACB,从直角三角形两个锐角顶点所引的中线的长AD=5,BE=2,则斜边AB之长为.【分析】设BC=x,AC=y,根据已知列方程组,从而可求得斜边的平方,即求得斜边的长.【解答】解:设BC=x,AC=y根据题意运用勾股定理,得整理得,=65,即x2+y2=52∴斜边的长是2.【点评】注意此题的解题技巧:根据已知条件,在两个直角三角形中运用勾股定理列方程组.求解的时候,注意不必分别求出未知数的值,只需求出两条直角边的平方和,运用勾股定理即可.4.如图,有一个直角三角形ABC,∠C=90°,AC=10,BC=5,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,当AP=5或10时,才能使△ABC与△QPA全等.【分析】分两种情形分别求解即可.【解答】解:当AP=5时,Rt△ABC≌Rt△QPA,理由是:∵∠C=90°,AQ⊥AC,∴∠C=∠QAP=90°,当AP=5=BC时,在Rt△ABC和Rt△QPA中,,∴Rt△ABC≌Rt△QPA(HL),当AP=AC=10,AQ=BC=5时,△ABC≌△PQA,故答案为:5或10.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.5.如图,P是长方形ABCD内一点,已知PA=3,PB=4,PC=5,那么PD2等于18.【分析】可过P作AD、AB的平行线,将矩形ABCD分割成四个小矩形,然后根据勾股定理求出PA、PB、PC、PD四条线段的长度的数量关系,然后再代值计算.【解答】解:如图,过P作AD、AB的平行线,原矩形被分成四个小矩形;由勾股定理得:PA2=a2+b2,PC2=c2+d2;PB2=b2+c2,PD2=a2+d2;因此:PA2+PC2=PB2+PD2,即:32+52=42+PD2,解得,PD2=18.【点评】此题考查了矩形的性质和勾股定理的应用,正确地得到PA、PB、PC、PD四条线段之间的数量关系至关重要.6.如图所示的螺旋形是由一系列直角三角形组成的,则第10个直角三角形的斜边长为.【分析】分别求出图中所给直角三角形的斜边长,找出规律,即可解答.【解答】解:根据图形,运用勾股定理知,第一个直角三角形的斜边是,第二个直角三角形的斜边是,推而广之,则第n个直角三角形的斜边是,所以第10个直角三角形的斜边长为.故答案为:.【点评】熟练运用勾股定理,能够根据具体数据进行推广,发现规律.7.直角三角形的两条直角边分别为3和4,则斜边上的高为 2.4.【分析】根据勾股定理求出斜边的长,利用面积法求出三角形斜边上的高.【解答】解:由勾股定理知,斜边c==5,设斜边上的高为h,根据直角三角形的面积公式得:S△=×3×4=×5h,∴h==2.4.【点评】本题利用了勾股定理和直角三角形的面积公式求解.8.若一个直角三角形的其中两条边长分别为6和8,则第三边长为10或2.【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,所以求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:设第三边为x,(1)若8是直角边,则第三边x是斜边,由勾股定理得,62+82=x2解得:x=10,(2)若8是斜边,则第三边x为直角边,由勾股定理得,62+x2=82,解得x=2.故第三边长为10或2.故答案为:10或2.【点评】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.9.如图,在△ABC中,∠C=90°,AD平分∠CAB,AD=10cm,AC=8cm,那么D 点到直线AB的距离是6cm.【分析】首先根据勾股定理求得CD的长,再根据角平分线上的点到角两边的距离相等,得D到AB得距离等于CD的长.【解答】解:∵AD=10cm,AC=8cm∴CD=6cm∵AD平分∠CAB∴D点到直线AB的距离=CD=6cm【点评】运用了勾股定理以及角平分线的性质.10.直角三角形中,以直角边为边长的两个正方形的面积分别为7cm2,8cm2,则以斜边为边长的正方形的面积为15cm2.【分析】设直角三角形ABC的两直角边是a和b,斜边是c,由勾股定理得出a2+b2=c2,求出以a b为边长的两个正方形的面积之和是a2+b2=15cm2,以斜边c为边长的正方形的面积是S=c2=a2+b2,代入求出即可.【解答】解:设直角三角形ABC的两直角边是a和b,斜边是c,则由勾股定理得:a2+b2=c2,则分别以a b为边长的两个正方形的面积之和是a2+b2=7cm2+8cm2=15cm2,以斜边c为边长的正方形的面积是S=c2=a2+b2=15cm2,故答案为:15.【点评】本题考查了勾股定理和正方形的面积,关键是得出c2=a2+b2=15cm2,题目具有一定的代表性,是一道比较好的题目.11.两边长分别为3和5的直角三角形的第三边长为4或.【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即5是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:当5是斜边时,第三边长==4;当5是直角边时,第三边长==.【点评】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.12.课堂上,老师给同学们出了一道题:“有一直角三角形的两边长分别为6cm 和8cm,你们知道第三边的长度吗”刘飞立刻回答;“第三边是10cm.”你认为第三边应该是10或2cm.【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边8既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:8是斜边时,第三边长=2cm;8是直角边时,第三边长=10cm.故第三边应该是10或2cm.【点评】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.13.已知:如图,△ABC中,过AB的中点F作DE⊥BC,垂足为E,交CA的延长线于点D.若EF=3,BE=4,∠C=45°,则DF:FE的值为7:3.【分析】过点A作AG⊥BC,垂足为G,根据DE⊥BC,F是AB中点,利用三角形中位线定理求出EG=BE=4,AG=2EF=6,再根据∠C=45°,DE⊥BC,求出DF,然后即可得出答案.【解答】解:过点A作AG⊥BC,垂足为G,∵DE⊥BC∴EF∥AG又∵F是AB中点∴E也为BG中点,==∴EG=BE=4 AG=2EF=6又∵∠C=45°∴AG=GC=6∴EC=EG+GC=10又∵∠C=45° DE⊥BC∴DE=EC=10∴DF=DE﹣EF=10﹣3=7∴DF:FE=7:3.故答案为:7:3.【点评】此题主要考查学生对勾股定理的理解和掌握,解答此题的关键是利用三角形中位线定理求出EG=BE=4,AG=2EF=6.14.直角三角形的两条直角边长分别为cm、cm,则这个直角三角形的斜边长为2cm,面积为cm2.【分析】此题直接利用勾股定理及三角形的面积解答即可.【解答】解:由勾股定理得,直角三角形的斜边长==2cm;直角三角形的面积=×=cm2.故填2cm,cm2.【点评】此题主要考查勾股定理及三角形的面积.15.如图所示,以直角三角形ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=4,S2=8,则S3=12.【分析】根据勾股定理的几何意义解答.【解答】解:∵△ABC直角三角形,∴BC2+AC2=AB2,∵S1=BC2,S2=AC2,S3=AB2,S1=4,S2=8,∴S3=S1+S2=12.故答案为12.【点评】此题是勾股定理题目,解决本题的关键是根据勾股定理得到三个面积之间的关.16.已知:如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形,若斜边AB=5,则图中阴影部分的面积为.【分析】根据勾股定理和等腰直角三角形的面积公式,可以证明:以直角三角形的两条直角边为斜边的等腰直角三角形的面积和等于以斜边为斜边的等腰直角三角形的面积.则阴影部分的面积即为以斜边为斜边的等腰直角三角形的面积的2倍.【解答】解:在Rt△ABC中,AB2=AC2+BC2,AB=5,S阴影=S△AHC+S△BFC+S△AEB=×+×+×,=(AC2+BC2+AB2),=AB2,=×52=.故答案为.【点评】本题考查了勾股定理的知识,要求能够运用勾股定理证明三个等腰直角三角形的面积之间的关系.17.已知,如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,若AC=4,BC=3,则CD=.【分析】根据勾股定理求得AB的长,再根据三角形的面积公式求得CD即可.【解答】解:∵AC=4,BC=3,∴AB=5,∵S=×3×4=×5×CD,△ABC∴CD=.故答案为:.【点评】此题考查了直角三角形面积的不同表示方法及勾股定理的综合应用.18.如图,每个小方格都是边长为1的正方形,点A,B是方格纸的两个格点(即正方形的顶点),在这个4×4的方格纸中,找出格点C,使△ABC是等腰三角形,这样的点C共有8个.【分析】根据等腰三角形的性质和勾股定理分别求出以AB为腰的等腰三角形的个数和以AB为底边的等腰三角形的个数即可得出答案.【解答】解:如图所示:以AB为腰的等腰三角形共4个,其底边长为=2的共有4个;以AB为底边的等腰三角形共有4个,其中腰长为的2个,腰长为2的有2个.故答案为:8.【点评】此题主要考查学生对等腰三角形的性质和勾股定理的理解和掌握,此题难易程度适中,适合学生训练.19.如图,三个正方形A,B,C如图放置,且正方形A,B的面积分别是2cm2和3cm2,则正方形C的面积等于5cm2.【分析】先根据角之间的关系以及正方形的性质证明两空白三角形全等,然后根据勾股定理即可解答.【解答】解:如图所示∵∠1+∠5=90°,∠1+∠2=90°,∴∠5=∠2,同理∠1=∠3,又FD=DE,∴△FGD≌△EDH,可得,FG=DH,由勾股定理的几何意义可知S A+S B=S C即2+3=S C.∴S C=5.【点评】勾股定理包含几何与数论两个方面,几何方面,一个直角三角形的斜边的平方等于另外两边的平方和.这里边的平方的几何意义就是以该边为边的正方形的面积.二.解答题(共31小题)20.如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?【分析】(1)根据速度为每秒1cm,求出出发2秒后CP的长,然后就知AP的长,利用勾股定理求得PB的长,最后即可求得周长.(2)因为AB与CB,由勾股定理得AC=4 因为AB为5cm,所以必须使AC=CB,或CB=AB,所以必须使AC或AB等于3,有两种情况,△BCP为等腰三角形.【解答】解:(1)如图1,由∠C=90°,AB=5cm,BC=3cm,∴AC=4,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,∴出发2秒后,则CP=2,∵∠C=90°,∴PB==,∴△ABP的周长为:AP+PB+AB=2+5+;(2)①如图2,若P在边AC上时,BC=CP=3cm,此时用的时间为3s,△BCP为等腰三角形;②若P在AB边上时,有三种情况:i)如图3,若使BP=CB=3cm,此时AP=2cm,P运动的路程为2+4=6cm,所以用的时间为6s,△BCP为等腰三角形;ii)如图4,若CP=BC=3cm,过C作斜边AB的高,根据面积法求得高为2.4cm,作CD⊥AB于点D,在Rt△PCD中,PD=1.8,所以BP=2PD=3.6cm,所以P运动的路程为9﹣3.6=5.4cm,则用的时间为5.4s,△BCP为等腰三角形;ⅲ)如图5,若BP=CP,此时P应该为斜边AB的中点,P运动的路程为4+2.5=6.5cm 则所用的时间为6.5s,△BCP为等腰三角形;综上所述,当t为3s、5.4s、6s、6.5s时,△BCP为等腰三角形.【点评】此题考查学生对等腰三角形的判定与性质的理解和掌握,但是此题涉及到了动点,对于初二学生来说是个难点,尤其是第(2)由两种情况,△BCP 为等腰三角形,因此给这道题又增加了难度,因此这是一道难题.21.如图,Rt△ABC的斜边AB=5,cosA=,(1)用尺规作图作线段AC的垂直平分线l(保留作图痕迹,不要求写作法、证明);(2)若直线l与AB、AC分别相交于D、E两点,求DE的长.【分析】(1)分别以点A,C为圆心,以大于AC为半径画弧,两弧相交于点C,D,过CD作直线l即可.(2)所求线段DE等于BC的一半,那么根据题中的数据利用三角函数求出BC 即可.【解答】解:(1)如图,(2)因为直线l垂直平分线段AC,所以CE=AE,又因为BC⊥AC,所以DE∥BC,所以DE=BC.因为在Rt△ABC中,AB=5,cosA=,所以AC=ABcosA=5×=3,由BC===4得DE=2.【点评】本题考查基本作图和利用三角函数来解决相关问题.22.如图,在边长为c的正方形中,有四个斜边为c的全等直角三角形,已知其直角边长为a,b.利用这个图试说明勾股定理.【分析】根据大正方形面积=四个相同直角三角形面积+小正方形面积,得c2=4×ab+(a﹣b)2即得c2=a2+b2,在每个直角边为a、b而斜边为c的直角三角形中,这个式子就是勾股定理.【解答】解:∵大正方形面积为:c2,直角三角形面积为ab,小正方形面积为:(a﹣b)2,所以c2=4×ab+(a﹣b)2,即c2=a2+b2,在每个直角边为a、b而斜边为c的直角三角形中,这个式子就是勾股定理.【点评】本题主要考查了勾股定理的证明,要认真理解勾股定理.23.如图,四个全等的直角三角形的拼图,你能验证勾股定理吗?试试看.【分析】根据题意,我们可在图中找等量关系,有中间的小正方形的面积等于大正方形的面积减去四个直角三角形的面积,列出等式化简即可得出勾股定理的表达式.【解答】解:根据题意,中间小正方形的面积;化简得a2+b2=c2,即证在直角三角形中斜边的平方等于两直角边的平方和.【点评】本题考查了学生对定理的证明和对三角形和正方形面积公式的熟练掌握和运用.24.在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:.(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积.(3)如图3,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13、10、17①试说明△PQR、△BCR、△DEQ、△AFP的面积相等;②请利用第2小题解题方法求六边形花坛ABCDEF的面积.。

[部编】八年级下数学第十七章 勾股定理周周测1(17.1)

[部编】八年级下数学第十七章 勾股定理周周测1(17.1)

第十七章勾股定理周周测1一选择题1. △ABC的三边长分别为a,b,c,下列条件:①∠A=∠B-∠C;②∠A:∠B:∠C=3:4:5;③a2=(b+c)(b-c);④a:b:c=5:12:13,其中能判断△ABC是直角三角形的个数有()A.1个B.2个C.3个D.4个2. 如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,且CD= ,如果Rt△ABC的面积为1,则它的周长为()A. B.+1 C.+2 D.+33. 如图,四边形ABCD中,AB=AD,AD∥BC,∠ABC=60°,∠BCD=30°,BC=6,那么△ACD的面积是()A. B. C.2 D.4. 如图,在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A. B. C. D.5. 如图,直角三边形三边上的半圆面积从小到大依次记为、、,则、、的关系是()C.D.6. 如图,在6个边长为1的小正方形及其部分对角线构成的图形中,如图从A点到B点只能沿图中的线段走,那么从A点到B点的最短距离的走法共有()A.1种B.2种C.3种D.4种7. 如图,△ABC中,AB=AC=5,BC=6,M为BC的中点,MN⊥AC于N点,则MN=()A.B.C.D.8. 如图,一个无盖的正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从盒外的D点沿正方体的盒壁爬到盒内的M点(盒壁的厚度不计),蚂蚁爬行的最短距离是()A. B. C. D.9. 如图是一个三级台阶,它的每一级的长,宽,高分别为100cm,15cm和10cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁想到B点去吃可口的食物,则它所走的最短路线长度为()A.115cm B.125 cm C.135cm D.145cm10. 如图,一个无盖的正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从盒外的B点沿正方形的表面爬到盒内的M点,蚂蚁爬行的最短距离是( )A.B.C.1 D.11. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形边长为10 cm,正方形A的边长为6 cm、B的边长为5 cm、C 的边长为5 cm,则正方形D的边长为()A.14 B.4 cm C.15D.3 cm12. 下列三角形中,是直角三角形的是( )A.三角形的三边满足关系a+b=cB.三角形的三边长分别为3 2 ,4 2 ,5 2C.三角形的一边等于另一边的一半D.三角形的三边长为7,24,25二填空题13. 已知一个直角三角形的两边长分别为4和3,则它的面积为_________.14. 如图,每个小正方形的边长为1,A,B,C是小正方形的顶点,则∠ABC 的度数为________________。

【学生卷】初中数学八年级数学下册第十七章《勾股定理》测试卷(培优)(1)

【学生卷】初中数学八年级数学下册第十七章《勾股定理》测试卷(培优)(1)

一、选择题1.如图,AB∥CD,BE和CE分别平分∠ABC和∠BCD,AD过点E,且AD⊥AB,点P为线段BC上一动点,连接PE.若AD=14,则PE的最小值为()A.7 B.10 C.6 D.5OF OD OE.若2.如图O是ABC内的一点,且O到三边AB、BC、CA的距离==∠=︒,则BOCA70∠().A.125°B.135°C.105°D.100°3.下列命题的逆命题是真命题的是().A.3的平方根是3 B.5是无理数C.1的立方根是1 D.全等三角形的周长相等4.如图,点O是△ABC中∠BCA,∠ABC的平分线的交点,已知△ABC的面积是12,周长是8,则点O到边BC的距离是()A.1 B.2C.3 D.45.如图,AB=AC,AD=AE,∠A=105°,∠D=25°,则∠ABE等于()A .65°B .60°C .55°D .50°6.如图所示,下面甲、乙、丙三个三角形和ABC 全等的图形是( )A .甲和乙B .乙和丙C .只有丙D .只有乙 7.下列命题中,真命题是( )A .有两边和一角对应相等的两个三角形全等B .有两边和第三边上的高对应相等的两个三角形全等C .有两边和其中一边上的高对应相等的两个三角形全等D .有两边和第三边上的中线对应相等的两个三角形全等8.已知如图,AC ⊥BC ,DE ⊥AB ,AD 平分∠BAC ,下面结论错误的是( )A .BD +ED =BCB .DE 平分∠ADBC .AD 平分∠EDC D .ED +AC >AD 9.下列说法正确的是( )①近似数232.610⨯精确到十分位;②在2,()2--,38-,2--中,最小的是38-;③如图所示,在数轴上点P 所表示的数为15-+;④用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;⑤如图,在ABC 内一点P 到这三条边的距离相等,则点P 是三个角平分线的交点.A .1B .2C .3D .410.如图,AB 与CD 相交于点E ,AD=CB ,要使△ADE ≌△CBE ,需添加一个条件,则添加的条件以及相应的判定定理正确的是( )A .AE=CE ;SASB .DE=BE ;SASC .∠D=∠B ;AASD .∠A=∠C ;ASA 11.下列说法正确的是( )A .两个长方形是全等图形B .形状相同的两个三角形全等C .两个全等图形面积一定相等D .所有的等边三角形都是全等三角形 12.如图,在ABC 和△FED 中,AD FC =,AB FE =,下列条件中不能证明F ABC ED ≌△△的是( )A .BC ED =B .A F ∠=∠C .B E ∠=∠D .//AB EF 13.根据下列已知条件,能画出唯一的△ABC 的是( )A .AB =3,BC =4,∠C =40°B .∠A =60°,∠B =45°,AB =4C .∠C =90°,AB =6D .AB =4,BC =3,∠A =30°14.如图,在OAB 和OCD 中,OA OB =,OC OD =,OA OC >,40AOB COD ∠=∠=︒,连接AC 、BD 交于点M ,连接OM ,下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠,其中正确的为( )A .①②③B .①②④C .②③④D .①②③④ 15.已知,如图,OC 是∠AOB 内部的一条射线,P 是射线OC 上任意点,PD ⊥OA ,PE ⊥OB ,下列条件中:①∠AOC =∠BOC ,②PD =PE ,③OD =OE ,④∠DPO =∠EPO ,能判定OC 是∠AOB 的角平分线的有( )A .1个B .2个C .3个D .4个二、填空题16.如图所示的是一张直角ABC 纸片(90C ∠=︒),其中30BAC ∠=︒,如果用两张完全相同的这种纸片恰好能拼成如图2所示的ABD △,若2BC =,则ABD △的周长为______.17.如图,已知四边形,90,3,4,5,ABCD B AB BC AC ︒∠====180BAD CAD ︒∠+∠=,180BCD ACD ︒∠+∠=,则四边形ABCD 的面积是_________.18.如图,已知在ABC ∆和ADC ∆中,,ACB ACD ∠=∠请你添加一个条件:_________,使ABC ADC ∆≅∆(只添一个即可).19.如图,两根旗杆间相距22米,某人从点B 沿BA 走向点A ,一段时间后他到达点M ,此时他分别仰望旗杆的顶点C 和D ,两次视线的夹角为90°,且CM DM =.已知旗杆BD 的高为12米,该人的运动速度为2米/秒,则这个人运动到点M 所用时间是________秒.20.如图,在△ABC 中,∠C =90°,AD 是∠BAC 的角平分线,若BC =8cm ,BD =5cm ,AB=10cm,则S △ABD =______.21.如图,AD 为∠CAF 的角平分线,BD=CD ,∠DBC=∠DCB ,∠DCA=∠ABD ,过D 作DE ⊥AC 于E ,DF ⊥AB 交BA 的延长线于F ,则下列结论:①△CDE ≌△BDF ;②CE=AB+AE ;③∠DAF=∠CBD .其中正确的结论有_____.(填序号)22.如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,BD 平分ABC ∠.若P 是BC 边上一动点,则DP 长的最小值为______.23.如图,∠1=∠2,要使△ABC ≌△ADC ,还需添加条件:_____.(填写一个你认为正确的即可)24.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为边BC 、AB 上的点,且AE =AC ,DE ⊥AB .若∠ADC =61°,则∠B 的度数为_____.25.如图所示,已知点A 、D 、B 、F 在一条直线上,∠A=∠F ,AC=FE ,要使△ABC ≌△FDE ,还需添加一个条件,这个条件可以是___________________ .(只需填一个即可)26.如图,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,E 是BC 的中点,DE ⊥AB ,垂足为F ,AB=DE .若BD=8cm ,则AC 的长为_________.三、解答题27.如图,在ABC 和BCD △中,90BAC BCD ︒∠=∠=,AB AC =,CB CD =;延长CA 至点E ,使AE AC =;延长CB 至点F ,使BF BC =.连接AD ,AF ,DF ,EF .延长DB 交EF 于点N .(1)求证:AD AF =;(2)求证:BD EF =.28.已知:D ,A ,E 三点都在直线m 上,在直线m 的同一侧作ABC ,使AB AC =,连接BD ,CE .(1)如图①,若90BAC ∠=︒,BD m ⊥,CE m ⊥,求证ABD ACE ≅;∠=∠=∠,请判断BD,CE,DE三条线段之间的数量关(2)如图②,若BDA AEC BAC系,并说明理由.29.命题:有两个内角相等的三角形必有两条高线相等,写出它的逆命题,并判断逆命题的真假,若是真命题,给出证明;若是假命题,请举反例.30.在数学课本中,有这样一道题:如图1,AB∥CD,试用不同的方法证明∠B+∠C=∠BEC(1)某同学写出了该命题的逆命题,请你帮他把逆命题的证明过程补充完整.已知:如图1,∠B+∠C=∠BEC求证:AB∥CD证明:如图2,过点E,作EF∥AB,∴∠B=∠∵∠B+∠C=∠BEC,∠BEF+∠FEC=∠BEC(已知)∴∠B+∠C=∠BEF+∠FEC(等量代换)∴∠=∠(等式性质)∴EF∥∵EF∥AB∴AB∥CD(平行于同一条直线的两条直线互相平行)(2)如图3,已知AB∥CD,在∠BCD的平分线上取两个点M、N,使得∠BMN=∠BNM,求证:∠CBM=∠ABN.(3)如图4,已知AB∥CD,点E在BC的左侧,∠ABE,∠DCE的平分线相交于点F.请直接写出∠E与∠F之间的等量关系.。

八年级数学下册《第十七章-勾股定理》单元测试卷及答案(人教版)

八年级数学下册《第十七章-勾股定理》单元测试卷及答案(人教版)

八年级数学下册《第十七章-勾股定理》单元测试卷及答案(人教版)一 选择题(每小题3分 共30分)1. 如果下列各组数是三角形的三边长,那么不能组成直角三角形的一组数是( )A. √2 √3 √5B. 1.5C. 32 42 52D. 1 22. 点A(−3,−4)到原点的距离为( )A. 3B. 4C. 5D. 73. 有一个直角三角形的两边长分别为3和4,则第三边的长为( )A. 5B. √7C. √5D. 5或√74.如果直角三角形两直角边的比为5∶12, 则斜边上的高与斜边的比为( ) A 60∶13B 5∶12C 12∶13D 60∶1695. 若一直角三角形两边长分别为12和5 则第三边长为( ) A .13 B .13或C .13或15D .156.一个圆桶底面直径为24cm ,高32cm ,则桶内所能容下的最长木棒为( )A .20cmB .50cmC .40cmD .45cm7.如图 小明准备测量一段水渠的深度 他把一根竹竿AB 竖直插到水底 此时竹竿AB 离岸边点C 处的距离米.竹竿高出水面的部分AD 长0.5米 如果把竹竿的顶端A 拉向岸边点C 处 竿顶和岸边的水面刚好相齐 则水渠的深度BD 为( )A .2米B .2.5米C .2.25米D .3米1.5CD8.如图, “赵爽弦图”是用四个相同的直角三角形与一个小正方形无缝隙地铺成一个大正方形 已知大正方形面积为25 (x +y)2=49 用x y 表示直角三角形的两直角边(x >y) 下列选项中正确的是( )A. 小正方形面积为4B. x 2+y 2=5C. x 2−y 2=7D. xy =249.如图,在△ABC 中 ∠C =90° AC =4 BC =2.以AB 为一条边向三角形外部作正方形 则正方形的面积是( )A. 8B. 12C. 18D. 2010.如图 在Rt △ABC 中 ∠ACB =90° AC =3 BC =4 BE 平分∠ABC CD ⊥AB 于D BE 与CD 相交于F 则CF 的长是( )A. 1B. 43C. 53D. 2二 填空题(每题3分 共24分)11.若一个三角形的三边之比为5:12:13 且周长为60cm 则它的面积为_____cm 2. 12.如图所示 所有的四边形都是正方形 所有的三角形都是直角三角形 其中最大的正方形的边长为7cm 正方形A B C 的面积分别是28cm 210cm 214cm 则正方形D 的面积是___________2cm .13.在ABC中90C∠=︒AB=5 则222AB AC BC++=______.14.如图在△ABC中∠ABC=90° 分别以BC AB AC为边向外作正方形面积分别记为S1S2,S3若S2=4 S3=6则S1=__________.15.方程思想如图在Rt△ABC中∠C=90° BC=6cm AC=8cm 按图中所示方法将△BCD沿BD折叠使点C落在AB边的点C’处那么△ADC’的面积是_____cm2. 16.如图一架秋千静止时踏板离地的垂直高度DE=0.5m将它往前推送1.5m(水平距离BC=1.5m)时秋千的踏板离地的垂直高度BF=1m秋千的绳索始终拉直则绳索AD的长是m.17.如图小明利用升旗用的绳子测量学校旗杆BC的高度他发现绳子刚好比旗杆长11米若把绳子往外拉直绳子接触地面A点并与地面形成30°角时绳子末端D距A点还有1米那么旗杆BC的高度为米.18.在△ABC中AB=AC=5 BC=6.若点P在边AC上移动则BP的最小值是.三、解答题(满分46分,19题6分20 21 22 23 24题每题8分)19.小明将一副三角板如图所示摆放在一起发现只要知道其中一边的长就可以求出其它各边的长若已知CD=2求AC的长.20.如图折叠长方形的一边AD使点D落在边BC的点F处已知AB=8cm BC=10cm求(1)FC的长.(2)EF的长.21 (8分)如图已知∠ADC=90°AD=8 CD=6 AB=26 BC=24.(1)证明:△ABC是直角三角形.(2)请求图中阴影部分的面积.22.如图 在长方形中 点在边上 把长方形沿直线折叠 点落在边上的点处。

八年级数学(下)第十七章测试题(含答案)

八年级数学(下)第十七章测试题(含答案)

八年级数学(下)第十七章测试题(含答案)一、选择题(每小题4分,共28分)1.一个直角三角形的斜边长比一条直角边长大2,另一直角边长为6,则斜边长为( )A.4B.8C.10D.122.已知三角形的三边长之比为1∶1∶,则此三角形一定是( )A.锐角三角形B.钝角三角形C.等边三角形D.等腰直角三角形3.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为( )A.4B.8C.16D.644.如图,一个高1.5m,宽3.6m的大门,需要在相对的顶点间用一条木板加固,则这条木板的长度是( )A.3.8 mB.3.9 mC.4 mD.4.4 m5.(2013·德宏州中考)设a,b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab的值是( )A.1.5B.2C.2.5D.36.如图所示,要在离地面5m处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L1=5.2m,L2=6.2m,L3=7.8m,L4=10m四种备用拉线材料中,拉线AC最好选用( )A.L1B.L2C.L3D.L47.(2013·柳州中考)在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC于D,则BD的长为( )A. B.C. D.二、填空题(每小题5分,共25分)8.定理“全等三角形的对应边相等”的逆命题是,它是命题(填“真”或“假”).9.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE= .10.如图,教室的墙面ADEF与地面ABCD垂直,点P在墙面上.若PA=AB=5,点P到AD的距离是3,有一只蚂蚁要从点P爬到点B,它的最短行程的平方应该是.11.如图所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36 cm,点P 从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC 边向点C以每秒2cm的速度移动,如果同时出发,则过3s时,△BPQ的面积为cm2.12.(2013·哈尔滨中考)在△ABC中,AB=2,BC=1,∠ABC=45°,以AB 为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为.三、解答题(共47分)13.(10分)已知△ABC的三边分别为a,b,c,且a+b=4,ab=1,c=,试判定△ABC的形状,并说明理由.14.(12分)(2013·湘西州中考)如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长.(2)求△ADB的面积.15.(12分)《中华人民共和国道路交通管理条例》规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)16.(13分)(2013·贵阳中考)在△ABC中,BC=a,AC=b,AB=c,设c为最长边.当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).(1)当△ABC三边长分别为6,8,9时,△ABC为三角形;当△ABC三边长分别为6,8,11时,△ABC为三角形.(2)猜想:当a2+b2c2时,△ABC为锐角三角形;当a2+b2 c2时,△ABC为钝角三角形.(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.答案解析1.【解析】选C.设斜边长为x,则一直角边为x-2,由勾股定理得,x2=(x-2)2+62,解得x=10.2.【解析】选D.由题意设三边长分别为x,x,x,∵x2+x2=(x)2,∴三角形一定为直角三角形,并且是等腰三角形.3.【解析】选D.由题意得,直角三角形的斜边为17,一条直角边为15,所以正方形A的面积为172-152=64.4.【解析】选B.设木板的长为xm,由题意知,x2=1.52+3.62,解得x=3.9(m).5.【解析】选D.∵三角形的周长为6,斜边长为2.5,∴a+b+2.5=6,∴a+b=3.5①,∵a,b是直角三角形的两条直角边,∴a2+b2=2.52②,由①②可得ab=3.6.【解析】选B.在Rt△ACD中,AC=2AD,设AD=x,由AD2+CD2=AC2,即x2+52=(2x)2,得x=≈2.8868,2x=5.7736,所以最好选用L2.7.【解析】选A.∵∠BAC=90°,AB=3,AC=4,∴BC===5,∴BC边上的高=3×4÷5=,∵AD平分∠BAC,∴点D到AB,AC上的距离相等,设为h,则S△ABC=×3h+×4h=×5×,解得h=,S△ABD=×3×=BD·,解得BD=.8.【解析】“全等三角形的对应边相等”的逆命题是三边分别对应相等的两个三角形全等,它是真命题.答案:三边分别对应相等的两个三角形全等真9.【解析】AE=====2.答案:210.【解析】如图,则AG=3.在Rt△APG中,PG2=PA2-AG2=52-32=16.在Rt△PGB中,PB2=PG2+GB2=16+(3+5)2=80.答案:8011.【解析】设AB为3xcm,BC为4xcm,AC为5xcm,因为周长为36 cm,AB+BC+AC=36,所以3x+4x+5x=36,得x=3,所以AB=9,BC=12,AC=15,因为AB2+BC2=AC2,所以△ABC是直角三角形,过3s时,BP=9-3×1=6,BQ=2×3=6,所以S△PBQ=BP·BQ=×6×6=18(cm2).答案:1812.【解析】当点D与C在AB同侧,BD=AB=2,作CE⊥BD于E,CE=BE=,ED=,由勾股定理得CD=(如图1);当点D与C在AB异侧,BD=AB=2,∠DBC=135°,作DE⊥BC于E,BE=ED=2,EC=3,由勾股定理得CD=(如图2).答案:或13.【解析】△ABC是直角三角形,理由:∵(a+b)2=16,a2+2ab+b2=16,ab=1,∴a2+b2=14.又∵c2=14,∴a2+b2=c2.∴△ABC是直角三角形.14.【解析】(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3.(2)在Rt△ABC中,由勾股定理得,AB===10, ∴S△ADB=AB·DE=×10×3=15.15.【解析】在Rt△ABC中,AC=30m,AB=50m,根据勾股定理可得: BC ===40(m).∴小汽车的速度为v==20m/s=20×3.6km/h=72km/h.∵72km/h>70km/h,∴这辆小汽车超速行驶.16.【解析】(1)锐角钝角.(2)> <.(3)∵a=2,b=4,∴2<c<6,且由题意,c为最长边, ∴4<c<6,当a2+b2=c2,即c=2时,△ABC是直角三角形, ∴当4<c<2时,△ABC是锐角三角形,当2<c<6时,△ABC是钝角三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都石室佳兴外国语学校2017级初二下数学第十四周周考
班级: 姓名: 学号: 家长签字:
A 卷(共100分)
一、选择题:(每小题3分,共30分) 1、 不等式250x +>的解集是( )
A .5
2
x <
B .52
x >
C .52
x >-
D .52
x <-
2、下列计算正确的是( )
A .32b b b x x x +=
B .0a a a b b a -=--
C .2222bc a a b c ab =
D .2
2()1a a a a a -÷=- 3、若分式||1
1x x -+的值为0,则( ) A .1x =± B .1x = C .1x =- D .0x =
4、下列命题正确的是( ) A .平行四边形是轴对称图形
B .对角线互相垂直的四边形是菱形
C .菱形的对角线相等
D .对角线相等的平行四边形是矩形
5、如果(3)26m x m +>+的解集为2x <,则m 的取值范围是( )
A .0m <
B .3m <-
C .3m >-
D .m 是任意实数
6、如图,已知直线1y ax b =+与2y mx n =+相交于点A (2,1-),若12y y >,则x 的取值范围是( )
A .2x <
B .2x >
C .1x <-
D .1x >-
7、平面直角坐标系中的点P (2m -,1
2
m )关于x 轴的对称点在第四象限,则m 的取值范围在数
8、对于非零的两个实数a 、b ,规定11
a b b a
⊗=
-,若1(1)2x ⊗+=,则x 的值为( )
A .
32 B .23
C .23-
D .3
2
-
9、已知关于x 的方程311
x m
x x -=--有增根,则常数m 的值等于( ) A .2- B .1-
C .1
D .2
10、如图,在ABC △中,75CAB ∠=
,在同一平面内,将ABC △绕点A 旋转到AB C ''△的位置,使得CC AB '∥,则BAB '∠=( )
A .30
B .35
C .40
D .50
二、填空题:(每小题4分,共20分) 11、在△ABC 中,AB =AC ,∠A =44°,则∠B = 度。

12、已知关于x 的方程
327
4
a x a x +=-的解是1x =,则a =
13、已知2(2)49x m x --+是完全平方式,则常数m = 。

14、如图所示,在菱形ABCD 中,AE BC ⊥,两条对角线6,8AC BD ==,则此菱形的高AE =。

15、如图,矩形ABCD 中,2AB =,3BC =,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE ,则CE 的长为 。

三、解答题: 16、(每小题3分,共18分)
(1)解不等式3(1)52x x -<+,并在数轴上表示解集; (2)解不等式组533(1)131722
x x x x ->-⎧⎪
⎨-≥-⎪⎩;
因式分解:(3)(4)(2)1x x +++ (4)5322
--x x
(5)22(34)(2)x x +-+ (6) ay ax y x ++-22
B
A
C
D
E
(第14题图)
D . C . B .
A .
A B
C
D E O
(第15题图) (第6题图)
C
B '
C '
17、(每小题3分,共6分)
解方程:(1)21124x x x +=--; (2)222224
22x x x x x x x
++--=--。

18、(6分)先化简,再求值:
352422a a a a -⎛⎫
÷-- ⎪--⎝⎭
,其中a =
19、(8分)某书店老板去图书批发市场购买某种图书。

第一次用1200元购书若干本,并按定价7元出售,很快售完,由于该种图书畅销,第二次购书时,每本书的批发价(即进价)比第一次提高了20%,他用1500元所购得的该书数量比第一次多10本。

当按原定价售出200本时,出现滞销,便以定价的四折售完剩余的书。

试问:(1)该老板第一次购书多少本?
(2)该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?
20、(12分)如图,ABCD □中,AB AC ⊥,1AB =
,BC =AC 、BD 相交于点
O ,将直线AC 绕点O 顺时针旋转,分别交BC 、AD 于点E 、F 。

(1)证明:当旋转角为90
时,四边形ABEF 是平行四边形;
(2)试说明在旋转过程中,线段AF 与EC 总保持相等;
(3)在旋转过程中,四边形BEDF 可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC 绕点O 顺时针旋转的度数。

(第20题图) A C D
F E O (备用图) A C D
F E O
B 卷(共50分)
一、填空题:(每小题4分,共20分) 21、若方程组3
23
x y x y a +=⎧⎨
-=-⎩的解是正数,且x 不大于y ,则a 的取值范围是 。

22、已知a 是方程2
320x x --=的根,则代数式3
2
254a a a --+的值是 。

23、关于x 的一元一次不等式组2
32x b x b >+⎧⎨<-⎩有解,则直线y x b =-+不经过第 象限。

24、如果要使关于x 的方程2133
x m m x x -+=--有解,那么m 的取值范围为 。

25、如图,已知边长为a 的正三角形ABC ∆,两顶点B A 、分别在平面直角坐标系的x 轴、
y 轴的正半轴上滑动,点C 在第一象限,连接OC ,则OC 的长的最大值是
二、解答题:
26、(8分)若abc=1求的值
27、(10分)如图,在ABCD □中,M 、N 分别是AD 、BC 的中点,90AND ∠=
,连接CM 交DN 于点O 。

(1)求证:ABN CDM △≌△;
(2)过点C 作CE MN ⊥于点E ,交DN 于点P ,若1PE =,12∠=∠,求AN 的长。

28、(12
分)已知直线y +与x 轴、y 轴分别交于A 、B 两点,60ABC ∠=
,BC 与x 轴交于点C 。

(1)试确定直线BC 的解析式;(4分) (2)若动点P 从点A 沿AC 向C 按每秒1个单位长度的速度运动(不与A 、C 重合),同时动点Q 从
C 点出发沿C B A →→向点A 按每秒2个单位长度的速度运动(不与C 、A 重合)。

设APQ △的面积为S ,P 点的运动时间为t 秒,求S 与t 的函数关系式,并写出自变量的取值范围。

(4分)
(3)在(2)的条件下,当点Q 运动到点B 时,y 轴上有一点M ,平面内是否存在一点N ,使以A 、Q 、M 、N 为顶点的四边形为菱形?若存在,请直接写出N 点的坐标;若不存在请说明理由。

(4
分)
A B N
M D
O E P 1 2 (第26
题图) (第25题图)(第28题图)。

相关文档
最新文档