初二下学期数学期中试卷及答案

合集下载

2023-2024学年河北省保定市竞秀区八年级下学期期中数学试卷及参考答案

2023-2024学年河北省保定市竞秀区八年级下学期期中数学试卷及参考答案

2023-2024学年河北省保定市竞秀区第二学期期中试卷初二数学卷I (选择题,共38分)一、选择题(本大题有16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.以下图形既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个2.下列说法正确的是( ) A .0x =是不等式21x −<的解 B .不等式37x <的整数解只有1,2x x == C .不等式25x <的解集是2x =D .3x ≥是不等式39x ≥的解3.如图,在Rt ABC △中,90,30,2ACB A AB ∠=∠==,则AC =( )A .1B .3CD .44.对于①()()2236x x x x −+=+−,②()()3422x x x x x −=−+,从左到右的变形,表述正确的是( ) A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解 5.用反证法证明命题:“等腰三角形的两个底角相等”的逆命题时,第一步( )A .假设三角形的两个底角不相等B .假设三角形的两个角不相等C .假设该三角形不是等腰三角形D .假设该三角形是等腰三角形6.下列命题为真命题的有( )(1)若a b >,则22a b −<− (2)若32a b −<−,则a b >(3)若a b <,则a b < (4)若22a b >,则a b >A .1个B .2个C .3个D .4个7.不等式组212,32x x x x −≥−⎧⎨>−⎩的解集在数轴上表示为( )A .B .C .D .8.如图,若ABC △的周长为17,且6,AB AB =边的垂直平分线DE 分别交,AB AC 于,D E ,则对BCE △的周长描述正确的是( )A .周长为17B .周长为11C .周长为11或17D .周长不可求9.如图,,5,AOB OA AD OB α∠==⊥于D ,且2AD =;将射线OB 绕点O 逆时针旋转2α角,至OB '位置,点P 为射线OB '上一点,则AP 的值不可能是( )A .1.5B .2C .5D .1610.为参加某机构组织的数学创新比赛,学校先进行了选拔.试卷共25道题,答对1道得4分,答错或不答者扣1分,得90分及以上者将获得参赛资格,要取得参赛资格至少答对( ) A .20道B .21道C .22道D :23道11.如图,在同一直角坐标系中,函数12y x a =+和22y x =−+的图象交于点(),3A m .则不等式12y y <的解集为( )A .1x =−B .1x >−C .1x <−D .1x ≤−12.关于x 的不等式组5x x m>⎧⎨<⎩无解,那么m 的取值范围为( )A .5m =B .5m >C .5m <D .5m ≤13.如图,将周长为9的ABC △沿BC 方向平移2个单位长度得到DEF △.则四边形ABFD 的周长为( )A .9B .11C .12D .1314.如图,在ABC △中,90,C AC BC ∠==,点D 为ABC △内一点,将DBC △绕点C 逆时针旋转到EAC △的位置.则AE 与BD 的位置关系( )A .AE BD ⊥B .AE 与BD 相交且交成的锐角为45C .//AE BDD .无法确定15.点()1,5P x x −−不可能在( ) A .第一象限B .第二象限C .第三象限D .第四象限16.等腰三角形一边上的高与一腰所夹的锐角是50,则该等腰三角形顶角是( ) (1)甲的结果是100;(2)乙的结果是40;(3)丙的结果是140. A .甲、乙的结果合起来才对 B .乙、丙的结果合起来才对 C .甲、乙、丙的结果合起来才对D .甲、乙、丙的结果合起来也不对卷II (非选择题,共82分)二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分)17.点O 是边长分别为9,41,40的三角形的内角平分线的交点,则点O 到该三角形一边的距离是______. 18.(1)若1x =时,360x mx +−=,则m =______;(2)多项式2,6x k x +−分解因式后有()3x −因式,则k =______.19.如图,在Rt ABC △中,90,30,4C B AB ∠=∠==,将ABC △绕点C 逆时针旋转()090a a <<角,得到,A B C A B ''''△与BC 交于点D .(1)α=______度时,点A '落在AB 边上;(2)当A '在AB 边上时,B DC '△的面积=______.三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20.解下列不等式(组)(本题共8分) (1)32123x x−−−≤ (2)321(1)937(2)x x x x +≤−⎧⎨−≥−+⎩.21.(本题共10分) (1)将下列多项式因式分解 ①()()4242xx x −+−,②()2222()2();x y x yx y −+−++(2)已知:230x y −−=,求代数式221222x xy y ⋅−+的值. 22.(本小题10分)如图是一个99⨯的网格图,网格中最小的正方形的边长为1个单位长度,网格中有一ABC △,顶点,,A B C 均在格点上,请你在网格中建立平面直角坐标系xOy ,点O 为坐标系的原点,且使点,A B 的坐标分别为()()3,3,4,1A B −−.(1)画出平面直角坐标系,并写出点C 的坐标______;(2)作出ABC △向上平移1个单位长度,再向右平移5个单位长度后的111A B C △;然后作111A B C △关于点O 中心对称的222A B C △,并写出点12,A C 的坐标; (3)直接写出122C B C △的面积.23.(本小题10分)如图,直线1:2l y x b =+,真线2:5l y kx =+过点()3,2A 与y 䌷交于点B . (1)求k 的值;(2)若1l 与线段AB 有公共点,试确定b 的取值范围;(3)若1l 、与线段AB 的效点为整数点(即点的横、纵坐标均为整数的点),直接写出b 的值.24.(本小题8分)如图,过射线EF 外一点D ,作DE EF ⊥,点A 为射线EF 上一点,在AF 上截取AC DE =,作MC EC ⊥,点,D M 位于EF 的同侧,连接AD ,以A 为圆心,以AD 的长为半径画弧,交MC 于B . 求证:(1)DAE ABC △≌△; (2)AD AB ⊥.25.(本小题12分)去年我市某县发生多轮降雨、造成多地发生较重洪涝灾害.某爱心机构将向该县捐赠的物资打包成件,据统计可知:帐篷和食品共480件,帐篷比食品多240件. (1)求打包成件的帐篷和食品各多少件?(2)现可以租用甲、乙两种货车共8辆,一次性将这批帐篷和食品全部运往受灾地区.已知甲种货车最多可装帐篷60件和食品15件,乙种货车最多可装帐篷和食品各30件.安排甲、乙两种货车时有哪几种方案? (3)在第(2)问的条件下,如果甲种货车每辆需付运输费3000元,乙种货车每辆需付运输费2700元,应选择哪种方案可使运输费最少?最少运输费是多少元? 26.(本小题14分)在四边形OMNB 中,90,2M N OM ∠=∠==,作边OB 的垂直平分线AE ,分别交,OB MN 于点,E A ,连接,OA BA ,恰好,1AB OA AM ⊥=,再将OAB △绕点O 逆时针旋转90至OCD △位置,以O 为平面直角坐标系的原点,以OM 所在直线为x 轴,如图建立平面直角坐标系. (1)点B 的坐标是______,点D 的坐标是______; (2)问点D 是否在直线BC 上?并说明理由; (3)求AOD △的面积.2023-2024学年河北省保定市竞秀区第二学期期中试卷八年级数学试题答案一、选择题(本大题有16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1 2 3 4 5 6 7 8 B ACDCBBB9 10 11 12 13 14 15 16 ADCDDACC二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分)17. 4 18.(1) 5 ;(2) -7 19.(1) 60 (2)332三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20.解下列不等式(组)(本题8分)(1)32123x x−−−≤; 解: 3(x -3) -2(2-x)≤63x -9-4+2x ≤6 …………………………………………2分 5x ≤6+13 5x ≤19 195x ≤……………………………………………………4分 (2)321(1)937(2)x x x x ⎩+≤−≥−+⎧⎨−解:解不等式①,得 4x ≥.解不等式②,得 1x ≤. ………………………………2分∴原不等式组无解 ……………………………………………………4分 注:本题不借助数轴得出正确结论者,不扣分 21.(本题共10分) (1)将下列多项式因式分解①4(2)4(2)x x x −+−,解:原式=4(2)4(2)x x x −−− ………………………………1分 =4(2)(4)x x −− ………………………………2分4 5-11 2 3 0 -2=22(2)(2)(2)x x x −+− ………………………………………………3分 ② 2222()2()()x y x y x y −+−++;解:原式= 22()2()()()x y x y x y x y −+−+++………………………………1分 =2()x y x y −++ ………………………………2分 =2(2)x=24x ………………………………………………3分 (2)已知:230x y −−=,求代数式221222x xy y −+的值.解:∵230x y −−=,∴23x y −=. ………………………………………………1分 ∵221222x xy y −+221(44)2x xy y =−+ 21(2)2x y =− ………………………………………………3分 当23x y −=时,原式=21(2)2x y −=2132⨯=92 ………………………………4分注:其它正确解答,相应得分 22.(本小题10分) (1)画出平面直角坐标系,平面直角坐标系如图所示………………2分 并写出点C 的坐标 (-1,0) ;………………3分 (2)111A B C ∆即为所求 ……………5分222A B C ∆即为所求 ……………7分 1(24)A , ……………8分 2(41)C −−, ……………9分(3)△C 1B 2C 2的面积为7 ……………10分 23.(本小题10分)解:(1)∵点A (3,2)直线l 2:5y kx =+上 ∴235k =+.解得:1k =−. ……………2分xy ABC图8 A 1B 1C 1 A 2B 2C 21 2 3 4 5 1 2 34 -1 -2 -3 -4 -1-2 -3-4 -5O y AOBl 1xl 2 图9(2)∵1k =−,∴l 2的表达式为:5y x =−+ ………………………………3分 当x=0时,y =5∴B (0,5) ………………………………4分 当l 1过点B(0,5)时,5=2×0+b ,解得:b=5 ………………………………5分 当l 1过点A (3,2)时,2=3×2+b ,解得:b=-4………………………………6分 ∵l 1与线段AB 有公共点∴-4≤b ≤5 ……………………………………………………8分 (3)b=5或2或-1或-4 ……………………………………………………10分 注:本题答对2个得1分,答对4个得2分,答对1个不得分,答对3个得1分 24.(本小题8分)证明:(1)∵DE ⊥EF ,MC ⊥EC ,∴∠E=∠ACM=90°. 由画弧过程可知:AB=AD 在Rt △DAE 和Rt △ABC 中 AD ABDE AC=⎧⎨=⎩, ∴Rt △DAE ≌Rt △ABC (HL ).…………4分(2)∵△DAE ≌△ABC , ∴∠DAE=∠ABC . ∵∠ACB=90°, ∴∠ABC+∠BAC=90°. 又∵∠DAE=∠ABC , ∴∠DAE +∠BAC=90°.∴∠DAB =180°-(∠DAE +∠BAC )=90°.∴AD ⊥AB . ……………………………………………………8分 25.(本小题12分)解:(1)设打包成件的帐篷有x 件,食品有y 件. 根据题意,得480240x y x y +=⎧⎨−=⎩. 解,得 360120x y =⎧⎨=⎩.∴打包成件的帐篷有360件,食品有120件. ………………………………3分 (2)设安排甲货车a 辆,则安排乙货车(8-a )辆.根据题意,得6030(8)3601530(8)120a a a a +−≥⎧⎨+−≥⎩. 解,得 48a ≤≤. ∵a 为整数,图10M A EDCBF∴a=4,5,6,7,8. 则8-a=4,3,2,1,0.∴共有5种租车方案:方案一:租用甲货车4辆,乙货车4辆;方案二:租用甲货车5辆,乙货车3辆;方案三:租用甲货车6辆,乙货车2辆;方案四:租用甲货车7辆,乙货车1辆;方案五:租用甲货车8辆,乙货车0辆. …………8分 (3)设运输费是W 元.则W=3 000a+2 700(8-a)=300a+21 600; 即W=300a+21 600. ∵300>0,∴由一次函数性质可知,W 随a 增大而增大. ∴当a=4时,W 取最小值.此时,8-a=4,W=300×4+21 600=22 800(元).∴应租用甲货车4辆,乙货车4辆可使运输费最少,最少运输费是22 800元.…12分 26.(本题12分)(1)点B 的坐标是(1,3),点D 的坐标是 (-3,1);……………4分 (2)解:点D 在直线BC 上. ……………5分 理由:连接BC由旋转性质可知:OB=OD ,∠AOC=90°,∠AOB=∠COD ,∠BAO=∠DCO . ∵AB ⊥OA , ∴∠BAO=90°.∴∠AOB+∠OBA=90°,∠DCO=90°. 又AE 垂直平分OB , ∴AO=AB . ∴∠AOB=∠OBA=180902︒−︒=45°. ∵∠AOC=90°,∴∠BOC=∠AOC -∠AOB=45°. ∴∠AOB=∠BOC . 又∠AOB=∠COD , ∴∠COD=∠BOC . 在△BOC 和△DOC 中,BO DO BOC COD CO CO =⎧⎪∠=∠⎨⎪=⎩,∴△BOC ≌△DOC (SAS ). ∴∠BOC=∠OCD=90°.∴∠BCD=∠BOC+∠OCD=180°.∴点D 在直线BC 上. ……………11分 (3)解:连接AD 交y 轴于点F .xFNMyA CO BDE图11∵OM=2,AM=1,∴A(2,1).由(1)知D(-3,1),∴AD⊥y轴.AD=2-(-3)=5.∴11551222AODS AD OF∆=⋅=⨯⨯=.……………14分。

江苏省南通市通州区2023-2024学年八年级下学期期中数学试题(解析版)

江苏省南通市通州区2023-2024学年八年级下学期期中数学试题(解析版)

2023~2024学年(下)初二期中学业水平质量监测数学试卷注意事项考生在答题前请认真阅读本注意事项:1.本试卷共6页,满分为150分,考试时间为120分钟.2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在试卷及答题卡上指定的位置.3.答案必须按要求填涂、书写在答题卡上,在试卷、草稿纸上答题一律无效.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1. 已知中,,则的度数为( )A. B. C. D. 【答案】A【解析】【分析】此题重点考查平行四边形的性质.由平行四边形的性质得,因为,所以,于是得到问题的答案.【详解】解:四边形是平行四边形,,,,故选:A .2. 下列各点在函数图象上的是( )A. B. C. D. 【答案】C【解析】【分析】本题考查了一次函数图象上点的坐标特征.利用一次函数图象上点的坐标特征,逐一对四个选项进行验证即可求解.【详解】解:A 、当时,,点不在函数图象上;B 、当时,,ABCD Y 60A ∠=︒C ∠60︒80︒100︒120︒C A ∠=∠60A ∠=︒60C ∠=︒ ABCD C A ∴∠=∠60A ∠=︒ 60C ∴∠=︒21y x =-()0,1()1,1-()1,3--()2,50x =2011y =⨯-=-∴()0,121y x =-1x =2111y =⨯-=点不在函数图象上;C 、当时,,点在函数图象上;D 、当时,,点不在函数图象上;故选:C .3. 如图,,分别是,的中点,测得,则池塘两端,的距离为( )A. 45mB. 30mC. 22.5mD. 7.5m【答案】B【解析】【分析】本题考查的是三角形中位线定理,三角形中位线等于第三边的一半.根据三角形中位线定理解答即可.【详解】解:,分别是,的中点,是的中位线,,故选:B .4. 若直线(是常数,)经过第一、第三象限,则的值可为( )A. B. C. D. 2【答案】D【解析】【分析】通过经过的象限判断比例系数k 的取值范围,进而得出答案.【详解】∵直线(是常数,)经过第一、第三象限,∴,∴的值可为2,故选:D.∴()1,1-21y x =-=1x -2(1)13y =⨯--=-∴()1,3--21y x =-2x =2213y =⨯-=∴()2,521y x =-D E AC BC 15m DE =A B D E AC BC DE ∴ABC 221530(m)AB DE ∴==⨯=y kx =k 0k ≠k 2-1-12-y kx =k 0k ≠0k >k【点睛】本题考查正比例函数的图象与性质,熟记比例系数与图象经过的象限之间的关系是解题的关键.5. 如图,在中,对角线与相交于点,则下列结论一定正确的是( )A. B. C. D. 【答案】B【解析】【分析】根据平行四边形的性质逐项分析判断即可求解.【详解】∵四边形是平行四边形,对角线与相交于点,A. ,不一定成立,故该选项不正确,不符合题意;B. ,故该选项正确,符合题意;C. ,不一定成立,故该选项不正确,不符合题意;D. ,不一定成立,故该选项不正确,不符合题意;故选:B .【点睛】本题考查了平行四边形的性质,熟练掌握平行四边形的性质是解题的关键.6. 如图,四边形中,E ,F ,G ,H 分别是,,,的中点.若四边形是菱形,则四边形需满足的条件是( )A. B. C. D. 【答案】A【解析】【分析】本题考查的是中点四边形,掌握菱形的判定定理、三角形中位线定理是解题的关键.根据三角形中位线定理得到,,,,再根据菱形的判定定理解答即可.【详解】解:,,,分别是,,,的中点,、、、分别为、、、的中位线,ABCD Y AC BD O AC BD=OA OC =AC BD ⊥ADC BCD∠=∠ABCD AC BD O AC BD =OA OC =AC BD ⊥ADC BCD ∠=∠ABCD AD BC BD AC EGFH ABCD AB DC=AB DC ⊥AC BD =AC BD ⊥12EG AB =12FH AB =12FG CD =12EH CD =E F G H AD BC BD AC EG ∴GF FH EH ABD △BCD △ABC ACD,,,,,,四边形为平行四边形,当时,,平行四边形为菱形,故选:A .7. “漏壶”是一种古代计时器,在它内部盛一定量的水,水从壶下的小孔漏出.壶内壁有刻度,人们根据壶中水面的位置计算时间.用x 表示漏水时间,y 表示壶底到水面的高度.不考虑水量变化对压力的影响,下列图象最适合表示y 与x 对应关系的是( )A. B. C. D.【答案】D【解析】【分析】本题考查函数图象.根据题意,可知随的增大而减小,符合一次函数图象,从而可以解答本题.【详解】解:不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,表示漏水时间,表示壶底到水面的高度,随的增大而减小,符合一次函数图象,故选:D .8. 两张全等的矩形纸片,按如图所示的方式交叉叠放,,,与交于点G ,与交于点H .若,,则四边形的面积为()12EG AB ∴=12FH AB =12FG CD =12EH CD =EG FH ∴=F G E H =∴EGFH AB CD =EG FG =EGFH y x x y y ∴x ABCD AECF AB AF =AE BC =AE BC AD CF 30AGB ∠=︒2AB =AGCHA. 4B. C. 8 D. 16【答案】C【解析】【分析】本题考查了含30度角的直角三角形的性质,矩形的性质,菱形的性质与判定,证明四边形是菱形是解题的关键.证明四边形是菱形,根据含30度角的直角三角形的性质求得的长,即可求解.【详解】解:∵两张全等的矩形纸片,按如图所示的方式交叉叠放,,,∴,,,,,,,,,四边形是平行四边形,,四边形是菱形.四边形的面积.故选:C .9. 如图,中,以点为圆心,适当长为半径作弧,交,于,,分别以点,为圆心,大于长为半径作弧,两弧交于点,作射线交于点,连接.若,,的长为( )AGCH AGCH AG ABCD AECF AB AF =AE BC =30AGB ∠=︒AD BC ∥FC AE ∥90B F ∠=∠=︒30HAG AGB ∴∠=∠=︒30FHA HAG ∠=∠=︒2AG AB ∴=2AH AF=2AB = 4AG AH ∴==AG HC ∥AH GC∥∴AGCH AG AH =∴AGCH ∴AGCH 248AB AH =⋅=⨯=ABCD Y B BA BC F G F G 12FG H BH AD E CE CE AD ⊥3AD =BE =ABA. 1.5B. C. 2 D. 【答案】C【解析】【分析】本题考查作图—基本作图、角平分线的定义、平行四边形的性质、勾股定理.由作图过程可知,为的平分线,则,再结合平行四边形的性质可得.在中,由勾股定理得,.设,则,,在中,由勾股定理得,,代入求出的值,即可得出答案.【详解】解:由作图过程可知,为的平分线,,四边形为平行四边形,,,,,,.在中,由勾股定理得,.设,则,,在中,由勾股定理得,,即,解得,的长为2.故选:C .10. 对于一次函数,其自变量和函数的两组对应值如表所示,则的值为( )x4kBE ABC ∠ABE CBE ∠=∠AB AE=Rt BCECE ==AB x =CD AE x ==3DE x =-Rt CDE △222CD CE DE =+x BE ABC ∠ABE CBE ∴∠=∠ ABCD AB CD ∴=3AD BC ==AD BC ∥AEB CBE ∴∠=∠ABE AEB ∴∠=∠AB AE =∴Rt BCECE ===AB x =CD AE x ==3DE x =-Rt CDE △222CD CE DE =+()2223x x =+-2x =AB ∴y kx b =+b c -y c A. B. C. 2 D. 7【答案】A【解析】分析】本题主要考查了待定系数法求一次函数解析式,利用待定系数法得到,据此求出,进而可得.【详解】解:由题意得,,∴,即,∴,∴,∴,故选:A .二、填空题(本大题共8小题,第11~12小题每小题3分,第13~18小题每小题4分,共30分.不需要写出解答过程,请把最终结果直接填写在答题卡相应位置上)11. 函数中,自变量的取值范围是_______.【答案】【解析】【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,二次根式有意义的条件是:被开方数为非负数.【详解】依题意,得x -3≥0,解得:x ≥3.【点睛】本题考查的知识点为:二次根式的被开方数是非负数.12. 若正比例函数的图象经过点,则______.【答案】【解析】【分析】此题主要考查了一次函数图象上点的坐标特征.将点代入函数解析式即可求得.【4c -8-2-244k b c k b c +=⎧⎨+=-⎩2k =8b c -=-244k b c k b c +=⎧⎨+=-⎩2440k k -+=()220k -=2k =8b c +=8bc -=-y =x 3x ≥y kx =()1,2-k =2-()1,2-【详解】解:点代入函数解析式得:,即,故答案为:.13. 如图,平面直角坐标系中,四边形是菱形.若点A 的坐标是,则菱形的周长为______.【答案】40【解析】【分析】本题考查了菱形的性质,平面直角坐标系中两点的距离,勾股定理等知识.于点D ,根据勾股定理求出,根据菱形的性质即可求解.【详解】解:如图,作于点D ,∵点A 的坐标是,∴,∴菱形的周长为40.故答案为:4014. 将函数的图象向下平移2个单位长度,所得图象对应的函数表达式是______.【答案】【解析】【分析】本题考查了一次函数的平移,根据一次函数的平移规律“左加右减,上加下减”即可解答.【详解】解:函数的图象向下平移2个单位长度为,()1,2-y kx =2k -=2k =-2-xOy AOBC ()6,8AD OB ⊥10OA =AD OB ⊥()6,810OA ===AOBC 23y x =+21y x =+23y x =+23221y x x =+-=+故答案为:.15. 我国古代数学经典著作《九章算术》记载:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”如图是善行者与不善行者行走路程(单位:步)关于善行者的行走时间的函数图象,则两图象交点的纵坐标是________.【答案】【解析】【分析】设图象交点的纵坐标是m ,由“今有善行者行一百步,不善行者行六十步.”可知不善行者的速度是善行者速度的.根据速度关系列出方程,解方程并检验即可得到答案.【详解】解:设图象交点的纵坐标是m ,由“今有善行者行一百步,不善行者行六十步.”可知不善行者的速度是善行者速度的.∴,解得,经检验是方程的根且符合题意,∴两图象交点的纵坐标是.故答案为:【点睛】此题考查了从函数图象获取信息、列分式方程解决实际问题,数形结合和准确计算是解题的关键.16. 如图,在中,,,,于点,是斜边的中点,则线段的长为______.【答案】21y x =+s t P 250P 35P 3510035m m -=250m =250m =P 250250Rt ABC △90ACB ∠=︒67.5B ∠=︒8AB =CD AB ⊥D E AB DE【解析】【分析】本题考查的是直角三角形斜边上的中线的性质、等腰直角三角形的性质.根据直角三角形的性质求出,根据直角三角形斜边上的中线的性质得到,根据等腰三角形的性质得到,根据三角形的外角性质求出,根据等腰直角三角形的性质求出.【详解】解:在中,,,则,在中,,,是斜边的中点,则,,,,,,故答案:17. 如图,直线分别交x 轴、y 轴于A ,B 两点,C 是线段上一点,,则点C 的坐标为______.【答案】【解析】【分析】本题考查了一次函数图象上点的坐标特征,全等三角形的性质和判定,熟练掌握一线三垂直证明全等是解答本题的关键.首先得,,作,交直线于点,作,垂足为点,利用证明得到,,设,则,,将点为A ∠142CE AB AE ===22.5ECA A ∠=∠=︒45BEC ∠=︒DE Rt ABC △90ACB ∠=︒67.5B ∠=︒9067.522.5A ∠=︒-︒=︒Rt ABC △90ACB ∠=︒8AB =E AB 142CE AB AE ===22.5ECA A ∴∠=∠=︒45BEC A ECA ∴∠=∠+∠=︒CD AB ⊥ 90CDE \Ð=°DE ∴==122y x =+OA =45ABC ∠︒2,03⎛⎫- ⎪⎝⎭(0,2)B (4,0)A -CD BC ⊥AB D DE x ⊥E AAS CDE BCO △≌△DE CO =CE OB =(,0)C m -(2,0)E m --(2,)D m m --代入直线解析式解出值即可.【详解】解:如图,作,交直线于点,作,垂足点,,,,,,,直线解析式为直线,,,设则,,点在直线的图象上,解得:,.故答案为:.18. 如图,在矩形中,,,点,分别是边,上的动点,且,过点作直线的垂线,垂足为,则线段长的最大值为______.为D m CD BC ⊥AB D DE x ⊥E 45ABC ∠=︒ CD CB ∴=90DEC BCO DCE CBOCD CB ∠=∠=︒⎧⎪∠=⎨⎪=⎩(AAS)CDE BCO ∴ ≌DE CO ∴=CE OB = AB 122y x =+(0,2)B ∴(4,0)A -(,0)C m -(2,0)E m --(2,)D m m -- (2,)D m m --122y x =+1(2)22m m ∴=--+23m =2(3C ∴-0)2,03⎛⎫- ⎪⎝⎭ABCD 2AB =3BC =E F AD BC AE CF =B EF H BH【解析】【分析】本题考查矩形的性质,全等三角形的判定和性质.由矩形的性质推出,,,,由推出,得到,由勾股定理求出,得到,又,即可得到线段长的最大值为.【详解】解:四边形是矩形,,,,,,,,,,,,,,线段.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤)19. 已知y 是x 的一次函数,且当时,;当时,.AD BC =2DC AB ==AD BC ∥90DBC ∠=︒ASA ODE OBF △≌△OB OD =BD ==12OB BD ==BH OB ≤BH ABCD AD BC ∴=2DC AB ==AD BC ∥90DBC ∠=︒ODE OBF ∴∠=∠OED OFB ∠=∠AE CF = AD AE BC CF ∴-=-DE BF ∴=()ASA ODE OBF ∴≌ OB OD ∴=BD === 12OB BD ∴==BH OB ≤ ∴BH 2x =4y ==1x -1y =(1)求这个一次函数的解析式;(2)若点在该一次函数的图象上,求a 的值.【答案】(1)该一次函数的解析式为(2)【解析】【分析】本题考查了待定系数法求一次函数解析式及一次函数图象上点的坐标特征;(1)设一次函数解析式为,再把两组对应值代入得到的方程组,然后解方程组即可;(2)把代入(1)中的解析式得到的方程,然后解方程即可.【小问1详解】解:设该一次函数的解析式为,分别把代入得:解得:所以,该一次函数的解析式为.【小问2详解】把代入,得:,解得:a 的值:20. 如图,在中,E 是上一点,,点F 在上,.求证:.【答案】见解析【解析】(),1a a -2y x =+12a =-()0y kx b k =+≠k b 、(),1a a -a ()0y kx b k =+≠2,4;1,1x y x y ===-=y kx b =+241k b k b +=⎧⎨-+=⎩12,k b =⎧⎨=⎩2y x =+(),1a a -2y x =+12a a -=+12a =-12a =-ABCD Y BC DE DA =DE DAF EDC ∠=∠DF EC =【分析】本题考查了平行四边形的性质,全等三角形的判定与性质等知识.先根据平行四边形的定义得到,再证明,即可证明.【详解】证明:四边形是平行四边形,,,又∵,,,.21. 如图,在平面直角坐标系中,点在直线上,直线l 经过点A ,交y 轴于点.(1)求m 的值和直线l 的函数表达式;(2)若点在直线l 上,点在直线上.若,求t 的取值范围.【答案】(1),直线的解析式为(2)【解析】【分析】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.(1)利用待定系数法求解即可;(2)首先将代入,代入得到,,然后根据求解即可.【小问1详解】把点代入得:,设直线的解析式为,把和分别代入ADF DEC ∠=∠ADF DEC △≌△DF EC = ABCD AD BC ∴∥ADF DEC ∴∠=∠DE AD =DAF EDC ∠=∠ADF DEC ∴ ≌DF EC ∴=()2,A m -22y x =--()0,4B ()1,P t y ()2,Q t y 22y x =--120y y -<2m =AB 4y x =+2t <-()1,t y 4y x =+()2,t y 22y x =--14y t =+222y t =--120y y -<()2,A m -22y x =--()2222m =-⨯--=AB y kx b =+()2,2-()0,4y kx b=+得:解得:所以,直线的解析式为.【小问2详解】把代入,代入,得:,因为,所以,解得.22. 如图,在菱形中,过点作于点,延长至点,使,连接.(1)求证:四边形是矩形;(2)若,,求的长.【答案】(1)见解析(2)的长为【解析】【分析】本题考查了矩形的判定和性质,菱形的性质,勾股定理,熟练掌握矩形的判定和性质是解题的关键.(1)由,可得,即,结合,可得四边形是平行四边形,再结合,可得平行四边形是矩形;(2)根据矩形的性质和菱形的性质,以及勾股定理即可得到结论.【小问1详解】证明:在菱形中,,,224k b b -+=⎧⎨=⎩14k b =⎧⎨=⎩AB 4y x =+()1,t y 4y x =+()2,t y 22y x =--14y t =+222y t =--120y y -<()()4220t t +---<2t <-ABCD A AE BC ⊥E BC F CF BE =DF AEFD 6BF =3DF =AD AD 154CF BE =EF BC =EF AD =AD BC ∥AEFD AE BC ⊥AEFD ABCD AD BC ∥AD BC CD AB ===,,,,∵,四边形是平行四边形,,平行四边形是矩形;【小问2详解】解:设,,,,,解得,.23. 如图,有两个全等的直角三角形,直角边长分别为2和4,我们知道,用这样的两个直角三角形可以拼成平行四边形.(1)请画出所有可能拼成的平行四边形:(要求:用直尺画图,并在图上标出平行四边形每一条边的长度.)(2)在所有拼成的平行四边形中,求最长对角线的长度.【答案】(1)共有3种拼法,画图见解析(2)(1)中图(3)中一条对角线最长,长度为【解析】【分析】本题考查图形的剪拼,涉及矩形的性质、勾股定理,熟练掌握矩形性质,作辅助线构造直角三角的CF BE = CF EC BE EC ∴+=+EF BC ∴=EF AD ∴=AD BC ∥∴AEFD AE BC ⊥ ∴AEFD AD BC EF CD x ====6CF BE BF EF x ∴==-=-90F ∠=︒ 222CD CF DF ∴=+222(6)3x x ∴=-+154x =154AD ∴=形求解是解答的关键.(1)根据平行四边形的性质求解即可;(2)分情况分别利用平行四边形和矩形的性质和勾股定理求解即可.【小问1详解】共有3种拼法,如下图:【小问2详解】如图①所示:其对角线长;如图②所示:∴∴∴如图③所示:∴∴∴.∴图③中的一条对角线最长,长度为.24. 家电超市出售某品牌手机充电器,每个进价50元,了解到有A ,B 两个厂家可供选择,为了促销、两个厂家给出了不同的优惠方案:A 厂家:一律打8折出售;B 厂家:20个以内(含20个)不打折,超过20个后,超过的部分打7折.该家电超市计划购买充电器x 个,设去A 厂家购买应付元,去B 厂家购买应付元.AB ==4CD ==122OD CD ==OA ==2AB OA ==2C D ==112OD CD ==OB ==2AB OB ==1y 2y(1)分别求出、与x 之间的函数关系;(2)若该商家只在一个厂家购买,怎样买过算?【答案】(1),(2)当时,厂家购买划算;当时,两个厂家付款一样;当时,在厂家购买划算【解析】【分析】本题考查一次函数的应用,理解题意、根据题意写出函数关系式并掌握一元一次不等式的解法是本题的关键.(1)根据“去厂家购买应付款进价折扣购买数量”求出与之间的函数关系;分别求出当且为整数时、当且为整数时与之间的函数关系即可;(2)根据不同的取值范围,分别求出当、、时对应的的取值范围即可.【小问1详解】解:根据题意,得且为整数);当且为整数时,;当且为整数时,;综上,,与之间的函数关系为,与之间的函数关系为.【小问2详解】解:当且为整数时:;当且为整数时:若,得,解得;若,得,解得;若,得,解得;综上,当时,;当时,;当时,.在1y 2y ()1400y x x =≥()25002035300(20)x x y x x ⎧≤≤=⎨+>⎩060x <<A 60x =60x >B A =⨯⨯1y x 020x ≤≤x 20x >x 2y x x 12y y <12y y =12y y >x 10.85040(0y x x x =⨯=≥x 020x ≤≤x 250y x =20x >x 250200.750(20)35300y x x =⨯+⨯-=+()25002035300(20)x x y x x ⎧≤≤=⎨+>⎩1y ∴x ()1400y x x =≥2y x ()25002035300(20)x x y x x ⎧≤≤=⎨+>⎩020x ≤≤x 12y y <20x >x 12y y <4035300x x <+60x <12y y =4035300x x =+60x =12y y >4035300x x >+60x >060x ≤<12y y <60x =12y y =60x >12y y >当时,选择厂家购买比较划算;当时,选择厂家和厂家一样划算;当时,选择厂家购买比较划算.25. 已知四边形是正方形,点E 是射线上一点,连接,点D 关于直线的对称点为M ,射线与直线相交于点G .(1)若点M 在对角线上,则 度;(2)如图,若E 是的中点,试用等式表示线段,,之间的数量关系,并证明;(3)若点E 在边的延长线上,,求的长.【答案】(1)(2),证明见解析(3)【解析】【分析】本题考查了正方形的性质、全等三角形的判定及性质、勾股定理、等腰三角形的性质和判定:(1)根据正方形的性质以及对称的性质得到结果;(2)先作辅助线,根据正方形的性质以及中点得到角度和边长之间的关系,证明出两个三角形全等,得到对应边以及对应角,再根据边长之间的关系可得到结果;(3)先作辅助线,根据勾股定理得到,然后根据对称性以及正方形的特点证明出,即可得到结果;作出正确的辅助线是解题的关键.【小问1详解】解:若点M 在对角线上,如图所示:,此时,∵点D 关于直线的对称点为M,∴060x ≤<A 60x =A B 60x >B ABCD DC AE AE AM BC AC DAE ∠=CD AG AD CG DC 4,3AD BG ==DE 22.5AG AD CG =+8DE =5AG =ABN ECN △≌△AC 45DAC ∠=︒AE∴,故答案为:;【小问2详解】解:,证明如下:延长交的延长线于点,如图所示:,四边形是正方形,,,点是中点,在和中,,,点与点关于直线对称,,,,,而,;【小问3详解】解:设与相交于点,如图所示:122.52DAE EAC DAC ∠=∠=∠=︒22.5AG AD CG =+AE BC F ABCD ,90AD BC ADC ∴∠=︒∥90DCF ADC ∴∠=∠=︒ E CD DE EC∴=ADE V FCE △ADC DCF DE CEAED FEC ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA ADE FCE ∴ ≌,AD CF DAE CFE ∴=∠=∠ D M AE GAF DAE ∴∠=∠GAF CFE ∴∠=∠AG FG ∴=FG CF CG =+ CF AD =AG AD CG ∴=+AE BC N,在中,,,,点与点关于直线对称,,四边形是正方形,,,,,,,,,四边形是正方形,,,在和中,,,Rt ABG △222AB BG AG +=22243AG ∴+=5AG ∴= D M AE DAE GAE ∴∠=∠ ABCD AD BC ∴∥DAE ANG ∴∠=∠GAE ANG ∴∠=∠5GN AG ∴==3GB = 532BN GN GB ∴=-=-=4BC AD == 2BN NC ∴== ABCD AB DC ∴ ABC BCE ∴∠=∠ABN ECN ABC BCE BN NCANB ENC ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA ABN ECN ∴ ≌4CE AB ∴==.26. 如图1,平面直角坐标系中,过点分别作轴、轴的垂线,垂足分别为,两点,直线与交于点,与轴交于点.(1)求点D 的坐标;(2)如图2,是线段上的一个动点(不与点重合),过作的垂线交于点.①若,求的长;②若的平分线与射线交于点,,,求关于的函数解析式.【答案】(1)(2)①的长为2;②【解析】【分析】(1)直线,令,求出,即可得点的坐标;(2)①过作轴于,证明,可得,,设,则,代入直线即可求解;②在上截取,连接,证明,在中,利用勾股定理求解即可.【小问1详解】解:,轴,直线与交于点,点的纵坐标为6,直线,令得,解得,点的坐标为;【小问2详解】448DE DC CE ∴=+=+=xOy ()8,6B x y C A 26y x =-AB D y M E AO O E ED DM F DE EF =AE COM ∠EF H OH m =OE n =m n ()6,6AE m =+26y x =-6y =6x =D F FG y ⊥G ()AAS EFG DEA ≌FG EA =6EG DA ==AE a =(),F a a -26y x =-AD AN AE =NE EOH DNE ≌Rt NAE (8,6)B BA y ⊥26y x =-AB D ∴D 26y x =-6y =266x -=6x =∴D ()6,6解:①过作轴于,,,,,,,,,,设,则,,,,,代入得,解得,的长为2;②在上截取,连接,∵平分,∴,F FG y ⊥G 90EGF A ∴∠=∠=︒90FEG EFG ∠+∠=︒EF DE ⊥ 90FEG DEA ∴∠+∠=︒EFG DEA ∴∠=∠DE EF = ()AAS EFG DEA ∴ ≌FG EA ∴=6EG DA ==AE a =FG EA a ==6OA AE OE =+= 6EG OG OE =+=OG AE a ∴==(,)F a a ∴-26y x =-26a a -=-2a =AE ∴AD AN AE =NE OH COM ∠11904522MOH COM ∠=∠=⨯︒=︒∴,∵,,∴∴,∴,由(1)中D 的坐标可知,∴,即.∴,∴,在中,,∴,∵,∴,∴,∴,【点睛】本题是一次函数综合题,考查一次函数图象上点的坐标特征,全等三角形的判定和性质,勾股定理,等腰直角三角形的性质等,能够通过作垂线构造全等三角形是解题的关键.180********EOH MOH ∠=︒-∠=︒-︒=︒AN AE ==90DAE ∠︒45ANE ∠=︒180********END ANE ∠=︒-∠=︒-︒=︒EOH END ∠=∠()6,6AD AO =AD AN AO AE -=-DN EO =EOH DNE ≌NE OH m ==NAE 90NAE ∠=︒222AE AN NE +=AN AE =222AE AE NE +=222AE NE =NE =m ∴=+。

八年级下学期期中考试数学试卷(含有答案)

八年级下学期期中考试数学试卷(含有答案)

八年级下学期期中考试数学试卷(含有答案)一.单选题。

(每小题4分,共40分)1.已知x >y ,则下列不等式中,不成立的是( )A.3x >3yB.x -9>y -9C.﹣x >﹣yD.﹣x2<﹣y2 2.下列各式从左到右的变形是因式分解的是( )A.(x -3)(x+1)=x 2-2x -3B.x 2-xy=x (x -y )C.ab+bc+d=b (a+c )+dD.6x 2y=3xy•2x 3.若分式x -1x的值为0,则x 的值是( )A.1B.﹣1C.0D.24.把多项式2a 2-4a 分解因式,应提取的公因式是( ) A.a B.2 C.a 2 D.2a5.已知两个不等式的解集在数轴上如图所示,那么组成的不等式组的解集是( ) A.x >1 B.x ≥﹣1 C.﹣3<x ≤﹣1 D.x >﹣3(第5题图) (第6题图) (第10题图) 6.如图,将△COD 绕点O 按顺时针方向旋转一定角度后得到△AOB ,旋转角为( ) A.∠AOB B.∠BOC C.∠AOC D.∠COD 7.在下列分式的变形中,从左到右一定正确的是( ) A.a b =a+1b+1 B.2a 2b =ab C.a b =a 2b 2 D.a b =acbc 8.下列各式中能用平方差公式因式分解是( )A.﹣4a 2+b 2B.x 2+4C.a 2+c 2-2acD.﹣a 2-b 2 9.如果把xyx+y 中x ,y 的值都扩大2倍,那么这个分式的值( ) A.不变 B.缩小到原来的12 C.扩大4倍 D.扩大2倍10.如图,一次函数y=kx+b 的图象经过点A (﹣1,﹣2)和B (﹣2,0),一次函数y=2x 的图象经过点A ,则不等式2x ≤kx+b 的解集为( )A.x ≤﹣1B.x ≤﹣2C.x ≥1D.﹣2≤x <﹣1 二.填空题。

(每小题4分,共24分) 11.因式分解:a 3-4a 2= 。

12.要使分式2x -5有意义,则x 的取值范围应满足的条件是 .13.已知x+y=5,xy=2,则x 2y+xy 2的值是 .14.如图,将周长为8的△DEF 沿EF 方向平移3个单位长度得到△ABC ,则四边形ABFD 的周长为 .(第14题图)15.若a+1a =4,则a 2+1a 2= . 16.若1a +1b =5,则分式2a -5ab+2b﹣a+3ab -b的值为 .(填序号)①第3分时,汽车的速度是40千米/时;②从第3分到第6分,汽车行驶了120千米;③第12分时,汽车的速度是0千米/时;④从第9分到12分,汽车的速度从60千米/时减少到0千米/时. 三、解答题。

2021-2022学年第二学期苏州市2022-2023学年第二学期初二数学期中试卷及解析

2021-2022学年第二学期苏州市2022-2023学年第二学期初二数学期中试卷及解析

苏州市2022-2023学年第二学期初二数学期中测试卷试卷满分: 130分; 考试时间: 120分钟一、 选择题(共10小题 , 满分30分) 1. 使二次根式()5x -意义的x 的取值范围是( )A . 5x >B . 5x ≥C . 5x >-D . 5x ≥-2. 为了解我国几个品牌智能手机在全球市场智能手机的份额 , 统计时宜采用( ) A . 扇形统计图B . 折线统计图C . 条形统计图D . 统计表3. 下列图形是我国国产品牌汽车的标识 , 这些汽车标识中 , 既是轴对称图形又是中心对称图形的是( )A .B .C .D .4. 若分式22x x -+的值为0 , 则x 的值等于( )A . 2-B . 2±C . 2D . 05. 下列函数中 , 表示y 是x 的反比例函数的是( ) A . ()11x y +=B . 11y x =- C . 21y x =D . 12y x=6. 一个不透明的箱子里共装有m 个球 , 其中红球5个 , 这些球除颜色不同外其余都相同. 每次搅拌均匀后 , 任意摸出一个球记下颜色后再放回 , 大量重复试验发现 , 摸到红球的频率稳定在0. 2附近 , 则可以估算出m 的值为( ) A . 1B . 5C . 20D . 257. 估计365-的值在( ) A . 5和6之间B . 4和5之间C . 3和4之间D . 2和3之间8. 如图 , 小刚荡秋千 , 秋千旋转了70︒ , 小刚的位置从A 点运动到了A '点 , 则OAA '∠的度数为( )A . 50︒B . 55︒C . 65︒D . 70︒9. 如图 , 矩形ABCD 沿对角线BD 折叠 , 已知长8cm BC = , 宽6cm AB = , 那么折叠后重合部分的面积是( )A . 248cmB . 224cmC . 218.75cmD . 218cm10. 如图 , 点A 、 B 在反比例函数()0,0ky k x x=>>的图象上 , 过点A , B 作x 轴的垂线 , 垂足分别为M , N , 延长线段AB 交x 轴于点C , 若OM MN NC == , 2BNC S ∆= , 则该反比例函数的解析式为( )A . 12y x=B . 8y x=C . 6y x=D . 4y x=二、 填空题(共8小题 , 满分24分) 11. 计算:111a -=+________. 12. 2020年春新冠肺炎疫情防控期间 , 金昌市药监局对市场上的口罩质量进行调查 , 合适的调查方法是__调查. (填“抽样”或“全面”)13. 如图 , 已知矩形ABCD 的对角线AC 的长为10cm , 顺次连接各边中点E 、 F 、 G 、 H 得四边形EFGH , 则四边形EFGH 的周长为______cm .14. 如图 , 点P 在反比例函数()11,0k y k x x+=≠-<的图像上 ,PA x ⊥轴于点A , PB y ⊥轴于点B , 连接AB , 若APB △的面积为2 , 则k =________. 15. 已知35a << , 则化简()()2228a a -+-的结果为___________.16. 如图 , 四边形ABCD 是菱形 , ∠ABC =60° , 延长BC 到点E , CM 平分∠DCE , 过点D 作DF ⊥CM , 垂足为F . 若DF =1 , 则对角线BD 的长是______.17. 如图 , 在平面直角坐标系中 , 点B 在函数()60y x x=>的图象上 , 过点B 分别作x 轴、 y 轴的垂线 , 垂足分别为A 、 C , 取线段OC 的中点D , 连接BD , 则四边形OABD 的面积为________. 18. 如图 , 在矩形ABCD 中 , 112AB =, 3BC = , E 为AB 上一点 , 且1AE = , F 为AD 边上的一个动点(不与A 重合 , 可与D 重合) , 连接EF , 若以EF 为边向右侧作等腰直角EFG ,EF EG = , 连接CG , 则CG 的最小值为________.三、 解答题(共10小题 , 满分76分)19. 计算: 2201(2)121(2022)2π-⎛⎫-----++ ⎪⎝⎭20. 解方程: 118225x x x -+-=- 21. 先化简 , 再求值:21111x x x ⎛⎫÷+ ⎪--⎝⎭, 其中4x =. 22. 若a , b , c 都是实数 , 且112b a a -- , c 为213 , 求a b c ++的值.23. 某校计划组织学生参加“书法”、 “摄影”、 “航模”、 “围棋” , 四个课外兴趣小组 , 要求每人必须参加 , 并且只能选择其中一个小组 , 为了解学生对四个课外兴趣小组的选择情况 , 学校从全体学生中随机抽取部分学生进行问卷调查 , 并把调查结果制成如图所示的扇形统计和条形统计图(部分信息未给出) , 请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数 , 并补全条形统计图(画图后请标注相应的数据); (2)%m =______% , %n =______%;(3)若该校共有1200名学生 , 试估计该校选择“围棋”课外兴趣小组的学生有多少人? 24. 如图 , 一次函数1y k x b =+的图象与反比例函数2k y x=的图象相交于点()3,1A 、 ()1,B n -两点.(1)分别求出一次函数和反比例函数的解析式; (2)根据图象 , 请你直接写出满足条件: 21k k x b x+≥的x 的取值范围. 25. 图①、 图②均是55⨯的正方形网格 , 小正方形的边长为1 , 每个小正方形的顶点称为格点 , 线段AB 的端点均在格点上. 在图①、 图②中 , 只用无刻度的直尺 , 在给定的网格中 , 按下列要求作图.(1)线段AB 的长为______;(2)在图①中 , 以线段AB 为边画一个中心对称四边形ABCD , 使其面积为6; (3)在图②中 , 以线段AB 为边画一个轴对称四边形ABEF , 使其面积为8.26. 阅读理解:画图可知道 , 一次函数1y x =-的图象可由正比例函数y x =的图象向右平移1个单位长度得到; 类似函数12y x =+的图象可以由反比例函数1y x =的图象向左平移2个单位长度得到.(1)反比例函数1y x=的图象向右平移2个单位长度后的图象解析式是______. 解决问题:如图 , 已知反比例函数6y x=的图象与直线()0y ax a =≠相交于点()2,3A 和点B . (2)求点B 的坐标; (3)若将反比例函数6y x=的图象向右平移n (n 为整数 , 且0n >)个单位长度后 , 经过点37,2M ⎛⎫⎪⎝⎭ ,求n 的值及反比例函数6y x=平移后的图象对应的解析式. 27. 我们规定: 有一组邻边相等 , 且这组邻边的夹角为60︒的凸四边形叫做“准筝形”.(1)如图1 , 在四边形ABCD 中 , 120A ∠=︒ , 150C ∠=︒ , 30D ∠=︒ , 2AB BC == , 则AD = ___________ ; CD = ___________.(2)小军同学研究“准筝形”时 , 思索这样一道题: 如图2 , “准筝形”6053ABCD AD BD BAD BCD BC CD ∠∠===︒==,,,, , 求AC 的长.小军研究后发现 , 可以CD 为边向外作等边三角形 , 构造手拉手全等模型 , 用转化的思想来求AC .请你按照小军的思路求AC 的长.(3)如图3 , 在ABC 中 , 4512023A ABC BC ∠∠=︒=︒=,,, 设D 是ABC 所在平面内一点 , 当四边形ABCD 是“准筝形”时 , 请直接写出四边形ABCD 的面积.28. 如图1 , 已知点(),0A a , ()0,B b , 且a 、 b 满足()2130a a b ++++= ,ABCD 的边AD与y 轴交于点E , 且E 为AD 中点 , 双曲线ky x=经过C 、 D 两点.(1)求k 的值;(2)如图2 , 点P 在双曲线ky x=上 , 点Q 在y 轴上 , 若以点A 、 B 、 P 、 Q 为顶点的四边形是平行四边形 , 试求满足要求的所有点P 、 Q 的坐标;(3)如图3 , 以线段AB 为对角线作正方形AFBH , 点T 是边AF 上一动点 , M 是HT 的中点 ,MN HT ⊥ , 交AB 于N , 当T 在AF 上运动时 ,MNHT的值是否发生改变? 若改变 , 求出其变化范围; 若不改变 , 请求出其值 , 并给出你的证明.答案与解析一、 选择题(共10小题 , 满分30分) 1. 使二次根式()5x -意义的x 的取值范围是( )A . 5x >B . 5x ≥C . 5x >-D . 5x ≥-【答案】B 【解答】解: ∵二次根式()5x -意义 , ∴50x -≥ , ∴5x ≥ .2. 为了解我国几个品牌智能手机在全球市场智能手机的份额 , 统计时宜采用( ) A . 扇形统计图B . 折线统计图C . 条形统计图D . 统计表【答案】A 【解答】解: 为了解我国几个品牌智能手机在全球市场智能手机的份额 , 统计时宜采用扇形统计图.3. 下列图形是我国国产品牌汽车的标识 , 这些汽车标识中 , 既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】A 【解答】解: A 、 是轴对称图形 , 也是中心对称图形 , 故选项符合题意; B 、 是轴对称图形 , 不是中心对称图形 , 故选项不符合题意; C 、 不是轴对称图形 , 也不是中心对称图形 , 故选项不符合题意; D 、 不是轴对称图形 , 是中心对称图形 , 故选项不符合题意; 4. 若分式22x x -+的值为0 , 则x 的值等于( )A . 2-B . 2±C . 2D . 0【答案】C 【解答】解: ∵分式22x x -+的值为0 , ∴2020x x ⎧-=⎨+≠⎩ , 解得2x =. 5. 下列函数中 , 表示y 是x 的反比例函数的是( ) A . ()11x y +=B . 11y x =- C . 21y x =D . 12y x=【答案】D 【解答】解: 根据反比例函数的定义 , 可判断出只有12y x =表示y 是x 的反比例函数.6. 一个不透明的箱子里共装有m 个球 , 其中红球5个 , 这些球除颜色不同外其余都相同. 每次搅拌均匀后 , 任意摸出一个球记下颜色后再放回 , 大量重复试验发现 , 摸到红球的频率稳定在0. 2附近 , 则可以估算出m 的值为( ) A . 1B . 5C . 20D . 25【答案】D 【解答】解: 50.225÷=(个) , 所以可以估算出m 的值为25 .7. 估计365-的值在( ) A . 5和6之间B . 4和5之间C . 3和4之间D . 2和3之间【答案】D 【解答】3654∵495464<<, ∴7548<< , ∴7368<< , ∴23653<-< .8. 如图 , 小刚荡秋千 , 秋千旋转了70︒ , 小刚的位置从A 点运动到了A '点 , 则OAA '∠的度数为( )A . 50︒B . 55︒C . 65︒D . 70︒【答案】B 【解答】∵秋千旋转了70︒ , 小刚的位置从A 点运动到了A '点 , ∴70'∠=︒AOA , AO OA '= , ∴18070552OAA OA A ︒-︒''∠=∠==︒ .9. 如图 , 矩形ABCD 沿对角线BD 折叠 , 已知长8cm BC = , 宽6cm AB = , 那么折叠后重合部分的面积是( )A . 248cmB . 224cmC . 218.75cmD . 218cm【答案】C 【解答】解: ∵四边形ABCD 是矩形 , ∴AD CB ∥ , ∴ADB DBC ∠=∠ , ∵C BD DBC '∠=∠ ∴ADB EBD ∠=∠ , ∴DE BE = , ∴8C E DE '=- , ∵6C D AB '== . ∴()22268DE DE +-= , ∴254DE =, ∴()2118.75cm 2BDE S DE CD =⨯=△.10. 如图 , 点A 、 B 在反比例函数()0,0ky k x x=>>的图象上 , 过点A , B 作x 轴的垂线 , 垂足分别为M , N , 延长线段AB 交x 轴于点C , 若OM MN NC == , 2BNC S ∆= , 则该反比例函数的解析式为( )A .12y x=B . 8y x=C . 6y x=D . 4y x=【答案】B 【解答】解: BN AM ∥ , MN NC =∴221124CNB CMASCN S CM ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭2BNC S ∆=∴8CMAS=OM MN NC ==∴12OM MC =∴142AOMAMCSS ==12AOMS k =△∴142k =∴8k ∴解析式为8y x =第Ⅱ卷(非选择题)评卷人得 分二、 填空题(共8小题 , 满分24分) 11. 计算: 111a -=+________. 【答案】1aa -+【解答】11(1)1111a a a a a -+-==-+++. 12. 2020年春新冠肺炎疫情防控期间 , 金昌市药监局对市场上的口罩质量进行调查 , 合适的调查方法是__调查. (填“抽样”或“全面”)【答案】抽样【解答】解: 金昌市药监局对市场上的口罩质量进行调查 , 合适的调查方法是抽样调查. 13. 如图 , 已知矩形ABCD 的对角线AC 的长为10cm , 顺次连接各边中点E 、 F 、 G 、 H 得四边形EFGH , 则四边形EFGH 的周长为______cm .【答案】20【解答】解: ∵H 、 G 是AD 与CD 的中点 , ∴HG 是ACD 的中位线 . ∴152HG AC ==cm , 同理5EF =cm , 根据矩形的对角线相等 , 连接BD , 得到: 5EH FG ==cm , ∴四边形EFGH 的周长为20cm .14. 如图 , 点P 在反比例函数()11,0k y k x x+=≠-<的图像上 ,PA x ⊥轴于点A , PB y ⊥轴于点B , 连接AB , 若APB △的面积为2 , 则k =________.【答案】5-【解答】解: 依题意得 , 1122APBS k =+= , 14k ∴+=± , 1k y x+=的图像在第二象限 , 14k ∴+=- , 5k ∴=- . 15. 已知35a << , 则化简()()2228a a -+-的结果为___________.【答案】6【解答】解:35a << , 20a ∴-> , 80a -< ,()()2228a a ∴-+-28a a =-+-()()28a a =---28a a =--+6=16. 如图 , 四边形ABCD 是菱形 , ∠ABC =60° , 延长BC 到点E , CM 平分∠DCE , 过点D 作DF ⊥CM , 垂足为F . 若DF =1 , 则对角线BD 的长是______.【答案】23【解答】解: 连接AC 交BD 于点O , ∵四边形ABCD 是菱形 , ∴AB =BC , ∠CBO =∠ABO , OB =OD , AC ⊥BD , ∵∠ABC =60°, ∴∠OBC =30° , ∠BCD =120° . ∴∠DCE =60° , ∵CM 平分∠DCE , ∴∠DCF =∠ECF =30° , ∵DF =1 , ∴DC =2DF =2 . ∴OC =12CD =1 , ∴OD =223CD OC -= , ∴BD =2OD =23.17. 如图 , 在平面直角坐标系中 , 点B 在函数()60y x x=>的图象上 , 过点B 分别作x 轴、 y 轴的垂线 , 垂足分别为A 、 C , 取线段OC 的中点D , 连接BD , 则四边形OABD 的面积为________.【答案】4.5【解答】解: 设点B 的坐标为6m m ⎛⎫⎪⎝⎭, , ∴6OA BC m OC AB m ====, .∵D 为线段OC 的中点 , ∴132CD OD OC m=== , ∴BCD OABD OABC S S S =-△四边形矩形12OA AB CD BC =⋅-⋅1362m m =-⋅ 4.5= .18. 如图 , 在矩形ABCD 中 , 112AB = , 3BC = , E 为AB 上一点 , 且1AE = , F 为AD 边上的一个动点(不与A 重合 , 可与D 重合) , 连接EF , 若以EF 为边向右侧作等腰直角EFG ,EF EG = , 连接CG , 则CG 的最小值为________.【答案】52【解答】解: 过G 作GH AB ⊥ , ∥MN AB .∵在矩形ABCD 中 ,112AB =, 3BC = , ∵1AE = .∴92BE = , ∵90GHE A GEF ∠=∠=∠=︒ , ∴90GEH EGH ∠+∠=︒ , 90GEH FEA ∠+∠=︒ .∴FEA EGH ∠=∠ , ∵EF EG = , ∴(AAS)GEH FEA ≌△△ , ∴1GH AE == , ∴点G 在MN 上运动 , ∴当F 与D 重合时CG 最小 , 此时3AF EH == , ∴CG 最小值为 , 22115(13)222CG =--+=最小 .评卷人 得 分三、 解答题(共10小题 , 满分76分)19. 计算: 2201(2)1(2022)2π-⎛⎫-----++ ⎪⎝⎭20. 解方程: 118225x x x -+-=- 【答案】3x =-【解答】去分母得: ()()105120218x x x --=-+去括号得: 105520236x x x -+=--移项合并得: 721x =-解得: 3x =- 21. 先化简 , 再求值:21111x x x ⎛⎫÷+ ⎪--⎝⎭, 其中4x =.22. 若a , b , c 都是实数 , 且2b , c 为2 , 求a b c ++的值.23. 某校计划组织学生参加“书法”、 “摄影”、 “航模”、 “围棋” , 四个课外兴趣小组 , 要求每人必须参加 , 并且只能选择其中一个小组 , 为了解学生对四个课外兴趣小组的选择情况 , 学校从全体学生中随机抽取部分学生进行问卷调查 , 并把调查结果制成如图所示的扇形统计和条形统计图(部分信息未给出) , 请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数 , 并补全条形统计图(画图后请标注相应的数据); (2)%m =______% , %n =______%;(3)若该校共有1200名学生 , 试估计该校选择“围棋”课外兴趣小组的学生有多少人? 【答案】(1)150 , 补图见解析(2)36 , 16(3)240【解答】(1)参加这次问卷调查的学生人数为3020%150÷=(人) , 航模的人数为()150********-++=(人) , 补全图形如下:(2))54%100%36%150m =⨯= , 24%100%16%150n =⨯= , 即m 36n 16==、 . (3)估计该校选择“围棋”课外兴趣小组的学生有: 150016%240⨯=(人) . 24. 如图 , 一次函数1y k x b =+的图象与反比例函数2k y x=的图象相交于点()3,1A 、 ()1,B n -两点.(1)分别求出一次函数和反比例函数的解析式; (2)根据图象 , 请你直接写出满足条件: 21k k x b x+≥的x 的取值范围. 【答案】(1)2y x =-; 3y x=(2)10x -≤<或3x ≥【解答】(1)解:∵把()3,1A 代入2k y x=得: 2313k =⨯= , ∴反比例函数的解析式是3y x= , ∵()1,B n -代入反比例函数3y x=得: 3n =- .∴B 的坐标是()1,3-- , 把()3,1A 、 ()1,3B --代入一次函数1y k x b =+得: 11133k b k b =+⎧⎨-=-+⎩①② . ①-② , 得11k = , 把11k =代入① , 得31b += , 2b =- , ∴方程组的解集为112k b =⎧⎨=-⎩. ∴一次函数的解析式是2y x =-; (2)解: 从图象可知: 21k k x b x+≥的x 的取值范围是当10x -≤<或3x ≥.25. 图①、 图②均是55⨯的正方形网格 , 小正方形的边长为1 , 每个小正方形的顶点称为格点 , 线段AB 的端点均在格点上. 在图①、 图②中 , 只用无刻度的直尺 , 在给定的网格中 , 按下列要求作图.(1)线段AB 的长为______;(2)在图①中 , 以线段AB 为边画一个中心对称四边形ABCD , 使其面积为6; (3)在图②中 , 以线段AB 为边画一个轴对称四边形ABEF , 使其面积为8.【答案】(1)10(2)图见解析(3)图见解析【解答】(1)由图象可得 , 221310AB =+= . (2)如图①中 , 四边形ABCD 即为所求; (3)如图②中 , 四边形ABEF 即为所求.26. 阅读理解:画图可知道 , 一次函数1y x =-的图象可由正比例函数y x =的图象向右平移1个单位长度得到; 类似函数12y x =+的图象可以由反比例函数1y x =的图象向左平移2个单位长度得到.(1)反比例函数1y x=的图象向右平移2个单位长度后的图象解析式是______. 解决问题:如图 , 已知反比例函数6y x=的图象与直线()0y ax a =≠相交于点()2,3A 和点B . (2)求点B 的坐标; (3)若将反比例函数6y x=的图象向右平移n (n 为整数 , 且0n >)个单位长度后 , 经过点37,2M ⎛⎫ ⎪⎝⎭ ,求n 的值及反比例函数6y x=平移后的图象对应的解析式. 【答案】(1)12y x =-(2)()2,3--(3)3n = , 63y x =-【解答】(1)解: 根据题意得: 反比例函数1y x =的图象向右平移2个单位长度后的图象解析式是12y x =-; (2)解: ∵直线()0y ax a =≠过点()2,3A , ∴32a = , 解得: 32a = , ∴直线32y x = , 联立得: 326y x y x ⎧=⎪⎪⎨⎪=⎪⎩, 解得: 1123x y =⎧⎨=⎩ , 2223x y =-⎧⎨=-⎩ , ∴点()2,3B --; (3)解: 根据题意得: 将反比例函数6y x=的图象向右平移n (n 为整数 , 且0n >)个单位长度后的函数解析式为6y x n =- , ∵平移后的函数图象经过点37,2M ⎛⎫⎪⎝⎭ , ∴6372n =- , 解得: 3n = , ∴平移后的解析式为63y x =-. 27. 我们规定: 有一组邻边相等 , 且这组邻边的夹角为60︒的凸四边形叫做“准筝形”.(1)如图1 , 在四边形ABCD 中 , 120A ∠=︒ , 150C ∠=︒ , 30D ∠=︒ , 2AB BC == , 则AD = ___________ ; CD = ___________.(2)小军同学研究“准筝形”时 , 思索这样一道题: 如图2 , “准筝形”6053ABCD AD BD BAD BCD BC CD ∠∠===︒==,,,, , 求AC 的长.小军研究后发现 , 可以CD 为边向外作等边三角形 , 构造手拉手全等模型 , 用转化的思想来求AC .请你按照小军的思路求AC 的长.(3)如图3 , 在ABC 中 , 4512023A ABC BC ∠∠=︒=︒=,, , 设D 是ABC 所在平面内一点 , 当四边形ABCD 是“准筝形”时 , 请直接写出四边形ABCD 的面积. 【答案】(1)4;23(2)7(3)332或9332+或9332+【解答】(1)如图 , 连接AC .,60AB BC B =∠=︒ , ABC ∴是等边三角形 ,2,60AC BC AB BAC ACB ∴===∠=∠=︒120,150BAD BCD ∠=︒∠=︒ , 90ACD ∴∠=︒ .又30C ∠=︒ , 24,323AD AC CD AC ∴==== , (2)以CD 为边作等边CDE , 连接BE , 过点E 作EF BC ⊥于F , 如图2所示 .则==3==60DE DC CE CDE DCE =∠∠︒, , ===60AD BD BAD BCD ∠∠︒, , ∴ABD △是等边三角形 , =60ADB ∴∠︒ , =ADB BDC CDE BDC ∴∠+∠∠+∠,即=ADC BDE ∠∠ .在ADC △和BDE △中 , AD BD ADC BDE DC DE =⎧⎪∠=∠⎨⎪=⎩, SAS ADC BDE ∴≌(), ∴AC BE = . ==60BCD DCE ∠∠︒ , =1806060=60ECF ∴∠︒-︒-︒︒ , =90EFC ∠︒ , =30CEF ∴∠︒ .1322CF CE ∴== , 由勾股定理得: 22223333133(),5,2222EF CE CF BF BC CF =-=-==+=+=在Rt BEF △中 , 由勾股定理得: 227,BE BF EF =+=∴7AC = , (3)过点C 作CH AB ⊥ , 交AB延长线于H , 设BH x = , 如图3所示 .120ABC CH AH ∠=︒⊥, , 30BCH ∴∠=︒ ,3,2223HC x BC BH x ∴==== , 3,3x HC ∴== , 又45A ∠=︒ , ∴HAC △是等腰直角三角形 , 3,33,HA HC AB ∴===-232AC HC ∴== , ①如图4所示 .当33,60AB AD BAD ︒==-∠=时 , 连接BD , 过点C 作CG BD ⊥ ,交BD 延长线于点G , 过点A 作AK BD ⊥ , 则33BD =- , 60ABD ∠=︒ ,()113322BK AB ==- ,120ABC ∠=︒ , 60CBG CBH ∴∠=︒=∠,∵在CBG 和CBH 中 .90CGB CHB CBG CBH BC BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴CBG ≌CBH , ∴3GC HC == , 在Rt ABK 中 , 由勾股定理得 , 22221333(33)(33)22AK AB BK -⎡⎤=-=---=⎢⎥⎣⎦, 11333639(33)2222ABD S BD AK ∆--∴=⋅=⨯-⨯=, 11933(33)3,222CBD S BD CG ∆-=⋅=⨯-⨯=63993333222S ABCD --∴=+=四边形 . ②图5所示 ,当23,60BC CD BCD ︒==∠=时 .连接BD , 作CG BD ⊥于点G , AK BD ⊥于K , 如图 , 则3333323,233,,222BD CG BC AK -===⨯==112333322BCDSBD CG ∆∴=⋅=⨯⨯= , 11333933232222ABD S BD AK ∆--=⋅=⨯⨯= , 93393333;22ABCD S -+∴=+=四边形③如图6所示 .当32,60AD CD AC ADC ︒===∠=时 , 作DM AC ⊥于M , 作CH AB ⊥于H , 则333326222DM AD ==⨯= , 32332CH =⨯= ,11933(33)3,222ABC S AB CH ∆-∴=⋅=⨯-⨯=113693232222ADC S AC DM ∆=⋅=⨯⨯= , 93399333222ABCD S +=-=+四边形 .综上所述 , 四边形A BCD 的面积为332或9332+或9332+.28. 如图1 , 已知点(),0A a , ()0,B b , 且a 、 b 满足()2130a a b ++++= , ABCD 的边AD与y 轴交于点E , 且E 为AD 中点 , 双曲线ky x=经过C 、 D 两点.(1)求k 的值;(2)如图2 , 点P 在双曲线ky x=上 , 点Q 在y 轴上 , 若以点A 、 B 、 P 、 Q 为顶点的四边形是平行四边形 , 试求满足要求的所有点P 、 Q 的坐标;(3)如图3 , 以线段AB 为对角线作正方形AFBH , 点T 是边AF 上一动点 , M 是HT 的中点 ,MN HT ⊥ , 交AB 于N , 当T 在AF 上运动时 ,MNHT的值是否发生改变? 若改变 , 求出其变化范围; 若不改变 , 请求出其值 , 并给出你的证明.【答案】(1)4k =(2)()11,4P , ()10,6Q 或()21,4P -- , ()20,6Q -或()31,4P -- , ()30,2Q (3)12MN HT = , 不发生改变 , 理由见解析【解答】(1)解:()2130a a b ++++= .∴1030a a b +=⎧⎨++=⎩ , 解得:12a b =-⎧⎨=-⎩, ∴()1,0A - , ()0,2B - , E 为AD 中点 , ∴1D x = .设()1,D t , 又DC AB ∥ , ∴()2,2C t - , ∴24t t =- , ∴4t = , ∴4k =; (2)解:由(1)知4k = ,∴反比例函数的解析式为4y x = , 点P 在双曲线4y x=上 , 点Q 在y 轴上 , ∴设()0,Q y , 4,P x x ⎛⎫⎪⎝⎭, ①当AB 为边时: 如图1 , 若ABPQ 为平行四边形 . 则102x-+= , 解得1x = , 此时()11,4P , ()10,6Q ; 如图2 , 若ABQP 为平行四边形 .则122x-= , 解得=1x - , 此时()21,4P -- , ()20,6Q -; ②如图3 , 当AB 为对角线时 .AP BQ = , 且AP BQ ∥; ∴122x -= , 解得=1x - , ∴()31,4P -- , ()30,2Q ;综上: ()11,4P , ()10,6Q 或()21,4P -- , ()20,6Q -或()31,4P -- , ()30,2Q ; (3)解: MNHT的值不发生改变 , 理由: 如图4 , 连接NH 、 NT 、 NF .MN 是线段HT 的垂直平分线 , ∴NT NH = ,四边形AFBH 是正方形 ,∴ABF ABH ∠=∠ , 在BFN 与BHN △中 , BF BH ABF ABH BN BN =⎧⎪∠=∠⎨⎪=⎩, ∴BFN BHN △△≌(SAS ) ,∴NH NT NF == , BFN BHN ∠=∠ , ∴NTF NFT AHN ∠=∠=∠ , 四边形ATNH 中 ,180ATN NTF ∠+∠=︒ , 而NTF NFT AHN ∠=∠=∠ , 所以 , 180ATN AHN ∠+∠=︒ , 因为 , 四边形ATNH内角和为360︒ , 所以3601809090TNH ∠=︒-︒-︒=︒ , ∴12MN HT = , 12MN HT =, 即MN HT 的值不发生改变.。

淮安市盱眙县2022-2023学年第二学期初二数学期中考试试卷及答案

淮安市盱眙县2022-2023学年第二学期初二数学期中考试试卷及答案

18
a
围棋类
14
0.28
喜剧类
8
0.16
国画类
b
0.20
根据以上信息完成下列问题: (1)直接写出频数分布表中 a 的值; (2)补全频数分布条形图; (3)若全校共有学生 1500 名,估计该校最喜爱围棋的学生大约有多少人?
21.已知,如图,在 ABCD 中, E, F 是对角线 BD 上的两点,且 BF DE .求证: AE CF .
22.如图,▱ABCD 中,点 E、F 分别在 AB、CD 上,且 BE=DF,EF 与 AC 相交于点 P,求证:PA=PC.
23.如图,菱形 ABCD 中,AE⊥BC 于点 E,∠BAE=30°,AD=4cm. (1)求菱形 ABCD 的各角的度数; (2)求 AE 的长.
24.如图,BN、CM 分别是△ABC 的两条高,点 D、点 E 分别是 BC、MN 的中点.
(3)试估算口袋中黑、白两种颜色的球各有多少只?
20.某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型
(分为书法、围棋、戏剧、国画共 4 类),并将统计结果绘制成如图不完整的频数分布表及频数分布条形图.
最喜爱的传统文化项目类型频数分布表
项目类型
频数
频率
书法类
任意摸出 1 个球,摸出白球可能性______摸出黄球可能性.(填“等于”或“小于”或“大于”).
12.在 ABCD 中, A C 220 ,则 B =____°.
13.在菱形 ABCD 中, AC 6 , BD 8 ,则菱形 ABCD 的周长是_______.
14.如图,已知矩形 ABCD,P、R 分别是 BC 和 DC 上的点,E、F 分别是 PA,PR 的中点.如果 DR=3, AD=4,则 EF 的长为______.

南通市崇川区2022-2023学年第二学期初二数学期中考试试卷及参考答案

南通市崇川区2022-2023学年第二学期初二数学期中考试试卷及参考答案

A. m 1
B. m 1
C. m 1
D. m 1
【答案】A
【解析】
【分析】根据一次函数 y=3x+(m-1) 图象经过第一、 二、 三象限 ,可得 m-1>0 ,据此求出 m 的取值
范围即可 .
【解答】解: ∵一次函数 y=3x+(m-1)的图象经过第一、 二、 三象限 .
∴m-1>0 .
解得: m>1 .
(1)求一次函数的解析式 . (2)求三角形 AOC 的面积
22. 如图 ,四边形 ABCD 是平行四边形 , E , F 是直线 DB 上 两点 , DE BF . 求证: 四边形 AFCE 平行四边形 .
是的 23. 某工厂计划生产甲、 乙两种产品共 2500 吨 ,每生产 1 吨甲产品可获得利润 0. 3 万元 ,每生产 1
(1)慢车行驶速度为________ km/h ,快车行驶速度为________ km/h , C 点坐标为________; (2)慢车出发 6h 时候 ,两车相距多少 km ? 25.如图 ,已知矩形 ABCD 中 ,AB 9 ,AD AB .菱形 EFGH 的顶点 H 在边 AD 上 ,且 AH 4 , 顶点 G , E 分别是边 DC , AB 上的动点 ,连接 CF .
三、 四象限 .
6. 袁隆平院士是中国杂交水稻育种专家 ,被誉为“世界杂交水稻之父” ,某村引进了袁隆平水稻研究所的
甲、 乙两种水稻良种 ,各选 6 块条件相同的试验田 ,同时播种并核定亩产 ,结果甲、 乙两种水稻的平
均产量均约为 800kg /亩 ,方差分别为 S甲2 141.7 ,S乙2 433.3 ,则产量稳定、 更适合推广的品种为( )
题的关键 .
4. 疫情期间 ,某中学门卫对开学提前返校的 5 名老师进行体温检测 ,记如下: 36. 1℃ ,36. 3℃ ,

北京市中国人民大学附属中学2023-2024学年八年级下学期期中数学试题(解析版)

北京市中国人民大学附属中学2023-2024学年八年级下学期期中数学试题(解析版)

人大附中2023~2024学年度第二学期初二年级数学期中练习说明:1.本试卷共6页,共两部分,三道大题,24道小题,满分100分,考试时间90分钟.2.试题答案一律填涂或书写在答题卡上,在试卷、草稿纸上作答无效.3.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.第一部分 选择题一、选择题(共24分,每题3分)1. 以下列长度的三条线段为边能组成直角三角形的是( )A. 6,7,8B. 2,3,4C. 3,4,6D. 6,8,10【答案】D【解析】【分析】根据勾股定理逆定理即两短边的平方和等于最长边的平方逐一判断即可.【详解】解:.,不能构成直角三角形,故本选项错误;.,不能构成直角三角形,故本选项错误;.,不能构成直角三角形,故本选项错误;.,能构成直角三角形,故本选项正确.故选:.【点睛】本题考查的是勾股定理逆定理,熟知如果三角形的三边长,,满足,那么这个三角形就是直角三角形是解答此题的关键.2. 如图,中,于点,若,则的度数为( )A. B. C. D. 【答案】B【解析】【分析】由在□ABCD 中,∠EAD =35°,得出∠D 的度数,根据平行四边形的对角相等,即可求得∠B 的度数,继而求得答案.【详解】解:∵∠EAD =35°,AE ⊥CD ,∴∠D =55°,A 222678+≠ ∴B 222234+≠ ∴C 222346+≠ ∴D 2226810+= ∴D a b c 222+=a b c ABCD Y AE CD ⊥E 35EAD ∠=︒B ∠35︒55︒65︒125︒∴∠B =55°,故选:B .【点睛】此题考查了平行四边形的性质.此题难度不大,注意掌握数形结合思想的应用.3. 下列各式中,运算正确的是( )A. B. C. D. 【答案】A【解析】【分析】本题考查了算术平方根,二次根式的加减运算.熟练掌握算术平方根,二次根式的加减运算是解题的关键.根据算术平方根,二次根式的加减运算求解作答即可.【详解】解:AB .,错误,故不符合要求;C .D,错误,故不符合要求;故选:A .4. 在菱形中,点分别是的中点,若,则菱形的周长是( )A. 12B. 16C. 20D. 24【答案】D【解析】【分析】根据三角形中位线定理可得,再根据菱形的周长公式列式计算即可得到答案.【详解】解:点分别是的中点,是的中位线,,菱形的周长,=3=2=2=-=3=≠2+≠22=≠-ABCD E F ,AC DC ,3EF =ABCD 26AD EF == E F ,AC DC ,EF ∴ACD 2236AD EF ∴==⨯=∴ABCD 44624AD ==⨯=【点睛】本题主要考查了三角形中位线定理,菱形性质,熟练掌握三角形的中位线等于第三边的一半及菱形的四条边都相等,是解题的关键.5. 如图,正方形的边长为2,是的中点,,与交于点,则的长为( )A. B. C. D. 3【答案】A【解析】【分析】由正方形的性质得出∠DAF =∠B =90°,AB =AD =2,由E 是BC 的中点,得出BE =1,由勾股定理得出AEADF ≌△BAE(ASA ),即可得出答案.【详解】∵四边形ABCD是正方形,∴∠DAF =∠B =90°,BC =AB =AD =2,∴∠BAE +∠2=90°,∵AB =2,E 是BC 的中点,∴BE =1,∴AE ,∵AD ∥BC ,∴∠1=∠2,∵DF ⊥AE ,∴∠1+∠ADF =90°,∴∠ADF =∠BAE ,在△ADF 和△BAE 中,,的ABCD E BC DF AE ⊥AB F DF =DAF B AD ABADF BAE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF ≌△BAE (ASA ),∴DF =AE故选:A .【点睛】此题主要考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.6. 一个正方形的面积是22.73,估计它的边长大小在( )A. 2与3之间B. 3与4之间C. 4与5之间D. 5与6之间【答案】C 【解析】【分析】设正方形的边长为,根据其面积公式求出的值,估算出的取值范围即可.【详解】解:设正方形的边长为,正方形的面积是22.73,,,,它的边长大小在4与5之间,故选:C .【点睛】本题考查的是估算无理数的大小及算术平方根,估算无理数的大小时要用有理数逼近无理数,求无理数的近似值.7. 要判断一个四边形是否为矩形,下面是4位同学拟定的方案,其中正确的是 ( )A. 测量两组对边是否分别相等B. 测量两条对角线是否互相垂直平分C. 测量其中三个内角是作都为直角D. 测量两条对角线是否相等【答案】C【解析】【分析】根据矩形的判定和平行四边形的判定以及菱形的判定分别进行判断,即可得出结论.【详解】解:矩形的判定定理有①有三个角是直角的四边形是矩形,②对角线互相平分且相等的四边形是矩形,③有一个角是直角的平行四边形是矩形,、根据两组对边分别相等,只能得出四边形是平行四边形,故本选项错误;a a a a a ∴=1622.7325<< <<45<<∴A、根据对角线互相垂直平分得出四边形是菱形,故本选项错误;、根据矩形的判定,可得出此时四边形是矩形,故本选项正确;、根据对角线相等不能得出四边形是矩形,故本选项错误;故选:.【点睛】本题考查了矩形的判定、平行四边形和菱形的判定,主要考查学生的推理能力和辨析能力.8. 如图,点A ,B ,C 在同一条直线上,点B 在点A ,C 之间,点D ,E 在直线AC 同侧,,,,连接DE ,设,,,给出下面三个结论:①;②;.上述结论中,所有正确结论的序号是( )A. ①B. ①③C. ②③D. ①②③【答案】D【解析】【分析】此题考查了勾股定理,全等三角形的判定与性质,完全平方公式的应用,熟记勾股定理是解题的关键.①根据直角三角形的斜边大于任一直角边即可;②在三角形中,两边之和大于第三边,据此可解答;③将用和表示出来,再进行比较.【详解】解:①过点作,交于点;过点作,交于点.∵,,,又,,B C D C AB BC <90A C ∠=∠=︒EAB BCD ≌△△AB a =BC b =DE c =a b c +<a b +>)a b c +>c a b D DF AC ∥AE F B BG FD ⊥FD G DF AC ∥AC AE ⊥DF AE ∴⊥BG FD ⊥ BG AE ∴四边形为矩形,同理可得,四边形也为矩形,,在中,则,故①正确,符合题意;②∵,,在中,,,故②正确,符合题意;③∵,,,又,,.,,,,,.故③正确,符合题意;故选:D第二部分 非选择题二、填空题(共24分,每题3分)∴ABGF BCDG FD FG GD a b ∴=+=+∴Rt EFD DF ED<a b c +<EAB BCD ≌△△AE BC b ∴==Rt EAB△BE ==AB AE BE +>a b ∴+>EAB BCD ≌△△AEB CBD ∠∠∴=BE BD =90AEB ABE ∠+∠=︒ 90CBD ABE ∴∠+=∠︒90EBD ∴∠︒=BE BD = 45BED BDE ∴∠=∠=︒sin 45BE c ∴==⋅︒=c ∴= 22222222()2(2)2()42()a b a ab b a b ab a b +=++=++>+∴)a b +>∴)a b c +>9.有意义,则实数x 的取值范围是______.【答案】【解析】【分析】本题主要考查了二次根式有意义的条件,解题的关键是熟练掌握二次根式被开方数为非负数.有意义,∴,解得:,故答案为:.10. 如图,在中,若,点D 是的中点,,则的长度是_____.【答案】2【解析】【分析】本题考查了直角三角形的性质,利用直角三角形斜边上的中线等于斜边的一半可得的长度.【详解】解:∵在中,,点D 是的中点,,∴.故答案为:2.11. 如图,在数轴上点 A 表示的实数是_____.【解析】【分析】根据勾股定理求得的长度,即可得到的长度,根据点的位置即可得到点表示的数.【详解】解:如图,1x ≥10x -≥1x ≥1x ≥ABC 90ACB ∠=︒AB 4AB =CD CD ABC 90ACB ∠=︒AB 4AB =114222CD AB ==⨯=BD AB B A根据勾股定理得:,,点【点睛】本题考查了实数与数轴,掌握直角三角形两直角边的平方和等于斜边的平方是解题的关键.12. 如图,在四边形中,对角线相交于点O .如果,请你添加一个条件,使得四边形成为平行四边形,这个条件可以是______________________.【答案】(答案不唯一)【解析】【分析】本题考查了平行四边形的判定.熟练掌握平行四边形的判定是解题的关键.根据平行四边形的判定作答即可.【详解】解:由题意知,可添加的条件为,∵,,∴四边形平行四边形,故答案为:.13. 如图,矩形的对角线相交于点O ,,,则矩形对角线的长为___________,边的长为___________.【答案】①. 8 ②. 【解析】【分析】本题主要考查了矩形的性质,等边三角形的性质与判定,勾股定理,先由矩形对角线相等且互相是BD ==∴AB BD ==∴A ABCD AC BD ,AB CD ∥ABCD AD BC ∥AD BC ∥AD BC ∥AB CD ∥ABCD AD BC ∥ABCD AC BD ,60AOB ∠=︒4AB =BD BC平分得到,再证明是等边三角形,得到,则,据此利用勾股定理求出的长即可.【详解】解:∵四边形是矩形,∴,∵,∴是等边三角形,∴,∴,在中,由勾股定理得故答案为:8;14. 小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示的菱形,并测得,对角线的长为,接着活动学具成为图2所示的正方形,则图2中对角线的长为________.【答案】【解析】【分析】如图1,2中,连接AC .在图2中,利用勾股定理求出BC ,在图1中,只要证明△ABC 是等边三角形即可解决问题.【详解】解:如图1,2中,连接AC .如图1中,∵AB =BC ,∠B =60°,∴△ABC 是等边三角形,∴AB =BC =AC =30,在图2中,∵四边形ABCD 是正方形,2290AC BD OA BD ABC ====︒,∠AOB 4OA OB AB ===28AC BD OB ===BC ABCD 2290OA OB AC BD OA BD ABC =====︒,,∠60AOB ∠=︒AOB 4OA OB AB ===28AC BD OB ===Rt ABC △BC ===60B ∠︒AC 30cm AC cm∴AB =BC ,∠B =90°,∵AB =BC =30cm ,∴AC =cm ,故答案为:.【点睛】本题考查菱形的性质、正方形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15. 如图,将菱形纸片ABCD 折叠,使点B 落在AD 边的点F 处,折痕为CE ,若∠D =80°,则∠ECF 的度数是________.【答案】40°【解析】【分析】根据题意由折叠的性质可得∠BCE =∠FCE ,BC =CF ,由菱形的性质可得BC ∥AD ,BC =CD ,可求∠BCF =∠CFD =80°,即可求解.【详解】解:∵将菱形纸片ABCD 折叠,使点B 落在AD 边的点F 处,∴∠BCE =∠FCE ,BC =CF ,∵四边形ABCD 是菱形,∴BC ∥AD ,BC =CD ,∴CF =CD ,∴∠CFD =∠D =80°,∵BC ∥AD ,∴∠BCF =∠CFD =80°,∴∠ECF =40°.故答案为:40°.【点睛】本题考查翻折变换以及菱形的性质,熟练掌握并运用折叠的性质是解答本题的关键.16. 图1中的直角三角形有一条直角边长为3,将四个图1中的直角三角形分别拼成如图2,图3所示的正方形,其中阴影部分的面积分别记为,,则的值为___________.【答案】9【解析】【分析】设直角三角形另一直角边为,然后分别用表示出两个阴影部分的面积,最后求解即可.本题主要考查了三角形和正方形面积的求法,解题的关键在于能够熟练地掌握相关的知识点.【详解】解:设直角三角的另一直角边为,则,,,.故答案为:9三、解答题(共52分,第17题8分,第18-19题,每题5分,第20题6分,第21题5分,第22题6分,第23题7分,第24题10分)解答应写出文字说明、演算步骤或证明过程.17. 计算:(1);(2).【答案】(1(2)【解析】【分析】本题考查了利用二次根式的性质进行化简,二次根式的加减运算,二次根式的混合运算.熟练掌握利用二次根式的性质进行化简,二次根式的加减运算,二次根式的混合运算是解题的关键.(1)先利用二次根式的性质进行化简,然后进行加减运算即可;1S 2S 12S S -a a a 2211(3)4392S a a a =+-⨯⨯=+22S a a a =⋅=221299S S a a ∴-=+-=(1-(2)先分别计算二次根式的乘除,然后进行加减运算即可.【小问1详解】解:【小问2详解】解:.18. 如图,四边形为平行四边形,,是直线上两点,且,连接,.求证:.【答案】见详解【解析】【分析】本题考查平行四边形的性质、平行线的性质、全等三角形的判定与性质,根据可得,再根据平行四边形的性质可得,且,即,即可证明,即可得到结论.【详解】证明:∵,∴,∴,∵四边形为平行四边形,∴,且,∴,在和中,2=⨯=(32=+1=-ABCD E F BD BE DF =AF CE AF CE =BE DF =ED FB =AB DC =AB DC =EDC FBA ∠∠()SAS DEC BFA ≌BE DF =BE BD DF BD +=+ED FB =ABCD AB DC =AB DC =EDC FBA ∠∠DEC BFA V,∴,∴.19. 已知,求的值.【答案】11【解析】【分析】本题考查了已知式子的值求代数式的值,平方差公式,先整理,再代入计算,即可作答.【详解】解:依题意,20. 如图,在中,点D 是线段的中点.求作:线段,使得点E 在线段上,且.作法:①连接,②以点A 为圆心,长为半径作弧,再以C 为圆心,长为半径作弧,两弧相交于点M ;③连接,交于点E ;所以线段即为所求的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明:证明:连接∵,,∴四边形是平行四边形.(①)(填推理的依据)∵交于点E ,∴,即点E 是的中点.(② )(填推理的依据)DE BF EDC FBA DC AB =⎧⎪∠=∠⎨⎪=⎩()SAS DEC BFA ≌AF CE=1x =-227x x ++()22727x x x x ++=++()))2272711751711x x x x ++=++=⨯++=-+=ABC AB DE AC 12DE BC =CD CD AD DM AC DE AM CM ,,AM CD =AD CM =ADCM AC DM ,AE CE =AC∵点D 是AB 的中点,∴.(③ )(填推理的依据)【答案】见详解【解析】【分析】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.(1)根据几何语言画出对应的几何图形即可;(2)先证明四边形是平行四边形,得出点E 是的中点,再结合然后点D 是的中点,即三角形中位线性质得到.【详解】解:(1)如图,;(2)证明:连接AM ,CM ,∵,,∴四边形是平行四边形.(①两组对边分别相等的四边形是平行四边形)(填推理的依据)∵AC ,DM 交于点E ,∴,即点E 是中点.(②平行四边形的对角线互相平分)(填推理的依据)∵点D 是的中点,∴(③中位线的性质).故答案为:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;中位线的性质.21. 如图,四边形中,,,.的12DE BC =-ADCM AC AB 12DE BC =AM CD =AD CM =ADCM AE CE =AC AB 12DE BC =ABCD 90BAD ∠=︒AB AD ==4BC =CD =(1)求的度数;(2)求四边形的面积.【答案】(1)(2)5【解析】【分析】(1)由题意得,,由勾股定理得,,由,可得是直角三角形,且,根据,计算求解即可;(2)根据,计算求解即可.【小问1详解】解:∵,∴,由勾股定理得,,∵,∴,∴是直角三角形,且,∴,∴的度数为;【小问2详解】解:由题意知,,∴四边形的面积为5.【点睛】本题考查了三角形内角和定理,等边对等角,勾股定理,勾股定理逆定理等知识.熟练掌握三角形内角和定理,等边对等角,勾股定理,勾股定理逆定理是解题的关键.ABC ∠ABCD 135︒1802BADABD ADB ︒-∠∠=∠=2BD =222BD BC CD +=BCD △90CBD ∠=︒ABC ABD CBD ∠=∠+∠1122ABD BCD ABCD S S S AB AD BC BD =+=⨯+⨯ 四边形90BAD ∠=︒AB AD ==180452BAD ABD ADB ︒-∠∠=∠==︒2BD ==(2222420+==222BD BC CD +=BCD △90CBD ∠=︒135ABC ABD CBD ∠=∠+∠=︒ABC ∠135︒11522ABD BCD ABCD S S S AB AD BC BD =+=⨯+⨯= 四边形ABCD22. 在中,,点D 是边上的一个动点,连接.作,,连接.(1)如图1,当时,求证:;(2)当四边形是菱形时,①在图2中画出四边形,并回答:点D 的位置为 .②若,,则四边形的面积为 .【答案】(1)见解析,(2)①见解析,为的中点;②【解析】【分析】(1)由,,可证四边形是平行四边形,由,可证四边形是矩形,进而结论得证;(2)①由题意作图如图2,由四边形是菱形,可得,则,由,可得,则,,即为的中点;②如图2,记的交点为,则,,,由勾股定理求,则,根据,计算求解即可.【小问1详解】证明:∵,,∴四边形是平行四边形,∵,∴,∴四边形是矩形,∴;【小问2详解】①解:如图2,Rt ABC △90ACB ∠=︒AB CD AE DC ∥CE AB ∥DE CD AB ⊥AC DE =ADCE ADCE 10AB =8DE =ADCE D AB 24AE DC ∥CE AB ∥AECD 90CDA ∠=︒AECD ADCE AD CD =DAC DCA ∠=∠18090B ACB DAC DCB DCA ∠=︒-∠-∠∠=︒-∠,B DCB ∠=∠CD BD =AD BD =D AB AC DE 、O 5AD =142DO DE ==AC DE ⊥3AO =26AC AO ==12ADCE S AC DE =⨯四边形AE DC ∥CE AB ∥AECD CD AB ⊥90CDA ∠=︒AECD AC DE =∵四边形是菱形,∴,∴,∵,∴,∴,∴,∴为的中点;②解:如图2,记的交点为,∵四边形是菱形,为的中点,,,∴,,,由勾股定理得,,∴,∴,故答案为:.【点睛】本题考查了矩形的判定与性质,等边对等角,三角形内角和定理,菱形的性质,勾股定理等知识.熟练掌握矩形的判定与性质,等边对等角,三角形内角和定理,菱形的性质,勾股定理是解题的关键.23. 如图,四边形中,,,对角线平分,过点A 作的垂线,分别交,于点E ,O ,连接.(1)求证:四边形菱形;(2)连接,若,,求的长.是ADCE AD CD =DAC DCA ∠=∠18090B ACB DAC DCB DCA ∠=︒-∠-∠∠=︒-∠,B DCB ∠=∠CD BD =AD BD =D AB AC DE 、O ADCE D AB 10AB =8DE =5AD =142DO DE ==AC DE⊥3==AO 26AC AO ==1242ADCE S AC DE =⨯=四边形24ABCD AD BC ∥90BCD ∠=︒BD ABC ∠BD AE BC BD DE ABED CO 3AB =2CE =CO【答案】(1)见解析(2)【解析】【分析】(1)先证明,再由等腰三角形的性质得,然后证,得,则四边形是平行四边形,然后由菱形的判定即可得出结论;(2)由勾股定理得,根据直角三角形斜边上的中线等于斜边的一半,即可得出【小问1详解】证明:∵,∴,∵平分,∴,∴,∴,∵,∴,∵,在和中,,,,四边形是平行四边形,又,平行四边形为菱形;【小问2详解】解:∵四边形为菱形,∴,,CO =AB AD =OB OD =()ASA OBE ODA ≌OE OA =ABED CD =BD =CO =AD BC ∥ADB DBE ∠=∠BD ABC ∠ABD DBE ∠=∠ABD ADB ∠=∠AB AD =AE BD ⊥BO DO =AD BC ∥OBE △ODA V DBE ADB OB ODBOE DOA ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA OBE ODA ∴ ≌OE OA ∴=∴ABED AB AD = ∴ABED ABED 3BE DE AB ===BO DO =∵,,,∴在中,根据勾股定理得:,∵,为直角三角形,∴.【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、等腰三角形的性质以及勾股定理、直角三角形斜边上的中线等于斜边的一半,二次根式的混合运算等知识,熟练掌握菱形的判定与性质是解题的关键.24. 在中,,,点D 为射线上一动点(不与点B 、C 重合),点B 关于直线的对称点为E ,作射线,过点C 作的平行线,与射线交于点F .连接(1)如图1,当点E 恰好在线段上时,用等式表示与的数量关系,并证明;(2)如图2,当点D 在线段的延长线上时,①依题意补全图形;②用等式表示和的数量关系,并证明.【答案】(1),证明见详解(2)①见详解②,证明见详解【解析】【分析】本题考查了全等三角形的判定与性质、正方形的性质与判定,矩形的性质,轴对称性质,正确掌握相关性质内容是解题的关键.(1)先由轴对称性质,得出再证明,因为,得出得证即可作答.90BCD ∠=︒CD =∴=325BC BE CE =+=+=Rt BCDBD ===BO DO =BCD△12CO BD ==ABC 90ABC ∠=︒AB BC =BC AD DE AB DE AE AF ,.AC DF BD BC ADB ∠AFE ∠2DF BD =45ADB AFE ∠+︒=∠AB AE BD ED ==,,()SSS ADE ADB ≌CF AB ∥45ECD ECF ∠=∠=︒,()ASA CED CEF ≌,(2)①根据题意的描述作图即可;②易得,过点作于点,四边形是正方形,证明,则,再通过角的运算,即可作答.【小问1详解】解:,证明如下:如图:当点E 恰好在线段上时,∵在中,∴,∵点B 关于直线的对称点为E ,∴在和中,∴,∴,∴,,∵,∴在和中,∴ADE ADB ≌A AG CF ⊥G ABCG ()Rt Rt HL AFG AFE ≌FAG FAE EAG ∠==∠2DF BD =AC ABC 90ABC AB BC∠=︒=,45BAC ACB ∠=∠=︒AD AB AE BD ED ==,,ADE V ADB AE AB ED BD AD AD =⎧⎪=⎨⎪=⎩,()SSS ADE ADB ≌90AED ABD ∠=∠=︒AC DF ⊥90CED CEF ∠=∠=︒CF AB ∥45ECF BAC ∠=∠=︒,45ECD ECF ∴∠=∠=︒,CED △CEF △CED CEF CE CEECD ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA CED CEF ≌,∴ ∴,即有;【小问2详解】解:当点在线段的延长线上时①依题意补全图形如下②用等式表示和的数量关系是,证明如下∵点关于直线的对称点为E ,∴,∴,过点作于点,如上图,则,∵,∴∴四边形是矩形,∵,∴四边形是正方形,∴,在和中,∴,∴,即有,12DE EF DF ==,12BD DE DF ==2DF BD =D BC ADB ∠AFE ∠45ADB AFE ∠+︒=∠B AD ADE ADB ≌90AE AB AEF ABC =∠=∠=︒,12EAD BAD BAE ∠=∠=∠,A AG CF ⊥G 90AGF AGC ∠=∠=︒CF AB ∥90BAG AGF ABC AGC∠=∠=︒=∠=∠ABCG AB BC =ABCG AG AB AE ==Rt AFG △Rt AFE AG AE AF AF=⎧⎨=⎩()Rt Rt HL AFG AFE ≌FAG FAE EAG ∠==∠2EAG FAE ∠=∠∵∴,∴,∴∴在中,,∴∴.人大附中2023~2024学年度第二学期初二年级数学期中练习附加题说明:1.附加题共4页,共两道大题,9道小题,满分40分,考试时间30分钟.2.试题答案一律填涂或书写在答题卡上,在试卷、草稿纸上作答无效.3.在答题卡上,作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.一、填空题(共15分,第1题4分,第2-4题,每题3分,第5题2分)25. 矩形中,,,点E 是边上一点,连接,将沿折叠,使点B 落在点处,连接.(1)如图1,当时,的长为___________.(2)如图2,当点恰好在矩形的对角线上,则的长为___________.【答案】①. 4 ②. 【解析】【分析】(1)由矩形性质得,由折叠得:,,由平行线的性质得:,,进而得出:,,即;90AFE FAE ∠+∠=︒90FAE AFE ∠=︒-∠21802EAG FAE AFE ∠=∠=︒-∠2702BAE BAG EAG AFE∠=∠+∠=︒-∠135.BAD BAE AFE ∠=∠=︒-∠Rt △ABD 90ADB BAD ∠+∠=︒13590ADB AFE ∠+︒-∠=︒45ADB AFE ∠+︒=∠ABCD 6AB =8BC =BC AE ABE AE B 'CB 'CB AE '∥BE B 'ABCD ACAE 90ABE ∠=︒B E BE '=AEB AEB '∠=∠AEB ECB '∠=∠AEB EB C ''∠=∠ECB EB C ''∠=∠B E EC '=142BE EC BC ===(2)利用勾股定理可得,由折叠得:,,,设,则,,利用勾股定理建立方程求解即可;本题是矩形综合题,考查了矩形的性质,折叠变换的性质,勾股定理等,熟练掌握相关知识,学会添加辅助线是解题关键.【详解】解:(1)四边形是矩形,,由折叠得:,,,,,,,,,,故答案为:4;(2)如图,点恰好在矩形的对角线上,四边形是矩形,,,,,由折叠得:,,,,,设,则,,在中,,10AC ===AB AB '=B E BE '=90AB E ABE '∠=∠=︒BE x =B E x '=8CE x =- ABCD 90ABE ∴∠=︒B E BE '=AEB AEB '∠=∠CB AE ' AEB ECB '∴∠=∠AEB EB C ''∠=∠ECB EB C ''∴∠=∠B E EC '∴=12BE EC BC ∴==8BC = 4BE ∴=B 'ABCD AC ABCD 90ABC ∴∠=︒=6AB 8BC=10AC ∴===AB AB '=B E BE '=90AB E ABE '∠=∠=︒1064B C AC AB ''∴=-=-=18090CB E AB E ''∠=︒-∠=︒BE x =B E x '=8CE x =-Rt CB E '△222B E B C CE ''+=,解得:,,在中,;故答案为:4,26. 如图,四边形中, ,的平分线交于点E ,连接.在以下条件:①平分;②E 为中点;③中选取两个作为题设,另外一个作为结论,组成一个命题.(1)请写出一个真命题:题设为___________,结论为___________.(填序号)(2)可以组成真命题的个数为___________.【答案】①. ②, ②. ③, ③. 6【解析】【分析】(1)根据挑选题设为②,结论为③,结合,的平分线交这个两个条件,先证明,再进行边的等量代换,即可作答.(2)注意分类讨论以及逐个分析,不管取哪个作为条件都可以证明,从而利用全等三角形的性质进行边的等量代换或者角的等量代换,即可作答.【详解】解:(1)题设为②,结论为③;理由如下:延长交的延长线于点,∵∴,()22248x x ∴+=-3x =3BE ∴=Rt ABEAE ===ABCD AD BC ∥BAD ∠CD BE BE ABC ∠CD AD BC AB +=AD BC ∥BAD ∠CD ()AAS AED FEC ≌AED FEC △≌△AE BC F AD BC∥DAE F ∠=∠∵E 为中点,∴,在和中,∴,∴,,∵的平分线交于点E ,∴,∴∴∴(2)由(1)知,题设为②,结论为③是真命题,同理:题设为③,结论为②是真命题,过程如下:延长交的延长线于点,∵的平分线交于点E∴,∵∴∴∵∴∴∵CD DE CE =AED △FEC DAE F DEA CEFDE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AED FEC ≌CF AD =AD BC CF BC BF +=+=BAD ∠CD DAE BAD ∠=∠BAD F∠=∠AB BF=AD BC AB+=AE BC F BAD ∠CD DAE BAD ∠=∠AD BC∥BAD DAE F∠=∠=∠AB BF=AD BC AB+=AD BC AB BF+==AD CF=AD BC∥∴∵∴∴即E 为中点;当题设为①,结论为②是真命题,过程如下:延长交的延长线于点,∵的平分线交于点E∴,∵∴∴∵平分∴∵∴∴即E 为中点;同理:当题设为②,结论①为是真命题,同理,∴,,∵的平分线交于点E ,∴,∴∴∴DAE F∠=∠DEA CEF∠=∠ ≌DEA CEFDE CE=CD AE BC F BAD ∠CD DAE BAD ∠=∠AD BC∥BAD DAE F∠=∠=∠AB BF=BE ABC∠EB AF AE EF⊥=,DEA CEF DAE F∠=∠∠=∠, ≌DEA CEFDE CE=CD CF AD =AD BC CF BC BF +=+=BAD ∠CD DAE BAD ∠=∠BAD F∠=∠AB BF=AD BC AB+=则当题设为①,结论为③是真命题,同理:当题设为③,结论为②是真命题,综上共有6个命题:分别是题设为②,结论为③;题设为③,结论为②;题设为①,结论为②;题设为②,结论①;题设为①,结论为③,题设为③,结论为②.【点睛】本题考查了全等三角形的判定与性质、真命题,等腰三角形的判定与性质,角平分线的定义,正确掌握相关性质内容是解题的关键.27. 如图,在正方形中,,点E 为对角线上的动点(不与A ,C 重合),以为边向外作正方形,点P 是的中点,连接,则的取值范围为___________.【解析】【分析】先取的中点O,结合正方形的性质,得证,当时,有最小值,在中,,计算即可作答.【详解】解:如图,取的中点O ,连接,∵四边形、是正方形,∴,,∴,则在和中ABCD 4AB =AC DE DEFG CD PG PG PG ≤<AD ()SAS ODE PDG ≌OEAC ⊥OE Rt AOE △2224OE AE AO +==AD OE DEFG ABCD 90ODE EDC ︒∠+∠=90PDG EDC ∠+∠=︒ODE PDG ∠=∠ODE PDG △OD OP ODE PDGDE DG =⎧⎪∠=∠⎨⎪=⎩,∴,当时,有最小值,此时为等腰直角三角形,,∵,∴,在中,,即,解得,∴.当点运动到点的时候,如图:此时即为点H 的位置,此时正方形的边长最大且为则的值最大,此时∴则.【点睛】本题考查了正方形性质,全等三角形的判定与性质,垂线段最短,勾股定理等知识,正确掌握相关性质内容是解题的关键.28.如图,正方形ABCD 边长为2,点E 是射线AC 上一动点(不与A ,C 重合),点F 在正方形ABCD 的外角平分线CM 上,且CF=AE ,连接BE , EF , BF 下列说法:①的值不随点E 的运动而改变的()SAS ODE PDG ∴ ≌OE PG =OE AC ⊥OE AOE △OE AE =4AD AB ==122AO AB ==Rt AOE △2224OE AE AO +==224OE =OE =OE E C G DEFG 4CD AD ==PH PH ===PG PG ≤<PG ≤<②当B ,E , F 三点共线时,∠CBE=22.5°;③当△BEF 是直角三角形时,∠CBE=67.5°;④点E 在线段AC 上运动时,点C 到直线EF 的距离的最大值为1;其中正确的是__________(填序号).【答案】①②④【解析】【分析】连接、,由正方形的对称性可知,,,证明,得出,,证出,证出是等腰直角三角形得出,因此,得出①正确;当,,三点共线时,证出,,,四点共圆,由圆周角定理得出,证出,得出,求出,②正确;当是直角三角形时,证出,得出,,③不正确;当点在线段上运动时,过点作于,则,最大时,与重合,即,证出是的中位线,得出,④正确;即可得出结论.【详解】解:连接、,如图1所示:由正方形的对称性可知,,四边形是正方形,,,点是正方形外角平分线上一点,,,在和中,,,,,ED DF BE DE =CBE CDE ∠=∠()ABE CDF SAS ∆≅∆BE DF =ABE CDF ∠=∠DE DF =EDF∆EF=EF B E F E C F D BFC CDE ∠=∠CDE CBE =∠∠CBF CFB ∠=∠22.5CBF ∠=︒BEF ∆9045135BED ∠=︒+︒=︒1(36013590)67.52CBE ∠=︒-︒-︒=︒67.5CBF ∠<︒E AC C CQ EF ⊥Q CQ CH …CQ CQ CH CD EF ⊥QE ACD ∆112CQ DQ CD ===ED DF BE DE =CBE CDE∠=∠ ABCD AB CD ∴=45BAC ∠=︒ F ABCD CM 45DCF ∴∠=︒BAC DCF ∴∠=∠ABE ∆CDF ∆AB CD BAC DCF AE CF =⎧⎪∠=∠⎨⎪=⎩()ABE CDF SAS ∴∆≅∆BE DF ∴=ABE CDF ∠=∠,,,即,是等腰直角三角形,,的值不随点的运动而改变,①正确;当,,三点共线时,如图2所示:,,,,四点共圆,,,,,,,,②正确;当是直角三角形时,如图3所示:是等腰直角三角形,,DE DF ∴=90ABE CBE ∠+∠=︒ 90CDF CDE ∴∠+∠=︒90EDF ∠=︒EDF∴∆EF ∴=EF ∴=∴EF BEE B EF 90ECF EDF ∠=∠=︒ E ∴C F D BFC CDE ∴∠=∠ABE ADE ∠=∠ 90ABC ADC ∠=∠=︒CDE CBE ∴∠=∠CBF CFB ∴∠=∠45FCG CBF CFB ∠=∠+∠=︒ 22.5CBF ∴∠=︒BEF ∆EDF ∆ 9045135BED ∴∠=︒+︒=︒,,③不正确;当点在线段上运动时,如图4所示:过点作于,则,最大时,与重合,即,当时,,,是的中位线,,④正确;综上所述,①②④正确;故答案为:①②④.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、四点共圆、圆周角定理等知识;本题综合性强,有一定难度.29. 如图,在平行四边形中,,,,在线段上取一点E ,使,连接,点M ,N 分别是线段上的动点,连接,则的最小值为___________.1(36013590)67.52CBE ∴∠=︒-︒-︒=︒67.5CBF ∴∠<︒E AC C CQ EF ⊥Q CQ CH …CQ ∴CQ CH CD EF ⊥CD EF ⊥//EF AD CF CE AE ==QE ∴ACD ∆112CQ DQ CD ∴=== ABCD 3AB =4BC =60ABC ∠=︒AD 1DE =BE AE BE ,MN 12MN BN +【解析】【分析】如图,作于,于,于,则四边形是矩形,,由题意可求,,,则,,由,可知当三点共线且时,最小,为,求的长,进而可求最小值,【详解】解:如图,作于,于,于,则四边形是矩形,∴,∵平行四边形中,,,,,∴,,∴,∴,∴,∴,∴当三点共线且时,最小,为,∵,∴,由勾股定理得,,∴,【点睛】本题考查了平行四边形的性质,矩形的判定与性质,含的直角三角形,等边对等角,勾股定理NF BC ^F AH BC ⊥H MG BC ⊥G AHGM MG AH =3AE AB ==120BAC ∠=︒30ABE AEB ∠=∠=︒30EBC ∠=︒12NF BN =12MN BN MN NF +=+M N F 、、MF BC ⊥12MN BN +MG AH 12MN BN +NF BC ^F AH BC ⊥H MG BC ⊥G AHGM MG AH =ABCD 3AB =4BC =1DE =60ABC ∠=︒3AE AB ==120BAC ∠=︒30ABE AEB ∠=∠=︒30EBC ∠=︒12NF BN =12MN BN MN NF +=+M N F 、、MF BC ⊥12MN BN +MG =30BAH ∠︒1322BH AB ==AH ==12MN BN +30︒等知识.明确线段和最小的情况是解题的关键.二、解答题(共25分,第6题5分,第7题4分,第8-9题,每题8分)解答应写出文字说明、演算步骤或证明过程.30. 如图是由小正方形组成的网格,每个小正方形的边长为,其顶点称为格点,四边形的四个顶点都在格点上,请运用课本所学知识,仅用无刻度的直尺,在给定网格中按要求作图.(1)①线段的长为 个单位长度;②在图1中求作边的中点E ;(2)在图中求作边上一点,使平分.注:保留作图痕迹,同时标出必要的点;当你感觉方法比较复杂时,可用文字简要说明作法.【答案】(1)①;②作图见解析;(2)见解析.【解析】【分析】(1)①利用勾股定理即可求解;②取格点、,连接交于点,则点为所求;(2)取格点、,连接、相交于点,作射线交于点,则点为所求.【小问1详解】解:①,故答案为:;②如图,点为所求作图形,【小问2详解】解:如图,点为所求,87⨯1ABCD CD CD 2AB F CF BCD ∠5M N MN AC E E G H AQ DH Q CF AB FF 5CD ==5E F。

【必考题】初二数学下期中试题(附答案)

【必考题】初二数学下期中试题(附答案)
【详解】
由图象可知A,B两城市之间的距离为300 km,小带行驶的时间为5 h,而小路是在小带出发1 h后出发的,且用时3 h,即比小带早到1 h,
∴①②都正确;
设小带车离开A城的距离y与t的关系式为y小带=kt,
把(5,300)代入可求得k=60,
∴y小带=60t,
设小路车离开A城的距离y与t的关系式为y小路=mt+n,
【分析】
先依据勾股定理可求得OC的长,从而得到OM的长,于是可得到点M对应的数.
【详解】
解:由题意得可知:OB=2,BC=1,依据勾股定理可知:OC= = .
∴OM= .
故选:B.
【点睛】
本题考查勾股定理、实数与数轴,熟练掌握相关知识是解题的关键.
2.C
解析:C
【解析】
【分析】
仔细分析题意得:梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理解此直角三角形即可.
处于中间位置的数为第10、11两个数,
为85分,90分,中位数为87.5分.
故选B.
考点:1.众数;2.中位数
5.B
解析:B
【解析】解:正方形和菱形都满足:四条边都相等,对角线平分一组对角,对角线垂直且互相平分;
菱形的四个角不一定相等,而正方形的四个角一定相等.故选B.
6.A
解析:A
【解析】
【分析】
∵一条对角线的长为12,当AC=12,
∴AO=CO=6,
在Rt△AOB中,根据勾股定理,得BO=8,
∴BD=2BO=16,
∴菱形的面积= AC•BD=96,
故选:C.
【点睛】
此题主要考查了菱形的性质、菱形的面积公式以及勾股定理等知识,根据题意得出BO的长是解题关键.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档