初二数学上册期中考试卷及答案
人教版八年级上册数学期中考试试卷附答案

人教版八年级上册数学期中考试试题一、单选题1.下列四个图形中,不是轴对称图形的是( )A .B .C .D . 2.下列图形中具有稳定性的是( )A .正三角形B .正方形C .正五边形D .正六边形3.一定能确定△ABC△△DEF 的条件是( )A .AB=DE,BC=EF,△A=△DB .△A=△E,AB=EF,△B=△DC .△A=△D,AB=DE,△B=△ED .△A=△D,△B=△E,△C=△F4.已知等腰三角形的一边长为4cm ,周长是18cm ,则它的腰长是( )A .4cmB .7cmC .10cmD .4cm 或7cm5.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( )A .ASAB .SASC .AASD .SSS6.下列命题中正确的是( )A .一个三角形最多有2个钝角B .直角三角形的外角不可以是锐角C .三角形的两边之差可以等于第三边D .三角形的外角一定大于相邻内角 7.如图,把长方形ABCD 沿EF 对折,若150∠=︒,则AEF ∠的度数为( )A .110︒B .115︒C .120︒D .130︒8.如图,在△ABC 中,AB =8cm ,BC =6cm ,AC =5cm .沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则△AED 的周长是( )A .5cmB .6cmC .7cmD .8cm9.一个多边形少算一个内角,其余内角之和是1500°,则这个多边形的边数是( ) A .8 B .9 C .10 D .1110.如图,△ACB 和△DCE 均为等腰直角三角形,且△ACB =△DCE =90°,点A 、D 、E 在同一条线上,CM 平分△DCE ,连接BE .以下结论:△AD =CE ;△CM△AE ;△AE =BE+2CM ;△S △COE >S △BOE ,正确的有( )A .1个B .2个C .3个D .4个二、填空题11.在平面直角坐标系中,点(2,1)-关于x 轴对称的点的坐标为________.12.若从一个多边形的一个顶点出发,最多可以引9条对角线,则它是_____边形. 13.如图,在ABC 中,AB AC =,点D 为BC 中点,35BAD ∠=︒,则C ∠的度数为_____.14.已知ABC 的周长为30,面积为20,其内角平分线交于点O ,则点O 到边BC 的距离为________.15.如图△ABC ,DE 垂直平分线段AC ,AF△BC 于点F ,AD 平分△FAC ,则FD :DC =______.16.△ABC中,已知点D,E,F分别是BC,AD,CE边上的中点,且S△ABC=16cm2,则S△CDF的值为_______cm2.17.如图,一种机械工件,经测量得△A=20°,△C=27°,△D=45°.那么不需工具测量,可知△ABC= __________°.三、解答题18.如图,AC和BD相交于点0,OA=OC,OB=OD,求证:DC//AB19.在△ABC中,△B=△A+20°,△C=△B+20°,求△ABC的三个内角的度数.20.如图,△ABC是等腰直角三角形,BD△AE,CE△AE,垂足为D,E,CE=3,BD=7,(1)求证:△ABD△△CAE;(2)求DE 的长度.21.如图,在正方形网格中,每个小正方形的边长都为1,ABC 在网格中的位置如图所示,ABC 的三个顶点都在格点上.将A 、B 、C 的横坐标和纵坐标都乘以1 ,分别得到点1A 、1B 、1C .(1)写出111A B C △三个顶点的坐标_______;(2)若ABC 与222A B C △关于x 轴对称,在平面直角坐标系中画出222A B C △;(3)若以点A 、C 、P 为顶点的三角形与ABC 全等,直接写出所有符合条件的点P 的坐标.22.如图,在四边形ABCD 中,△A =△C =90°,BE 平分△ABC ,DF 平分△ADC . 求证:BE△DF .23.如图,在△ABC 中,AC =BC ,△ACB =90°,D 为△ABC 内一点, △BAD =15°,AD =AC ,CE△AD 于E ,且CE =5.(1)求BC 的长;(2)求证:BD =CD .24.如图,已知△ABC 中AB =AC =12厘米,BC =9厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.△若点P 点Q 的运动速度相等,经过1秒后,△BPD 与△CQP 是否全等,请说明理由; △若点P 点Q 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(2)若点Q 以△中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间,点P 与点Q 第一次在△ABC 的哪条边上相遇?此时相遇点距到达点B 的路程是多少?25.在等腰ABC 中,AB AC =,点D 是AC 上一动点,点E 在的BD 延长线上且AB AE =,AF 平分CAE ∠交DE 于点F 连接FC .(1)如图1,求证:ABE ACF ∠=∠;(2)如图2,当60ABC ∠=︒时,求证:AF EF FB +=;(3)如图3,当45ABC ∠=︒,且//AE BC 时,求证:2BD EF =.参考答案1.A【解析】【分析】根据轴对称图形的定义逐项分析即可,轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】A.不是轴对称图形,符合题意;B.是轴对称图形,不符合题意;C. 是轴对称图形,不符合题意;D. 是轴对称图形,不符合题意;故选A【点睛】本题考查了轴对称图形的定义,找到对称轴是解题的关键.2.A【解析】【详解】解:△三角形具有稳定性,△A正确,B.C、D错误.故选A.3.C【解析】【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,4种,看看给出的条件是否符合即可.【详解】A. 根据AB=DE,BC=EF,△A=△D不能推出两三角形全等,故本选项不符合题意;B.△A和△D对应,△B和△E对应,即根据△A=△E,AB=EF,△B=△D不能推出两三角形全等,故本选项不符合题意;C. 在△ABC和△DEF中△A D AB DEB E ∠=∠⎧⎪=⎨⎪∠=∠⎩,△△ABC△△DEF(ASA),故本选项符合题意;D. 根据△A=△D,△B=△E,△C=△F不能推出两三角形全等,故本选项不符合题意;故选:C.【点睛】考查全等三角形的判定,掌握全等三角形的判定定理是解题的关键.4.B【解析】【分析】分4cm为等腰三角形的腰长和底边长两种情况,结合三角形的三边关系解答即可.【详解】解:若4cm为等腰三角形的腰长,则底边长=18-4-4=10cm,由于4+4<10,此时不能构成三角形,故此种情况须舍去;若4cm为等腰三角形的底边长,则腰长=(18-4)÷2=7cm,此时三角形的三边长分别为7cm、7cm、4cm,能构成三角形.故选:B.【点睛】本题考查了等腰三角形的定义和三角形的三边关系,属于基础题型,正确分类、熟练掌握基本知识是解题关键.5.A【解析】【分析】根据ASA:有两角及夹边对应相等的两个三角形全等即可判断.【详解】解:由图可知三角形的两个角和夹边可以确定全等三角形,△可由ASA判断全等;故选:A.【点睛】本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.6.B【解析】【分析】利用三角形的内角的性质、直角三角形的性质、三角形的三边关系及三角形的外角的性质分别判断后即可确定正确的选项.【详解】解:A、一个三角形最多有1个钝角,故原命题错误,不符合题意;B、直角三角形的外角不可以是锐角,正确,符合题意;C、三角形的两边之差小于第三边,故原命题错误,不符合题意;D、三角形的外角不一定大于相邻的内角,故原命题错误,不符合题意,【点晴】本题考查了命题与定理的知识,解题的关键是了解三角形的内角的性质、直角三角形的性质、三角形的三边关系及三角形的外角的性质等知识,难度不大.7.B【解析】【分析】根据折叠的性质及△1=50°可求出△BFE的度数,再由平行线的性质即可得到△AEF的度数.【详解】解:根据折叠以及△1=50°,得△BFE=12△BFG=12(180°﹣△1)=65°.△AD△BC,△△AEF=180°﹣△BFE=115°.故选:B.【点睛】本题考查的是平行线的性质及图形翻折变换的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8.C【解析】【分析】由折叠的性质可得DE=DC,BE=BC,从而易得周长的值.【详解】由折叠的性质可得DE=DC,BE=BC=6cm△AE=AB-BE=8-6=2(cm)△△AED 的周长=AD+DE+AE=AD+DC+AE=AC+AE=5+2=7(cm)故选:C.【点睛】本题考查了折叠的性质,三角形的周长等知识,关键是掌握折叠的性质.9.D【分析】根据n 边形的内角和是(n -2)•180°,可以得到内角和一定是180度的整数倍,即可求解.【详解】1150018083÷=, 则正多边形的边数是8+1+2=11.故选:D .【点睛】本题考查了根据多边形的内角和计算公式求多边形的边数,掌握n 边形的内角和公式(n -2)•180°是解题的关键.10.B【解析】【分析】由“SAS”可证△ACD△△BCE ,可得AD =BE ,△ADC =△BEC ,可判断△,由等腰直角三角形的性质可得△CDE =△CED =45°,CM△AE ,可判断△,由三角形的面积公式可判断△,由线段和差关系可判断△,即可求解.【详解】解:△△ACB 和△DCE 均为等腰直角三角形,△CA =CB ,CD =CE ,△ACB =△DCE =90°,△△ACD =△BCE ,在△ACD 和△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,△△ACD△△BCE (SAS ),△AD =BE ,故△错误,△△DCE 为等腰直角三角形,CM 平分△DCE ,△CM△AE ,故△正确,△CD =CE ,CM△DE ,△DM =ME .△△DCE=90°,△CDE=△CED=45°△DM=ME=CM.△AE=AD+DE=BE+2CM.故△正确,由△ACD△△BCE(SAS)得△ADC=△BEC,△△DCE+△CED=△AEB+△CED,△△AEB=△DCE=90°,△S△COE=12OE•CM,S△BOE=12OE•BE,△CM不一定大于BE,△S△COE不一定大于S△BOE,故△错误,故选:B.【点睛】本题考查了全等三角形的判定和性质、等腰直角三角形的性质、三角形外角性质,证明△ACD△△BCE是本题的关键.11.(2,1).【解析】【分析】根据关于x轴对称的两点,横坐标相同,纵坐标互为相反数解答即可.【详解】点(2,1)关于x轴对称的点的坐标是(2,1).故答案为:(2,1).【点睛】本题考查了坐标平面内的轴对称变换,关于x轴对称的两点,横坐标相同,纵坐标互为相反数;关于y轴对称的两点,纵坐标相同,横坐标互为相反数;关于原点对称的两点,横坐标和纵坐标都互为相反数.12.十二【解析】【分析】可根据n边形从一个顶点引出的对角线与边的关系:n-3,列方程求解.【详解】设多边形有n条边,则n-3=9,解得:n=12,故多边形的边数为12,即它是十二边形,故答案为:十二.【点睛】多边形有n条边,则经过多边形的一个顶点的所有对角线有(n-3)条,经过多边形的一个顶点的所有对角线把多边形分成(n-2)个三角形.13.55°【解析】【分析】由等腰三角形的三线合一性质可知△BAC=70°,再由三角形内角和定理和等腰三角形两底角相等的性质即可得出结论.【详解】解:AB=AC,D为BC中点,△AD是△BAC的平分线,△B=△C,△△BAD=35°,△△BAC=2△BAD=70°,△△C=12(180°-70°)=55°.故答案为:55°.【点睛】本题考查的是等腰三角形的性质,熟知等腰三角形三线合一的性质是解答此题的关键.14.4 3【解析】【分析】过O作OD△BC于D,OE△AB于E,OF△AC于F,连接OA、OB、OC,根据三角形的内心和角平分线的性质得出OE=OD=OF,再根据三角形的面积公式求出即可.【详解】如图,过O作OD△BC于D,OE△AB于E,OF△AC于F,连接OA、OB、OC,△O是△ABC内角平分线的交点,△OE=OF=OD,△△ABC的面积是20,△S△AOB+S△BOC+S△AOC=20,△111AB OE BC OD222⨯⨯+⨯⨯+×AC×OF=20,△(AB+BC+AC)×OD=40,△△ABC的周长为30,△AB+BC+AC=30,△OD=404 303=,△即O到BC的距离是43,故答案为:43.【点睛】本题考查了三角形的内心,角平分线的性质和三角形的面积等知识点,能求出OD=OE=OF 是解此题的关键.15.1:2【解析】【分析】根据线段垂直平分线的性质得到DA=DC,得到△DAC=△C,根据角平分线的定义、直角三角形的性质求出△DAF=30°,根据直角三角形的性质解答即可.解:△DE垂直平分线段AC,△DA=DC,△△DAC=△C,△AD平分△FAC,△△DAC=△DAF,△△DAC=△C=△DAF,△AF△BC,△△DAF=30°,△AD=2DF,△FD:DC=1:2,故答案为:1:2.【点睛】本题考查的是线段的垂直平分线的性质、直角三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.16.2【解析】【分析】根据三角形的中线平分三角形的面积用△ABC的面积先后表示出△ACD、△CDE、△CDF的面积,然后代入数据进行计算即可得解.【详解】解:△点D,E,F分别是BC,AD,CE边上的中点,△S△ABD=S△ACD=12S△ABC,S△CDE=12S△ACD=14S△ABC,S△CDF=12S△CDE=18S△ABC,△S△ABC=16cm2,△S△CDF=18×16=2cm2.故答案为:2.本题考查了三角形的面积,根据三角形的中线平分三角形的面积推出△CDF与△ABC的面积的关系是解题的关键,也是本题的难点.17.92【解析】【分析】延长CB,交AD于点E,根据三角形外角的性质得出△AEC=△C+△D=72°,△ABC=△A十△AEC=92°.【详解】延长CB,交AD于点E.△△C=27°,△D=45°,△△AEC=△C+△D=72°,△△A=20°,△△ABC=△A+△AEC=92°.故答案为92°.【点睛】本题考查了三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和,正确作出辅助线是解题的关键.18.证明见解析【解析】【分析】根据SAS可知△AOB△△COD,从而得出△A=△C,根据内错角相等两直线平行的判定可得结论.【详解】解:△OA=OC,△AOB=△COD,OB=OD,△△AOB△△COD(SAS).△△A=△C.△AB△CD.【点睛】本题考查了1.全等三角形的的判定和性质;2.平行线的判定.19.△A=40°,△B=60°,△C=80°【解析】【详解】△在△ABC 中,△B=△A+20°代入△C=△B+20°中,得△C=△A+40°设△A=x△△A+△B+△C=180°,得x+x+20°+x+40°=180°解方程得x=40°△ △A=40°, △B=60°,△C=80°.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和是180°是解答此题的关键.20.(1)见解析;(2)4.【解析】【分析】(1)利用AAS 判定△ABD△△CAE ;(2)因为BD=AE ,AD=CE ,AE=AD+DE=CE+DE ,所以BD=DE+CE .【详解】(1)证明:△△ABC 是等腰直角三角形,△AB=AC ,△BAC=90°,△BD△AE 于D ,CE△AE 于E ,△△BDA=△AEC=90°,△DBA+△BAD=90°,△BAD+△EAC=90°,△△DBA=△EAC ,在△ABD 和△CAE 中,DBA EACBDA AEC AB AC∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ABD△△CAE (AAS );(2)解:由(1)知,△ABD△△CAE ,△AD=CE ,BD=AE ,△AE=AD+DE ,△BD=DE+CE ,△CE=3,BD=7,△DE=7-3=4.【点睛】本题考查了全等三角形的性质和判定,三角形的内角和定理的应用,关键是推出BD=DE+CE .21.(1)1(3,1)A -、1(1,4)B -、1(1,1)C -;(2)如图所示,见解析;(3)点P 的坐标为(3,2)--、()3,4-、(1,2)--.【解析】【分析】(1)根据平面直角坐标系写出A 、B 、C 各点的坐标,将点A 、B 、C 的横坐标和纵坐标都乘以1-,分别得到点1A 、1B 、1C 即可,(2)先作出A 、B 、C 关于x 轴的对称点A 2、B 2、C 2,然后顺次连接即可;(3)根据全等三角形对应边相等,分△CAP=△ACB=90°和△ACP=△ACB=90°两种情况讨论求解.【详解】(1)先求出ABC 三点坐标分别为A (-3,1),B (-1,4),C (-1,1)将点A 、B 、C 的横坐标和纵坐标都乘以1-,分别得到点1A 、1B 、1C ,则A 1(3,-1)、B 1(1,-4)、C (1,-1); 故答案为:1(3,1)A -、1(1,4)B -、1(1,1)C -;(2)如图所示,先作A 、B 、C 三点关于x 轴的对称点A 2、B 2、C 2,然后连接A 2B 2、B 2C 2、C 2A 2,,则△A 2B 2C 2为所求;(3)若90CAP ACB ︒∠=∠=,则点P 的坐标为(3,2)--或()3,4-,若90ACP ACB ︒∠=∠=,则点P 的坐标为(1,2)--,综上所述,点P 的坐标为(3,2)--、()3,4-、(1,2)--.【点睛】本题考查了全等三角形的判定,解题的关键是熟练的掌握全等三角形的判定与性质.22.证明见解析【解析】【分析】根据四边形内角和为360°可得△ABC+△ADC =180°,根据角平分线的定义可得△EBC+△FDC =90°,根据同角的余角相等可得△EBF =△DFC ,即可证明BE//DF.【详解】△在四边形ABCD 中,△A =△C =90°,△△ABC+△ADC =180°,△BE 平分△B ,DF 平分△D ,△△ABE=△EBC ,△ADF=△FDC ,△△EBC+△FDC=90°,△△C=90°,△△DFC+△FDC=90°,△△EBF=△DFC,△BE△DF.23.(1)10;(2)证明见解析【解析】(1)根据等腰直角三角形的性质得出△BAC=45°,从而得出△CAD=30°,根据垂直得出AC=BC=10;(2)过D作DF△BC于F,然后证明Rt△DCE和Rt△DCF全等,从而得出CF=CE=5,根据BC=10得出BF=FC,从而得出答案.【详解】(1)在△ABC中,△AC=BC,△ACB=90°,△△BAC=45°,△△BAD=15°,△△CAD=30°,△CE△AD,CE=5,△AC=10,△BC=10.(2)过D作DF△BC于F,在△ADC中,△CAD=30°,AD=AC,△△ACD=75°,△△ACB=90°,△△FCD=15°,在△ACE中,△CAE=30°,CE△AD,△△ACE=60°,△△ECD=△ACD-△ACE=15°,△△ECD=△FCD,△DF=DE,在Rt△DCE与Rt△DCF中,{DC DC DE DF==,△Rt△DCE△Rt△DCF,△CF=CE=5,△BC=10,△BF=FC,△DF△BC,△BD=CD.24.(1)△全等,理由见解析;△4厘米/秒;(2)经过24秒,点P与点Q第一次在BC边上相遇;相遇点距到达点B的路程是6厘米.【解析】(1)△根据速度×时间=距离可得BP=CQ=3,PC=BD=6,根据等腰三角形的性质可得△B =△C,利用SAS即可得△BPD△△CQP;△VP≠VQ可得BP≠CQ,根据△B=△C,要使△BPD与△CQP全等,只能BP=CP,根据全等得出CQ=BD=6,然后根据运动速度求得运动时间,根据时间和CQ的长即可求得Q的运动速度;(2)根据VQ>VP,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,据此列出方程,解这个方程即可得答案.【详解】(1)△全等,理由如下:△t=1(秒),点P、Q的速度为3厘米/秒,△BP=CQ=3(厘米)△AB=12,D为AB中点,△BD=6(厘米)△PC=BC﹣BP=9﹣3=6(厘米)△PC=BD△AB =AC ,△△B =△C ,在△BPD 与△CQP 中,BP CQ B C BD PC =⎧⎪∠=∠⎨⎪=⎩,△△BPD△△CQP .△△VP≠VQ ,△BP≠CQ ,△△B =△C ,△要使△BPD△△CPQ ,只能BP =CP =12BC=4.5, △△BPD△△CPQ ,△CQ =BD =6.△点P 的运动时间t =3BP =4.53=1.5(秒), 此时VQ =CQ t =61.5=4(厘米/秒). △当点Q 的运动速度为4厘米/秒时,能够使△BPD 与△CQP 全等.(2)△VQ >VP ,△只能是点Q 追上点P ,即点Q 比点P 多走AB+AC 的路程,设经过x 秒后P 与Q 第一次相遇,依题意得4x =3x+2×12,解得:x =24(秒),此时P 运动了24×3=72(厘米),△△ABC 的周长为33厘米,72=33×2+6,△此时相遇点距到达点B 的路程是6厘米,△点P 、Q 在BC 边上相遇,即经过了24秒,点P 与点Q 第一次在BC 边上相遇. 25.(1)见解析;(2)见解析;(3)见解析【解析】(1)利用“SAS”证明△ACF△△AEF ,根据全等三角形的性质得到△E=△ACF ,根据等腰三角形的性质得到△E=△ABE ,等量代换证明结论;(2)在FB 上截取BM=CF ,连接AM ,证明△ABM△△ACF ,根据全等三角形的性质得到AM=AF ,△BAM=△CAF ,进而证明△AMF 为等边三角形,结合图形证明结论;(3)延长BA 、CF 交于N ,证明△BFN△△BFC ,得到CN=2CF=2EF ,再证明△BAD△△CAN ,得到BD=CN ,等量代换得到答案.【详解】(1)△AF 平分△CAE ,△△EAF=△CAF ,△AB=AC ,AB=AE ,△AE=AC ,在△ACF 和△AEF 中,AE ACCAF EAF AF AF=⎧⎪∠=∠⎨⎪=⎩,△△ACF△△AEF (SAS ),△△E=△ACF ,△AB=AE ,△△E=△ABE ,△△ABE=△ACF ;(2)如图,在FB 上截取BM=CF ,连接AM ,△△ACF△△AEF ,△EF=CF ,△E=△ACF=△ABM ,在△ABM 和△ACF 中,AB ACABM ACF BM CF=⎧⎪∠=∠⎨⎪=⎩,△△ABM△△ACF (SAS ),△AM=AF ,△BAM=△CAF ,△AB=AC ,△ABC=60°,△△ABC 是等边三角形,△△BAC=60°,△△MAF=△MAC+△CAF=△MAC+△BAM=△BAC=60°, △AM=AF ,△△AMF 为等边三角形,△AF=AM=MF ,△AF+EF=BM+MF=FB ;(3)如图,延长BA 、CF 交于N ,△AE△BC ,△△E=△EBC ,△AB=AE ,△△ABE=△E ,△△ABF=△CBF ,△△ABC=45°,△△ABF=△CBF=22.5°,△ACB=45°,△BAC=180°-45°-45°=90°, △△ACF=△E=△ABF=22.5°,△△BFC=180°-22.5°-45°-22.5°=90°,△△BFN=△BFC=90°,在△BFN 和△BFC 中,NBF CBFBF BF BFN BFC∠=∠⎧⎪=⎨⎪∠=∠⎩,△△BFN△△BFC (ASA ),△CF=FN ,即CN=2CF=2EF ,△△BAC=90°,△△NAC=△DAB=90°, 在△BAD 和△CAN 中, ABD ACN AB AC BAD CAN ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△BAD△△CAN (ASA ), △BD=CN , △BD=2EF .。
北师大版八年级上册数学期中考试试卷附答案

北师大版八年级上册数学期中考试试题一、单选题1.下列实数中,无理数是()A.0B C.﹣2D.272.下列运算正确的是()=3C±3D.﹣=1A3B3.已知 ABC的三边长a,b,c满足(a﹣b)(c2﹣a2﹣b2)=0,则 ABC的形状是()A.等腰三角形或直角三角形B.等腰直角三角形C.等腰三角形D.直角三角形4.已知图形A在y轴的右侧,如果将图形A上的所有点的横坐标都乘﹣1,纵坐标不变得到图形B,则()A.两个图形关于x轴对称B.两个图形关于y轴对称C.两个图形重合D.两个图形不关于任何一条直线对称5.如图,等腰直角△OAB的斜边OA在x轴上,且OA=2,则点B坐标为()D.(1A.(1,1)B.,1)C.6.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<07.对于一次函数y=﹣2x+4,下列结论中正确的是()A.函数值随自变量的增大而增大B.点(4﹣a,a)在该函数的图像上C.函数的图象与直线y=﹣x﹣2平行D.函数图象与坐标轴围成三角形的周长为8.若二次根式x的取值范围是()A.x>15B.x≥15C.x≤15D.x≤59.以下列长度的线段为边,不能组成直角三角形的是()A.1,1BC.2,3,4D.8,15,17 10.如图所示的图象分别给出了x与y的对应关系,其中表示y是x的函数的是()A.B.C.D.二、填空题11.若a b<<,且a,b是两个连续的整数,则a b+的值是______.12.若y+4,则x2+y2的算术平方根是__________.13.在一次函数y=﹣2x+5图象上有A(x1,y1)和(x2,y2)两点,且x1>x2,则y1________y2(填“>,<或=”)14.小明从邮局买了面值0.5元和0.8元的邮票共9枚,花了6.3元,小明买了两种邮票各多少枚?若设买了面值0.5元的邮票x枚,0.8元的邮票y枚,则根据题意可列出方程组为__________.15.一辆轿车和一辆货车分别从甲、乙两地同时出发,匀速相向而行,相遇后继续前行,已知轿车比货车每小时多行驶10千米,设行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示从两车出发至轿车到达乙地这一过程中y与x之间的函数关系.根据图象提供的信息,下列说法正确的是__________.①甲乙两地的距离为450千米②点A的实际意义是两车出发2小时相距150千米③x=3时,两车相遇④货车的速度为90千米/小时16.已知长方形ABCD,AB=6,BC=10,M为线段AD上一点且AM=8,点P从B出发以每秒2个单位的速度沿线段BC﹣CD的方向运动,至点D停止,设运动时间为t秒,当 AMP为等腰三角形时,t的值为__________.三、解答题17.计算:(1++-.(2|2|18.如图,在平面直角坐标系中, ABC的三个顶点坐标分别为A(1,3),B(2,1),C(5,1).(1)画出 ABC关于y轴的对称的 A1B1C1.(2) A1B1C的面积为;(3)y轴上存在一点P使得 ABP的周长最小,点P的坐标为,周长最小值为.1921+2(21)(21)+-22(2)1-2121-21(132+;(21n n ++=;(321+32+43+10099+.20.已知等腰三角形ABC 的底边BC =10cm ,D 是腰AB 上一点,且CD =8cm ,BD =6cm .(1)求证:CD ⊥AB ;(2)求该三角形的腰的长度.21.学校需要采购一批演出服装,A 、B 两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即每套100元.经洽谈协商:A 公司给出的优惠条件是:服装按单价打七折,但校方需承担1200元的运费;B 公司的优惠条件是:服装按单价打八折,公司承担运费.如果设参加演出的学生有x人.(1)写出:①学校购买A公司服装所付的总费用y1(元)与参演学生人数x之间的函数关系式;②学校购买B公司服装所付的总费用y2(元)与参演学生人数x之间的函数关系式.(2)若参演学生人数为150人,选择哪个公司比较合算,请说明理由.22.如图,把长方形纸片OABC放入平面直角坐标系中,使OA,OC分别落在x轴,y轴的正半轴上,连接AC,OA=4,OCOA=12.(1)根据题意,写出点A的坐标,点C的坐标;(2)求AC所在直线的表达式;(3)将纸片OABC折叠,使点A与点C重合(折痕为EF),折叠后纸片重叠部分(即△CEF)的面积为;(4)请直接写出EF所在直线的函数表达式.23.如图1,在正方形ABCD中,点E,F分别在正方形ABCD的边BC,CD上,∠EAF =45°,连接EF.(1)思路梳理:将 ABE绕点A逆时针旋转至 ADG,如图1,使AB与AD重合,易证∠GAF=∠EAF=45°,可证 AFG≌ AFE,故EF,BE,DF之间的数量关系为;(2)类比引申:如图2,在图1的条件下,若点E,F由原来的位置分别变到正方形ABCD 的边CB,DC的延长线上,∠EAF=45°,连接EF,猜想EF,BE,DF之间的数量关系为,并给出证明;(3)联想拓展:如图3,等腰Rt ABC,∠BAC=90°,∠MAN=45°,把∠MAN绕点A 旋转,在整个旋转过程中AM、AN分别与直线BC交于点D、E,若BD=2,EC=4,则BE 的长为.24.根据题意,解答问题:(1)如图1,已知直线y=2x+4与x 轴、y 轴分别交于A 、B 两点,求线段AB 的长.(2)如图2,类比(1)的解题过程,请你通过构造直角三角形的方法,求出点M (3,4)与点N (﹣2,﹣1)之间的距离.(3)在(2)的基础上,若有一点D 在x 轴上运动,当满足DM=DN 时,请求出此时点D 的坐标.25.【模型建立】(1)如图1,等腰Rt ABC 中,∠ACB =90°,CB =CA ,直线ED 经过点C ,过点A 作AD ⊥ED 于点D ,过点B 作BE ⊥ED 于点E ,求证: BEC ≌ CDA .【模型应用】(2)如图2,已知直线l 1:y =32x+3与x 轴交于点A ,与y 轴交于点B ,将直线l 1绕点A 逆时针旋转45°至直线l 1则直线l 2的函数表达式为.(3)如图3,将图1四边形放到平面直角坐标系中,点E 与O 重合,边ED 放到x 轴上,若OB =2,OC =1,在x 轴上存在点M 使的以O 、A 、B 、M 为顶点的四边形面积为4,请直接写出点M的坐标.(4)如图4,平面直角坐标系内有一点B(3,﹣4),过点B作BA⊥x轴于点A,BC⊥y轴于点C,点P是线段AB上的动点,点D是直线y=﹣2x+1上的动点且在第四象限内.若 CPD 是等腰直角三角形.请直接写出点D的坐标.参考答案1.B2.A3.A4.B5.A6.A7.D8.B9.C10.D11.5【分析】a和b的值,即可求解.【详解】解:∵23<<,∴a=2,b=3,∴a+b=5.故答案为:512.5【分析】根据被开方数大于等于0列式求出x,再求出y,然后代入代数式求值,再根据算术平方根的定义解答.【详解】解:根据题意得,3-x≥0且x-3≥0,解得x≤3且x≥3,所以,x=3,y=4,所以,x2+y2=32+42=25,∵25的算术平方根是5,∴x2+y2的算术平方根是5.故答案为:5.13.<【解析】先根据一次函数的性质判断出函数的增减性,进而可得出结论.【详解】解:∵一次函数y=-2x+5中,k=-2<0,∴y 随x 的增大而减小.∵x 1>x 2,∴y 1<y 2.故答案为:<.14.90.50.8 6.3x y x y +=⎧⎨+=⎩【分析】由题意可得等量关系①0.5元的邮票枚数+面值0.8元的邮票枚数=9枚;②0.5元的邮票价格+面值0.8元的邮票总价格=6.3元,由等量关系列出方程组即可.【详解】解:设买了面值0.5元的邮票x 枚,0.8元的邮票y 枚,由题意得90.50.8 6.3x y x y +=⎧⎨+=⎩,故答案为:90.50.8 6.3x y x y +=⎧⎨+=⎩.15.①②③【分析】根据函数图象中的数据和题意,可以直接判断①②③,再根据轿车比货车每小时多行驶10千米和两车3小时相遇,即可计算出货车的速度,从而可以判断④.【详解】解:由图象可得,甲乙两地的距离为450千米,故①正确;点A 的实际意义是两车出发2小时相距150千米,故②正确;x=3时,两车相遇,故③正确;货车的速度为:(450÷3-10)÷2=70(千米/小时),故④错误;故答案为:①②③.16.42【详解】解: 四边形ABCD 是矩形,6AB CD ∴==,10BC AD ==,90BAD B C D ∠=∠=∠=∠=︒,当AMP ∆为等腰三角形时,分三种情况:①当PA PM =时,点P 在AM 的垂直平分线上,取AM 的中点N ,过点N 作NP AM ⊥交BC 于P ,如图1所示:则四边形ABPN 是矩形,142BP AN AM ∴===,422t ∴=÷=;②当8AM AP ==时,如图2所示:在Rt ABP ∆中,由勾股定理得:BP ===,2t ∴=÷=③当8MA MP ==时,过点M 作MH BC ⊥于H ,如图3所示:则四边形ABHM 为矩形,6MH AB ∴==,8BH AM ==,90MHP ∠=︒,在Rt MHP ∆中,由勾股定理得:22228627HP MP MH =-=-=,827BP BH HP ∴=-=-,(827)247t ∴=-÷=-;综上所述,t 的值为:4727故答案为:4727【点睛】本题考查了矩形的判定与性质、勾股定理以及分类讨论等知识,熟练掌握矩形的性质,进行分类讨论是解题的关键.17.(12(2)105【解析】【分析】(183218(2)化简81、327-4以及|52|-,再合并同类项即可.【详解】解:(183218=222322(238127452|+--=())9322+-+-=9322-+-=10【点睛】本题考查实数的运算,二次根式的混合运算,掌握运算法则是正确计算的前提.18.(1)见解析;(2)7;(3)7(0,)3+【分析】(1)分别作出三个顶点关于y 轴的对称点,再首尾顺次连接即可;(2)根据三角形的面积公式求解即可;(3)利用待定系数法求出AB 1所在直线解析式,从而得出点P 坐标,再利用勾股定理可得三角形ABP 周长最小值.【详解】解:(1)如图所示,△111A B C 即为所求.(2)如图所示,连接1AC ,△11A B C 的面积为17272⨯⨯=,故答案为:7;(3)如图所示,连接1AB ,与y 轴的交点即为所求点P ,设1AB 所在直线解析式为y kx b =+,则321k b k b +=⎧⎨-+=⎩,解得2373k b ⎧=⎪⎪⎨⎪=⎪⎩,2733y x ∴=+,当0x =时,73y =,7(0,)3P ∴;1AB ==,AB ==,∴+故答案为:7(0,)3【点睛】本题主要考查作图—轴对称变换,解题的关键掌握轴对称变换的定义和性质,并据此得出变换后的对称点.19.(1(23)9【解析】【分析】(1)仔细阅读,发现规律:分母有理化,然后仿照规律计算即可求解;(2)根据规律直接写出结果;(3)根据规律写出结果,找出部分互为相反数的特点,然后计算即可.【详解】解:(1)原式=32-;(2)原式(3)由(2)可知:原式﹣=﹣=9.【点睛】本题考查了二次根式的混合运算以及分母有理化,观察式子找到规律是解题的关键.20.(1)见解析;(2)253 cm【分析】(1)根据勾股定理的逆定理求出∠BDC=90°,求出∠ADC=90°即可;(2)在Rt△ADC中,由勾股定理得出a2=(a-6)2+82,求出a即可.【详解】解:证明:(1)设AB=AC=a cm,∵BC=10cm,CD=8cm,BD=6cm,∴BD2+CD2=BC2,∴∠BDC=90°,即∠ADC=90°,∴CD⊥AB;(2)∵∠ADC=90°,在Rt△ADC中,由勾股定理得:AC2=AD2+CD2,即a2=(a-6)2+82,解得:a=25 3,即AB=253 cm.21.(1)①y1=70x+1200;②y2=80x;(2)若参演学生人数为150人,选择A公司比较合算,理由见解析【分析】(1)①根据A 公司给出的优惠条件是:服装按单价打七折,但校方需承担1200元的运费,可以写出学校购买A 公司服装所付的总费用y 1(元)与参演学生人数x 之间的函数关系式;②根据B 公司的优惠条件是:服装按单价打八折,公司承担运费,可以写出学校购买B 公司服装所付的总费用y 2(元)与参演学生人数x 之间的函数关系式;(2)先判断哪家公司比较合算,然后将x=150代入(1)中的两个函数解析式,求出相应的函数值,再比较大小即可说明理由.【详解】解:(1)①由题意可得,学校购买A 公司服装所付的总费用y 1(元)与参演学生人数x 之间的函数关系式是y 1=100x×0.7+1200=70x+1200,故答案为:y 1=70x+1200;②由题意可得,学校购买B 公司服装所付的总费用y 2(元)与参演学生人数x 之间的函数关系式是y 2=100x×0.8=80x ,故答案为:y 2=80x ;(2)若参演学生人数为150人,选择A 公司比较合算,理由:当x=150时,y 1=70×150+1200=11700,y 2=80×150=12000,∵11700<12000,∴若参演学生人数为150人,选择A 公司比较合算.22.(1)(4,0),(0,2);(2)122y x =-+;(3)52;(4)23y x =-【分析】(1)由4OA =,12OC OA =.得2OC =,即可得出点A 、C 的坐标;(2)利用待定系数法求函数解析式;(3)由折叠的性质和平行线的性质得CE CF =,设CE AE x ==,则4OE x =-,在Rt OCE ∆中,由勾股定理列方程可得CE 的长,从而求出面积;(4)设AC 与EF 的交点为G ,可知点G 为AC 的中点,再用待定系数法求函数解析式即可.【详解】解:(1)4= OA ,12OC OA =.2OC ∴=,(4,0)A ∴,(0,2)C ;故答案为:(4,0),(0,2);(2)设直线AC 的函数解析式为:y kx b =+,∴240b k b =⎧⎨+=⎩,∴122k b ⎧=-⎪⎨⎪=⎩,∴直线AC 的函数解析式为:122y x =-+;(3)由折叠知:AE CE =,AEF CEF ∠=∠,//BC OA ,AEF CFE ∴∠=∠,CEF CFE ∴∠=∠,CE CF ∴=,设CE AE x ==,则4OE x =-,在Rt OCE ∆中,由勾股定理得:222(4)2x x -+=,解得52x =,52CE ∴=,115522222CEF S CF OC ∆∴=⨯⨯=⨯⨯=,故答案为:52;(4)设AC 与EF 的交点为G ,52AE CE == ,32OE ∴=,3(,0)2E ∴,由折叠知,EF 垂直平分AC ,∴点G 为AC 的中点,∴点(2,1)G ,设直线EF 的函数解析式为:y mx n =+,∴30221m n m n ⎧+=⎪⎨⎪+=⎩,∴23m n =⎧⎨=-⎩,∴直线EF 的函数解析式为23y x =-,故答案为:23y x =-.23.(1)BE+FD=EF ;(2)DF=EF+BE ;(3)225+【分析】(1)把△ABE 绕点A 逆时针旋转90°至△ADG ,可使AB 与AD 重合,证出△AFG ≌△AFE ,根据全等三角形的性质得出EF=FG ,即可得出答案;(2)把△ABE 绕点A 逆时针旋转90°至△ADG ,可使AB 与AD 重合,证出△AFE ≌△AFG ,根据全等三角形的性质得出EF=FG ,即可得出答案;(3)把△ACE 旋转到ABF 的位置,连接DF ,证明△AFE ≌△AFG (SAS ),则EF=FG ,∠C=∠ABF=45°,△BDF 是直角三角形,根据勾股定理即可作出判断.【详解】解:(1)如图1所示:∵AB=AD ,∴把△ABE 绕点A 逆时针旋转90°至△ADG ,可使AB 与AD 重合,∵∠ADC=∠B=90°,∴∠FDG=180°,点F 、D 、G 共线,∴∠DAG=∠BAE ,AE=AG ,∴∠FAG=∠FAD+∠GAD=∠FAD+∠BAE=90°-45°=45°=∠EAF ,即∠EAF=∠FAG .在△EAF 和△GAF 中,AF AFEAF GAF AE AG=⎧⎪∠=∠⎨⎪=⎩,∴△AFG ≌△AFE (SAS ).∴EF=FG .∴EF=DF+DG=DF+BE ,即EF=BE+DF .故答案为:BE+FD=EF ;(2)DF=EF+BE .证明:如图2所示.∵AB=AD ,∴把△ABE 绕点A 逆时针旋转90°至△ADG ,可使AB 与AD 重合,∵∠ADC=∠ABE=90°,∴点C 、D 、G 在一条直线上.∴EB=DG ,AE=AG ,∠EAB=∠GAD .又∵∠BAG+∠GAD=90°,∴∠EAG=∠BAD=90°.∵∠EAF=45°,∴∠FAG=∠EAG-∠EAF=90°-45°=45°.∴∠EAF=∠GAF .在△EAF 和△GAF 中,EA GAEAF GAF EF FG=⎧⎪∠=∠⎨⎪=⎩,∴△EAF ≌△GAF (SAS ).∴EF=FG .∵FD=FG+DG ,∴DF=EF+BE ,故答案为:DF=EF+BE ;(3)把△ACE 旋转到ABF 的位置,连接DF ,则∠FAB=∠CAE.∵∠BAC=90°,∠DAE=45°,∴∠BAD+∠CAE=45°,又∵∠FAB=∠CAE ,∴∠FAD=∠DAE=45°,则在△ADF 和△ADE 中,AD AD FAD DAE AF AE =⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△ADE (SAS ).∴DF=DE ,∠C=∠ABF=45°.∴∠BDF=90°.∴△BDF 是直角三角形.∴BD 2+BF 2=DF 2.∴BD 2+CE 2=DE 2.∴=∴BE=BD+DE=2+故答案为:2+24.(1)(2)(3)点D 的坐标为(2,0).【分析】(1)由一次函数解析式求得点A 、B 的坐标,则易求直角△AOB 的两直角边OB 、OA 的长度,所以在该直角三角形中利用勾股定理即可求线段AB 的长度;(2)如图2,过M 点作x 轴的垂线MF ,过N 作y 轴的垂线NE ,MF 和NE 交于点C ,构造直角△MNC ,则在该直角三角形中利用勾股定理来求求点M 与点N 间的距离;(3)如图3,设点D 坐标为(m ,0),连结ND ,MD ,过N 作NG 垂直x 轴于G ,过M 作MH 垂直x 轴于H .在直角△DGN 和直角△MDH 中,利用勾股定理得到关于m 的方程12+(m+2)=42+(3-m )2通过解方程即可求得m 的值,则易求点D 的坐标.【详解】(1)令x=0,得y=4,即A (0,4).令y=0,得x=-2,即B (-2,0).在Rt △AOB 中,根据勾股定理有:AB;(2)如图2,过M 点作x 轴的垂线MF ,过N 作y 轴的垂线NE ,MF 和NE 交于点C .根据题意:MC=4-(-1)=5,NC=3-(-2)=5.则在Rt △MCN 中,根据勾股定理有:MN 2222=55=52MC NC ++;(3)如图3,设点D 坐标为(m ,0),连结ND ,MD ,过N 作NG 垂直x 轴于G ,过M 作MH 垂直x 轴于H .则GD=|m-(-2)|,GN=1,DN 2=GN 2+GD 2=12+(m+2)2MH=4,DH=|3-m|,DM 2=MH 2+DH 2=42+(3-m )2∵DM=DN ,∴DM 2=DN 2即12+(m+2)=42+(3-m )2整理得:10m=20得m=2,∴点D 的坐标为(2,0).25.(1)见解析;(2)510y x =--;(3)(2,0)或(1,0)-;(4)1119(,)33-或(4,7)-或813(,)33-【分析】(1)根据同角的余角相等可证BCE =∠∠CAD ,从而利用AAS 可证BEC CDA ∆≅∆;(2)过点B 作1BF l ⊥,交2l 于F ,过F 作FH y ⊥轴于H ,则ABF ∆是等腰直角三角形,由(1)同理可得OAB HBF ∆≅∆,则(3,5)F -,利用待定系数法即可求得函数解析式;(3)由(1)得BOC CDA ∆≅∆,得(3,1)A ,分两种情况,可求出OM 的值,即可得出点M 的坐标;(4)分点P 为直角顶点或点C 为直角顶点时或点D 为直角顶点三种情况,分别画出图形,利用(1)中K 型全等可得点D 的坐标,即可解决问题.【详解】解:证明:(1)AD ED ⊥ ,BE ED ⊥,90BEC ADC ∴∠=∠=︒,90ACD DAC ∴∠+∠=︒,90ACB ∠=︒ ,90BCE ACD ∴∠+∠=︒,BCE CAD ∴∠=∠,在BEC ∆和CDA ∆中,BEC ADCBCE DAC BC AC∠=∠⎧⎪∠=∠⎨⎪=⎩,()BEC CDA AAS ∴∆≅∆;(2)过点B 作1BF l ⊥,交2l 于F ,过F 作FH y ⊥轴于H ,则ABF ∆是等腰直角三角形,由(1)同理可证()OAB HBF AAS ∆≅∆,OA BH ∴=,OB FH =,直线13:32l y x =+与x 轴交于点A ,与y 轴交于点B ,(2,0)A ∴-,(0,3)B ,2OA ∴=,3OB =,5OH ∴=,3FH =,(3,5)F ∴-,设2l 的函数解析式为y kx b =+,将点A ,F 的坐标代入得5k =-,10b =-,∴直线2l 的函数解析式为510y x =--,故答案为:510y x =--;(3)由(1)得BOC CDA ∆≅∆,1OC AD ∴==,2CD OB ==,(3,1)A ∴,12332AOB S ∆=⨯⨯= ,1OAM S ∆∴=,2OM ∴=,(2,0)M ∴;当M 点在x 轴的负半轴上时,如下图,12332AOB S ∆=⨯⨯= ,1OBM S ∆∴=,1OM ∴=,(1,0)M ∴-;故答案为:(2,0)或(1,0)-;(4)①若点P为直角顶点时,如图,设点P 的坐标为(3,)m ,则PB 的长为4m +,90CPD ∠=︒ ,CP PD =,180CPM CDP PDH ∠+∠+∠=︒,90CPM PDH ∴∠+∠=︒,又90CPM DPM ∠+∠=︒ ,PCM PDH ∴∠=∠,在MCP ∆与HPD ∆中,PCM PDHCMP PHM PC PD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△()MCP HPD AAS ∆≅∆,CM PH ∴=,PM PD =,∴点D 的坐标为(7,3)m m +-+,又 点D 在直线21y x =-+上,2(7)13m m ∴-++=-+,解得:103m =-,即点D 的坐标为1119(,)33-;②若点C 为直角顶点时,如图,设点P 的坐标为(3,)n ,则PB 的长为4n +,CA CD =,同理可证明()PCM CDH AAS ∆≅∆,PM CH ∴=,MC HD =,∴点D 的坐标为(4,7)n +-,又 点D 在直线21y x =-+上,2(4)17n ∴-++=-,解得:0n =,∴点P 与点A 重合,点M 与点O 重合,即点D 的坐标为(4,7)-;③若点D 为直角顶点时,如图,设点P 的坐标为(3,)k ,则PB 的长为(4)k +,CD PD =,同理可证明()CDM PDQ AAS ∆≅∆,MD PQ ∴=,MC DQ =,77(,)22k k D +-∴-,又 点D 在直线21y x =-+上,772122k k +-∴-⨯+=-,解得:53k =-,∴点P 与点A 重合,点M 与点O 重合,即点D 的坐标为813(,)33-,综上所述,点D 的坐标为1119(,)33-或(4,7)-或813(,)33-,故答案为:1119(,)33-或(4,7)-或813(,)33-.【点睛】本题主要考查了等腰直角三角形的判定与性质,全等三角形的判定与性质,一次函数图象上点的坐标的特征,作辅助线构造模型,运用分类思想是解题的关键.。
北师大版八年级上册数学期中考试试卷含答案

北师大版八年级上册数学期中考试试题一、单选题1.下列实数中,是无理数的是()A .﹣53B .|﹣2|C D .2.下列语句中正确的是()A ±4B .任何数都有两个平方根C .∵a 的平方是a 2,∴a 2的平方根是aD .﹣1是1的平方根3.下列各组数中互为相反数的是()A .5B .5-和15C .和D .--和(-4.下列一次函数y 随x 的增大而增大是()A .y =-2xB .y =x -3C .y =-5xD .y =-x +35.如图是用围棋棋子在6×6的正方形网格中摆出的图案,棋子的位置用有序数对表示,如A 点为(5,1),若再摆一黑一白两枚棋子,使这9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是()A .黑(1,5),白(5,5)B .黑(3,2),白(3,3)C .黑(3,3),白(3,1)D .黑(3,1),白(3,3)6是()A .在2和3之间B .在3和4之间C .在5和6之间D .在8和9之间7.已知一次函数y =kx +b (k≠0)的图象如图所示,则y =-bx -k 的图象可能是()A .B .C .D .8.下列计算正确的是()A 532=B 236=C .32353+=D 1472=9.在平面直角坐标系中,第四象限内有一点M ,它到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标为()A .()3,4-B .()4,3-C .()3,4-D .()4,3-10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…,第n 次移动到An .则△OA 2A 2018的面积是()A .504m 2B .10092m 2C .10112m 2D .1009m 2二、填空题11.比较大小:“>”,“<”或“=”).12.若点P(2,3)与点Q 关于原点对称,则点Q 的坐标是__________.13.化简11=________.14.请写出两组勾股数:________.15.P 点在平面直角坐标系的第三象限,P 到x 轴的距离为1,到y 轴的距离为3,则P 点的坐标是________.16.有一个英文单词的字母顺序对应如图中的有序数对分别为(2,1),(1,3)、(1,3),(4,2),请你把这个英文单词写出来或者翻译中文为_________.17.已知a 的平方根为±3,b 的立方根是-1,c 是36的算术平方根,求a b c +-的值_________.18.如图,已知BA =BC .写出数轴上点A 所表示的数是____________.三、解答题19.计算:(1(2)(3)⎛- ⎝(4)2(11)1)-20.阅读下列计算过程:1==2=试求:(1(2(3+⋅⋅⋅+21.在△ABC中,∠C=90°,AC>BC,D是AB的中点.E在线段CA的延长线上,连接DE,过点D作DF⊥DE,交直线BC的延长线于点F,连接EF.求证:AE2+BF2=EF2.22.生态公园计划在园内的坡地上造一片有A,B两种树的混合林,需要购买这两种树苗2000棵,种植A,B两种树苗的相关信息如表.品种项目单价(元/棵)成活率劳务费(元/棵)A1595%3B2099%4设购买A种树苗x棵,造这片林的总费用为y元,解答下列问题:(1)写出y(元)与x(棵)之间的函数关系式;(2)假设这批树苗种植后成活1960棵,则造成这片林的总费用需多少元?23.如图,在平面直角坐标系中,直线y=−2x+12与x轴交于点A,与y轴交于点B,与直线y=x交于点C.(1)求点C的坐标.(2)若P是x轴上的一个动点,直接写出当△POC是等腰三角形时P的坐标.(3)在直线AB上是否存在点M,使得△MOC的面积是△AOC面积的2倍?若存在,请求出点M的坐标;若不存在,请说明理由.24.为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费,设每户家庭每月用水量为x吨时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?25.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C,若∠ACB=∠A′C′B′=90°,AC=BC=6,求B′C的长.参考答案1.C2.D3.D4.B5.D6.A7.C8.B9.D10.A11.>.【分析】根据根式的性质把根号外的因式移入根号内,再比较即可.【详解】>解:∵,2827∴>故答案为:>.【点睛】本题考查了平方根的大小比较的应用,能选择适当的方法比较两个数的大小是解此题的关键.12.(-2,-3).【解析】【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:点P(2,3)与点Q关于原点对称,则点Q的坐标(-2,-3),故答案是:(-2,-3).【点睛】本题考查了关于原点的对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.13【解析】【分析】化简绝对值,再进行实数的计算.【详解】11+=11-+=【点睛】本题考查了实数的运算,化简绝对值,掌握化简绝对值是解题的关键.14.3,4,5;6,8,10(答案不唯一)【解析】【分析】勾股数:构成一个直角三角形三边的一组正整数,称之为勾股数,根据勾股数的定义可得答案.【详解】解:勾股数是构成一个直角三角形三边的一组正整数,2222222223+4=5,6810,51213,+=+=∴;6,8,10;5,12,13都是勾股数.3,4,5故答案为:3,4,5;6,8,10【点睛】本题考查的是勾股数的含义,勾股定理的逆定理的理解,掌握勾股数的定义是解题的关键. 15.(-3,-1)【解析】【分析】根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答即可.【详解】解:∵点P在第三象限,且点P到x轴的距离是1,∴点P的纵坐标为-1,∵点P到y轴的距离是3,∴点P的横坐标为-3,所以,点P的坐标为(-3,-1).故答案为:(-3,-1).【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.16.book【解析】【分析】根据每一个点的坐标确定其对应的位置,最后写出答案.【详解】解:(2,1)对应的字母是B,(1,3)对应的字母是O,(1,3)对应的字母是O,(4,2)对应的字母是K.故答案为:book.【点睛】本题考查了坐标位置的确定,熟记有序数对的规定,找出各点的对应字母是解题的关键.17.2【解析】【分析】根据平方根的含义求解,a立方根的含义求解,b算术平方根的含义求解,c再代入代数式求值即可.【详解】解: a的平方根为±3,b的立方根是-1,c是36的算术平方根,∴==-=a b c9,1,6,()∴+-=+--=a b c916 2.故答案为:2.【点睛】本题考查的是平方根,立方根,算术平方根的含义,熟悉“平方根,立方根,算术平方根的含义”是解题的关键.18.1-【分析】先利用勾股定理求解BC的长,可得BA的长,从而可得A到原点的距离,从而可得答案.【详解】解:由勾股定理得:BC===BA BC,∴=BA则A1,∴点A 1.1.【点睛】本题考查的是利用数轴表示无理数,勾股定理的应用,掌握利用勾股定理求解直角三角形的某条边长是解题的关键.19.(1);(2)-6;(3;(4)【解析】【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用二次根式的乘除法则运算;(3)先把二次根式化为最简二次根式,然后合并即可;(4)根据完全平方公式和平方差公式计算即可.【详解】解:(11=⨯2=++=(2)==6=-;(3)⎛- ⎝434432⎛⎫=-⨯-⨯-⨯ ⎪ ⎪⎝⎭==(4)2(11)1)-+--15(51)=---1551=--+10=-+【点睛】本题考查了二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.(1(2(3)【解析】【分析】(1,再利用平方差公式计算分母的结果,从而可得答案;(2(3)利用(2)的规律,把每个二次根式化简,再合并同类二次根式即可得到答案.【详解】解:(1=;(2()1n n ==--(3⋅⋅⋅+11 1.=21.见解析【解析】过点B 作AC 的平行线交ED 的延长线于点G ,连接FG ,证明()EAD GBD AAS ≅ ,推出ED GD =,AE BG =,得到EF FG =,再由勾股定理得到结论.【详解】证明:过点B 作AC 的平行线交ED 的延长线于点G ,连接FG ,∵//BG AC ,∴EAD GBD ∠=∠,DEA DGB ∠=∠,∵D 是AB 的中点,∴AD BD =,∴()EAD GBD AAS ≅ ,∴ED GD =,AE BG =,又∵DF DE ⊥,∴DF 是线段EG 的垂直平分线,∴EF FG =,∵90C ∠=︒,//BG AC ,∴90GBF C ∠=∠=︒,在Rt BGF 中,由勾股定理得:222FG BG BF =+,∴222EF AE BF =+.【点睛】此题考查全等三角形的判定及性质,勾股定理的应用,线段垂直平分线的判定及性质,熟记全等三角形的判定定理及正确引出辅助线解决问题是解题的关键.22.y=-6x+48000;45000.【解析】【分析】(1)A 种树苗x 棵,则B 种树苗(2000-x )棵,然后根据总费用=A 种的总价+B 种的总价得出函数关系式;(2)根据成活率求出x 的值,然后进行计算.【详解】解:(1)根据题意得∶y =(15+3)x +(20+4)(2000-x )=-6x +48000(2)由题意得:0.95x +0.99(2000-x )=1960,∴x =500当x =500时,y =-6×500+48000=45000∴造这片林的总费用需45000元.23.(1)(4,4);(2)(4,0)或(8,0)或(0)或(-,0);(3)存在,理由见解析,M (8,−4)或(0,12)【解析】【分析】(1)联立两直线解析式成方程组,解方程组即可得出点C 的坐标;(2)分OC=PC ,OC=OP ,PC=OP 三种情况进行讨论;(3)分两种情况讨论:当M 在x 轴下方时;当M 在x 轴上方时.把△MOC 的面积是△AOC面积的2倍的数量关系转化为△MOA 的面积与△AOC 面积的数量关系即可求解.【详解】解:(1)联立两直线解析式成方程组,得:212y x y x =-+⎧⎨=⎩,解得:44x y =⎧⎨=⎩,∴点C 的坐标为(4,4).(2)如图,分三种情况讨论:OC 为腰,当OC=P 1C 时,∵C (4,4),∴P 1(8,0);OC 为腰,当OC=OP 2=OP 3时,∵C (4,4),∴=2P ∴,3(P -;当P 4C=OP 4时,设P (x ,0),则x==解得x=4,∴P 4(4,0).综上所述,P 点坐标为P 1(8,0),P 2(0),3(P -,P 4(4,0).(3)当y=0时,有0=−2x+12,解得:x=6,∴点A 的坐标为(6,0),∴OA=6,∴S △OAC=12×6×4=12.设M (x ,y ),当M 在x 轴下方时△MOC 的面积是△AOC 面积的2倍,∴△MOA 的面积等于△AOC 的面积,1166422y ⨯⨯=⨯⨯,∴4y =,∴y=−4,∴4212x -=-+,∴x=8,∴M (8,−4)当M 在x 轴上方时△MOC 的面积是△AOC 面积的2倍,∴△MOA 的面积等于△AOC 的面积的3倍,11664322y ⨯⨯=⨯⨯⨯∴12y =∴y=12时,∴12212x =-+,∴x=0,∴M (0,12)综上所述,M (8,−4)或(0,12).【点睛】本题考查的是一次函数综合题,涉及到一次函数图象上点的坐标问题及等腰三角形的性质和判定等知识,在解答(2)、(3)时要注意进行分类讨论,不要漏解.24.(1)当0≤x≤20时,y 与x 的函数表达式是y=2x ;当x >20时,y 与x 的函数表达式是y=2.8x ﹣16;(2)小颖家五月份比四月份节约用水3吨.【解析】【分析】(1)因为月用水量不超过20吨时,按2元/吨计费,所以当0≤x≤20时,y 与x 的函数表达式是y=2x ;因为月用水量超过20吨时,其中的20吨仍按2元/吨收费,超过部分按2.8元/吨计费,所以当x >20时,y 与x 的函数表达式是y=2×20+2.8(x-20),即y=2.6x-12;(2)由题意可得:因为五月份缴费金额不超过40元,所以用y=2x 计算用水量;四月份缴费金额超过40元,所以用y=2.8x-16计算用水量,进一步得出结果即可.【详解】解:(1)当0≤x≤20时,y与x的函数表达式是y=2x;当x>20时,y与x的函数表达式是y=2×20+2.8(x-20)=2.8x-16;(2)因为小颖家五月份的水费都不超过40元,四月份的水费超过40元,所以把y=38代入y=2x中,得x=19;把y=45.6代入y=2.8x-16中,得x=22.所以22-19=3吨.答:小颖家五月份比四月份节约用水3吨.【点睛】一次函数的应用.25.B'C的长为【解析】【分析】根据勾股定理求出AB,根据等腰直角三角形的性质得到∠CAB′=90°,根据勾股定理计算.【详解】解:∵∠ACB=∠AC′B′=90°,AC=BC=6,∴,∠CAB=45°,∵△ABC和△A′B′C′全等,∴∠C′AB′=∠CAB=45°,,∴∠CAB′=90°,∴B′C=,答:B'C的长为6。
八年级上期期中考试数学试卷(含答案)

八年级上期期中数学试卷(满分100分,时间60分钟)一、选择题(每小题3分,共30分)1. 在给出的一组数0,π,5,16,3.14,39,722中,无理数有( ) A .1个 B .2个C .3个 D .5个 2. 下列各组数中,是勾股数的是( )A .2,3,5B .15,12,20C .1.5,2,2.5D .15,9,12 3.下列计算结果正确的是( ) A .B .C .D . 4. 如图,数轴上点表示的数可能是( )A .B .C .D .5. 已知点P 的坐标为(,且点P 到两坐标轴的距离相等,则点P 的坐标为( ) A . (3,3) B . (3,3)或(6,-6) C .(6,-6) D . (3,3)或(-6,6)6. 平面直角坐标系中,画出把△ABC 各点的横坐标都乘以+1,纵坐标都乘以-1后的图形,符合要求的是( )A B C D7.如图,圆柱的轴截面ABCD 是边长为4的正方形,动点P 从A 点出发,沿着圆柱的侧面移动到BC 的中点S 的最短距离是( )A .221π+B .C .D . 8.如图,在3×3的正方形网格中由四个格点A ,B ,C ,D ,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是( )A .A 点B .B 点C .C 点D .D 点35323=+636±=523=+332=)(-P 7 3.2-7-10-)63,2+-a a 2214π+241π+224π+-3 -2 -1 P第7题图 第8题图 第9题图9.如图,在边长为1的正方形组成的网格图中标有AB ,CD ,EF ,GH 四条线段,其中能构成一个直角三角形三边的线段是( )A. CD,EF ,GHB. AB,CF ,EFC. AB,EF ,GHD. GH,AB,CD10.下列图形中,表示一次函数= + 与正比例函数y = (、为常数,且≠0)的图象的是( )二、填空题(每小题3分,共15分)11. 在平面直角坐标系中,若点P (3,a )与点Q (b ,-4)关于x 轴对称,则a +b 的值为_____.12. 已知y -2与x 成正比例,当x =3时,y =l ,则y 与x 的函数表达式是____________. 13. 若的整数部分为a ,小数部分为b ,则ab =______. 14. 已知数轴上点A 表示的数是2-,点B 表示的数是1-,那么数轴上到点B 的距离与点A 到点B 的距离相等的另一点C 表示的数是__________. 15. 如图,把Rt △ABC 放在直角坐标系内,其中△CAB =90°,BC =17,点A 、B 的坐标分别为(3,0)、(11,0),将△ABC 沿x 轴向右平移,当点C 落在直线1523-=x y 上时,线段BC 扫过的面积为___________.y mx n mnx m n mn 10 A O y x B O y x C O y x D O y x第15题AB CO yx三、解答题(本大题共6题,55分)16. 计算(每小题4 分,共16分)(1(2)(3(4)10)23()π10(8312--+-+-17. (6分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A、C的坐标分别为(-4,5),(-1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)写出点B关于y轴的对称点B′的坐标_______18. (6分) 已知的算术平方根是5,62++ba的立方根是-2,求3a-b的平方根.19.(8分)如图,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?214505118-+(121a+20.(8分)某乡组织20辆汽车装运A 、B 、C 三种苹果42吨到外地销售。
苏科版八年级上册数学期中考试试卷及答案

苏科版八年级上册数学期中考试试题一、单选题1.下列图形中,是轴对称图形的是()A .B .C .D .2.下列实数中,无理数是()A .0B .3.14CD .227-3)A .1B .2C .3D .44.下列运算或叙述正确的是()A =B .4的平方根是C .面积为12的正方形的边长为D5.下列二次根式中最简二次根式是()AB .0.1C D 6.下列各数中,与2)A .2B .2CD .27.如图所示,画∠AOB 的平分线的过程:先在∠AOB 的两边OA ,OB 上分别截取OC ,OD ,使OC =OD ;再分别过点C ,D 作CE ⊥OA ,DF ⊥OB .CE ,DF 交于点P ,最后作射线OP ,则可得∠AOP =∠BOP .即OP 为∠AOB 的平分线.那么判定 COP ≌ DOP 的理由是()A .SASB .ASAC .AASD .HL8.如图,在3×3的正方形网格中,A ,B 是两个格点,连接AB ,在网格中找到一个格点C ,使得 ABC 是以AB 为腰的等腰三角形,满足条件的格点C 的个数是()A .5B .6C .7D .89.如图,在 ABC 中,∠BAC =80°,D ,E 为BC 上的两个点,且AB =BE ,AC =CD ,则∠DAE 的度数为()A .60°B .50°C .45°D .40°10.如图,在 ABC 中,∠C =90°,∠A =30°,以点B 为圆心,适当长为半径画弧,分别交BA ,BC 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D .下列说法中不正确的是()A .BP 是∠ABC 的平分线B .AD =BDC .:ABD CMD S S △△=3:1D .CD =12AD二、填空题11.实数94的算术平方根是__________.12.若二次根式有意义,则x 的取值范围是___13.一个球形容器的容积为36π立方米,则它的半径R =_____米.(球的体积:V 球=43πR 3,其中R 为球的半径)14______12.15.已知实数﹣1<a______.16.如图, ABC 中,AB =AC ,∠BAC =50°,D 是BC 的中点,点P 是线段AD 上一点,连接BP ,将 ABP 沿BP 翻折得到A BP ' ,当A P '⊥AD 时,则∠ABP =________.17.如图,等腰 ABC 中,AB =AC , ABC 的周长ABC C =24,若∠ABC 的平分线交AC 于点D ,且ABD CBD S S :△△=5:8,则底边BC 的长为__________.18.如图,四边形ABCD 中,∠C =40°,∠B =∠D =90°,E 、F 分别是BC 、DC 上的一点,当△AEF 的周长最小时,∠EAF 的度数为_____.三、解答题19.计算:(10(3)π+--;(2)2(2--.20.求下列各等式中x 的值:(1)x 3+64=0;(2)12(x ﹣1)2﹣9=0.21.已知x ,y =12,求下列各式的值.(1)x 2﹣y 2;(2)x 2﹣2xy+y 2.22(x ﹣y+3)2互为相反数,求x 2y 的平方根.23.如图所示,等腰 ABC 中,AB =AC =5,BC =6.(1)请用直尺(没有刻度)和圆规完成下列作图任务,保留作图痕迹,不写作法(先用铅笔作图,再用水笔作图)①作线段AB 的垂直平分线MN ;②在直线MN 上确定一点P ,使得点P 到∠ABC 两边的距离相等.(2)点Q 是第(1)题中的直线MN 上一点,则两线段QA ,QC 的长度之和最小值等于.24.如图,点C 、D 在BE 上,BC =ED ,AC =AD ,求证:AB =AE .25.如图所示,由每一个边长均为1的小正方形构成的8×8正方形网格中,点A ,B ,C ,M ,N 均在格点上(小正方形的顶点为格点),利用网格画图.(1)画出 ABC 关于直线MN 对称的A B C '''V ;(2)在线段MN 上找一点P ,使得∠APM =∠CPN .(保留必要的画图痕迹,并标出点P 位置)26.阅读:我们已经学习了平方根,立方根等概念.例如:如果x 2=a (a >0),那么x 叫做a 的平方根,即x =a ±数从有理数扩充到了实数范围.在学习过程中我们又知道“负数没有平方根”,即在实数范围内的任何一个数x 都无法使得x 2=﹣1成立.现在,我们设想引入一个新数i ,使得i 2=﹣1成立,且这个新数i 与实数之间,仍满足实数范围内加法和乘法运算,以及交换律、结合律,包括乘法对加法的分配律.把任意实数b 与i 的相乘记作bi ,任意实数a 与bi 相加记作a+bi .由此,我们将形如a+bi (a ,b 均为实数)的数叫做复数,其中i 叫虚数单位,a 叫做复数的实部,b 叫做复数的虚部.对于复数a+bi (a ,b 均为实数),当且仅当b =0时,它是实数;当且仅当a =b =0时,它是实数0;当b≠0时,它叫做虚数;当a =0且b≠0时,它是纯虚数.例如3+2i ,132i 132i ,32-i 都是虚数,它们的实部分别是3,12,3-0,虚部分别是2,12-,32-,并且以上虚数中只有32-i是纯虚数.阅读理解以上内容,解决下列问题:(1)化简:﹣2i2=;(﹣i)3=.(2)已知复数:m2﹣1+(m+1)i(m是实数)①若该复数是实数,则实数m=;②若该复数是纯虚数,则实数m=.(3)已知等式:(12x﹣y+3)+(x+2y﹣1)i=0,求实数x,y的值.27.如图,在 ABC中,∠ABC=40°,∠ACB=80°,点D,E分别在AC,AB上,BD,CE分别是∠ABC,∠ACB的平分线,BD,CE交于点F.(1)求∠DFE的度数;(2)求证:EF=DF.28.如图, ABC中,AC=BC,∠ACB=90°,AD平分∠BAC交BC于点D,过点B作BE⊥AD,交AD延长线于点E,F为AB的中点,连接CF,交AD于点G,连接BG.(1)线段BE与线段AD有何数量关系?并说明理由;(2)判断 BEG的形状,并说明理由.参考答案1.D【解析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:选项A、B、C不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项D能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:D.【点睛】本题主要考查了轴对称图形的定义,熟练掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形是解题的关键.2.C【解析】【分析】根据无理数的概念:无理数是无限不循环小数判断即可.【详解】解:A.0是整数,属于有理数,故本选项不合题意;B.3.14是有限小数,属于有理数,故本选项不合题意;C.是无理数,故本选项符合题意;D.227是分数,属于有理数,故本选项不合题意;故选:C.【点睛】此题主要考查无理数的识别,解题的关键是熟知无理数的定义.3.B【解析】【详解】∵4<5<9,∴2<3,又2.52=6.25<92.故选B.4.C【解析】【分析】根据合并同类二次根式,平方根,二次根式的性质,逐项判断即可求解.【详解】解:A:被开方数不同,不能合并二次根式,故本选项不合题意;B:4的平方根是±2,故本选项不合题意;C:面积为12D,故本选项不合题意;故选:C.【点睛】本题主要考查了二次根式的化简,二次根式的加减,熟练掌握二次根式的性质是解题的关键.5.A【解析】【分析】根据最简二次根式的定义逐个判断即可.【详解】解:AB.0.1不是二次根式,不是最简二次根式,故本选项不符合题意;C=题意;D故选:A.此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义:1、被开方数中不含能开得尽方的因数或因式;2、被开方数的因数是整数,因式是整式。
初二数学上册期中考试试题及答案.doc

八年级上期中考试数学试卷一、选择题(每小题 3 分,共 30 分)1.如图, BE=CF, AB=DE ,添加下列哪些条件可以推证△ABC ≌△ DFE()=EF B. ∠A= ∠D ∥DF =DF2.已知,如图, AC=BC ,AD=BD ,下列结论不正确的是()=DO =BO ⊥ CD D. △ACO ≌△ BCOC图) 3.在△ABC (第 2 题图)的哪三内取一点 P 使得点 P 到△ ABC 的三边距离相等,则点 P 应是△ ABC 条线交点O(B)AA. 高B.角平分线C.中线D.垂直平分线4. △ABC ≌△ DEF,AB=2 , BC=4 若△DEF 的周长为偶数,则 DF 的取值为()D或4或55.下列条件能判定△ABC ≌△ DEF 的一组是()A. ∠A=∠D,∠C=∠F,AC=DF =DE, BC=EF,∠ A= ∠DC. ∠A=∠D,∠B=∠E,∠ C=∠F=DE,△ABC 的周长等于△DEF 的周长6.下列图形中,不是轴对称图形的是()A. 等边三角形B.等腰直角三角形C.四边形D.线段7.如下图,轴对称图形有()个个个个8.下列图形中,不是轴对称图形的是()A. 有两条边相等的三角形B.有一个角为 45°的直角三角形C.有一个角为 60°的等腰三角形D.一个内角为 40°,一个内角为 110°的三角形9.当你看到镜子中的你在用右手往左梳理你的头发时,实际上你是()A. 右手往左梳B.右手往右梳C.左手往左梳D.左手往右梳10.下列条件中不能作出唯一直角三角形的是()A. 已知两个锐角B.已知一条直角边和一个锐角C.已知两条直角边D.已知一条直角边和斜边二、填空题(每小题 3 分,共 30 分)11.已知,如图, AD=AC , BD=BC ,O 为 AB 上一点,那么图中共有对全等三角形 ..(第 11 题图)(第 12 题图)(第 13 题图).12.如图,△ABC ≌△ ADE ,若∠ BAE=120°,∠ BAD=40°,则∠ BAC=13.如图,在△ AOC 与△BOC 中,若∠ 1=∠2,加上条件则有△AOC ≌△ BOC.14.如图所示,在△ABC 中,∠ A=90°,BD 平分∠ ABC ,AD=2 ㎝,则点 D 到 BC 的距离为㎝.15.如图, AE=BF , AD ∥ BC, AD=BC ,则有△ADF ≌.(第14 题图)(第15 题图)(第16 题图)16.如图,在△ ABC 与△DEF 中,如果 AB=DE ,BE=CF,只要加上∥,就可证明△ABC ≌△ DEF.17.点 P(5,―3)关于x轴对称的点的坐标为.18.如图,∠ AOB 是一建筑钢架,∠ AOB=10°,为使钢架更加稳固,需在内部添加一些钢管 EF、 FG、 GH、 HI 、 IJ,添加钢管的长度都与OE 相等,则∠ BIJ= .19.等腰三角形一腰上的高与另一腰的夹角为 60°,则这个等腰三角形的顶角的度数是.20.一个等腰三角形有两边分别为 5 和 8 ㎝,则周长是厘米 .(第 18 题图)三、证明题(每小题 5 分,共 10 分)A21.如图, AB=DF ,AC=DE ,BE=FC,求证:∠ B=∠F22.如图,已知 AB=AC , AD=AE ,BE 与 CD 相交于 O,求证:△ ABE ≌△ ACD.C四、解答题(每小题 6 分,共 12 分) B FE23.如图,在△ ABC 中,∠ ACB=90°,DE 是 AB 的垂直平分线,∠CAE :∠ EAB=4 :1,求∠ B 的度数 .24.如图,某地有两所大学和两条交叉的公路.图中点 M 、 N 表示大学, OA , OB 表示公D路,现计划修建一座物资仓库,希望仓库到两所大学的距离相同,到两条公路的距离也相同,你能确定出仓库P 应建在什么位置吗?请在图中画出你的设计 .(尺规作图,不写作法,保留作图痕迹)五、解答题(每小题7 分,共 14 分)25.已知: AD ⊥BE,垂足 C 是 BE 的中点, AB=DE ,则 AB 与 DE 有何位置关系?请说明理由. B26.已知:在△ ABC 中, AB=AC=2 a,∠ ABC= ∠ ACB=15°求: S△ABC.六、解答题(每小题7 分,共 14 分)27.画出△ABC 关于x轴对称的图形△A 1B1C1,并指出△ A1B1C1的顶点坐标 .28.已知:如图,△ABC 中,AB=AC ,D D点在 AB 上,E 点在 AC 的延长线上,且 BD=CE,A C连接 DE,交 BC 于 F.求证: DF=EF.六、解答题(每小题10 分,共 20 分)29.如图: AB=AD ,∠ ABC= ∠ ADC , EF 过点 C, BE⊥ EF 于 E, DF⊥EF 于 F,E ABE=DF.求证: CE=CF30.如图,已知点 B、C、D 在同一条直线上,△ABC 和△CDE 都是等边三角形, BE 交AC 于 F,AD 交 CE 于 H,求证: FH∥BD.B=BO;;参考答案 D;;;;;;;;;;°;15.△CBE;∥ DE;17.(5,3);°;°或 30°;或 21;21. 证明: E C F∵ BE=CF∴BE+CE=CF+CE∴BC=EF在△ ABC 和△ FED 中AB=DFAC=DEBC=EF∴△ ABC ≌△ FED∴∠B=∠F22.在△ ABE 和△ ACD 中AE=AD∠A= ∠AAB=AC∴△ ABE 和△ ACD23.解:∵ DE 是线段 AB 的垂直平分线∴AE=BE∴∠ B=∠EAD设∠ B= x度,则∠ CAE=4 x∴4 x + x + x =180∴x =3024.25.M OA解:AB∥DEP∵C是BE的中点∴BC=CEN∵AD ⊥BE∴∠ ACE=∠ECD=90°B在 Rt△ABC 和 Rt△DEC 中AB=DEBC=CE∴△ ABC ≌△ DEC∴∠B=∠E∴AB ∥ED26.( 3,- 4);B1(1,- 2); C1(5,- 1)解:延长 BA,过点 C 作 CD⊥AD ,∵AB=AC∴∠ B=∠C=15°∵∠ DAC 是△ ABC 的外角∴∠ DAC=30 °1∴CD=AC= a2∴S△ABC = 1AB·C=1×2 a×a = a 22 2A 28.证明:过点 D 作 DN ∥AE ,交 BC 于点 N∵AB=AC ∴∠ B=∠ ACB∵DN∥AE∴∠B=∠DNB ∴BD=DN ,∠E=∠NDE,又∵ BD=CE∴ DN=CE在△ NDF 和△ CEF 中∠DFN=∠ CFE∠NDE= ∠EDN=CE∴在△ NDF ≌△ CEFDBCNFE∴DF=EF29.证明:连接 BD∵AB=AC ∴∠ ABD= ∠ ADB又∵∠ ABC= ∠ADC∴∠ AB C-∠ ABD= ∠AD C-∠ ADB∴∠ DBC= ∠BDC∴BC=CDB在 Rt△ BCE 和 Rt△ DCF 中BC=CDE BE=DF∴Rt△BCERt≌△ DCF∴EC=CF30.∵△ ABC 和△ CED 为等边三角形∴BC=AC ,CE=CD,∠ FCH=∠ACB= ∠ECD=60°在△ ACD 和△ BCE 中AC=BC∠ACD= ∠ BCE=120°CD=CE在△ BFC 和△ ACH 中∠CAD= ∠ CBEBC=AC∠ BCF=∠ACH∴△ BFC≌△ ACHB∴CF=CH又∵∠ ACE=60°∴△ FCH 为等边三角形∴∠ HFC=60°∴FH∥BD第一课件网系列资料第一课件网不用注册,免费下载!ADC FAEFHC D。
八年级上册数学期中测试卷【含答案】

八年级上册数学期中测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 26cmC. 28cmD. 36cm2. 下列哪一个数是质数?A. 21B. 29C. 35D. 393. 一个长方体的长、宽、高分别为2cm、3cm、4cm,则它的对角线长度为多少cm?A. 5cmB. 6cmC. 7cmD. 9cm4. 若一个等腰三角形的底边长为10cm,腰长为13cm,则这个三角形的高为多少cm?A. 5cmB. 12cmC. 16cmD. 24cm5. 下列哪一个数是偶数?A. 101B. 103C. 105D. 107二、判断题(每题1分,共5分)1. 两个等腰三角形的底边长相等,则这两个三角形全等。
()2. 任何两个奇数的和都是偶数。
()3. 一个正方形的对角线长度等于它的边长的平方根。
()4. 一个等边三角形的面积可以用公式“底×高÷2”来计算。
()5. 任何两个质数的和都是偶数。
()三、填空题(每题1分,共5分)1. 若一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的高为______cm。
2. 两个质数的积一定是______。
3. 一个长方体的长、宽、高分别为2cm、3cm、4cm,则它的体积为______cm³。
4. 若一个等边三角形的边长为6cm,则这个三角形的面积为______cm²。
5. 下列哪一个数是合数?A. 11B. 13C. 15D. 17答案:______四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。
2. 请简述等边三角形的性质。
3. 请简述长方体的体积公式。
4. 请简述等腰三角形的性质。
5. 请简述质数和合数的区别。
五、应用题(每题2分,共10分)1. 一个等腰三角形的底边长为12cm,腰长为15cm,求这个三角形的高。
八年级上册数学期中考试试卷及答案

八年级上册数学期中考试试卷及答案读书之乐何处寻,数点梅花天地心。
书是我生活中的一大乐趣。
我坚信,只有让我们的灵魂融入书的海洋,让书的内容融入我们的生命,才能有一个比水海更为宽敞的心灵空间!下面给大家共享一些关于〔八年级〕上册数学期中考试试卷及答案,希望对大家有所关怀。
试卷:一、选择题(每题3分,共30分)1、在,-2ab2,,中,分式共有()A.2个B.3个C.4个D.5个2、以下各组中的三条线段能组成三角形的是()A.3,4,5B.5,6,11C.6,3,10D.4,4,83、以下各题中,所求的最简公分母,错误的选项是()A.与最简公分母是6x2B.与最简公分母是3a2b3cC.与的最简公分母是(m+n)(m-n)D.与的最简公分母是ab(x-y)(y-x)4、不转变的值,把它的分子和分母中的各项系数都化为整数,所得的结果为()A.B.C.D.5、若分式,则x的值是()A.3或-3B.-3C.3D.96、如图,将三角尺的直角顶点放在直线a上,a‖b,∠1=50°,∠2=60°,则∠3的度数为()A.50°B.60°C.70°D.80°7、以下式子:①(-2)-2=;②错误!未找到引用源。
;③3a-2=;④-7.02×10-4=-0.000702.新$课$标$第$一$网其中正确的式子有()A.1个B.2个C.3个D.4个8、如图,D是线段AB,BC垂直平分线的交点,若∠ABC=150°,则∠ADC的大小是()A.60°B.70°C.75°D.80°9、甲、乙两班学生参加植树造林.已知甲班每天比乙班少植2棵树,甲班植60棵树所用天数与乙班植70棵树所用天数相等.若设甲班每天植树x棵,则根据题意列出方程正确的选项是()A.=B.=C.=D.=10、以下命题中是假命题的()A、在同一平面内,垂直于同一条直线的两条直线平行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题:(每小题3分,共30分)
1. 在△ABC和△DEF中,AB=DE, ∠B=∠E,如果补充一个条件后不一定能使△ABC≌△DEF,则补充的条件是( )
A、BC=EF B、∠A=∠D C、AC=DF D、∠C=∠F
2.下面各组线段中,能组成三角形的是( )
A.1,2,3 B.1,2,4 C.3,4,5 D.4,4,8
3.下列图形中具有不稳定性的是( )
A、长方形B、等腰三角形 C、直角三角形D、锐角三角形
4. 在△ABC中,∠A=39°,∠B=41°,则∠C的度数为( )
A.70° B. 80° C.90° D. 100°
5. 如右图所示,AB∥CD,∠A=45°,∠C=29°,则∠E的度数为( )
A.22.5° B. 16° C.18° D.29°
6. 7、点P(1,-2)关于x轴的对称点是P1,P1关于y轴的对称点坐标是P2,则P2的坐标为( )
A、(1,-2) B、(-1,2) C、(-1,-2) D、(-2,-1)
7. 如图所示,∠A+∠B+∠C+∠D+∠E的结果为( )
A.90° B.1 80° C.360° D. 无法确定
8. 正多边形的一个内角等于144°,则该多边形是正( )边形.
A.8 B.9 C.10 D.11
9. 如图所示,BO,CO分别是∠ABC,∠ACB的两条角平分线,∠A=100°,则∠BOC的度数为( ).
A.80° B.90° C.120° D.140°
10. 如图,△ABC中,∠A=90°,AB=AC,BD平分∠ABC交AC于D,DE⊥BC于点E,且BC=6,则△DEC的周长是( )
(A)12 cm (B)10 cm (C)6cm (D)以上都不对
二、填空题:(每小题3分,共24分)
11. 已知三角形两边长分别为4和9,则第三边的取值范围是 .
12. 等腰三角形的周长为20cm,一边长为6cm,则底边长为______.
13. 已知在△ABC中,∠A=40°,∠B-∠C=40°,则∠B=_____,∠C=______.
14. 如图,所示,在△ABC中,D在AC上,连结BD,且∠ABC=∠C=∠1,∠A=∠3,则∠A 的
度数为 .
15. 把边长相同的正三角形和正方形组合镶嵌,若用2个正方形,则还需要____个正三角形才可以镶嵌.
16. 如果一个多边形的内角和为1260°,那么从这个多边形的一个顶点可以连_____•条对角线.
17. 如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是____________.
18. 已知△ABC的三边长a、b、c,化简│a+b-c│-│b-a-c│的结果是_________.
E
D
C
B
A
三、解答题(46分)
19.(6分)如图,A、B两村在一条小河的同一侧,要在河边建一水厂向两村供水.
(1)若要使自来水厂到两村的距离相等,厂址P应选在哪个位置?
(2)若要使自来水厂到两村的输水管用料最省,厂址Q应选在哪个位置?
请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹.
20.( 6分)如图,△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm.
求△ABC的周长.
21、(6分)已知:如图 AE=AC, AD=AB,∠EAC=∠DAB.求证:△EAD≌△ CAB .
22.(8分) 已知:E是∠AOB的平分线上一点,EC⊥OA ,ED⊥OB ,垂足分别为C、D.求证:(1)∠ECD=
∠EDC ;(2)OE是CD的垂直平分线。
23.(8分) 在△ABC中,AB=CB,∠ABC=90º,F为AB延长线上一点,点E在BC上,且AE=CF.
(1)求证:Rt△ABE≌Rt△CBF; (2)若∠CAE=30º,求∠ACF度数.
24、(12分)(1)如图(1)点P是等腰三角形ABC底边BC上的一动点,过点P作BC的
垂线,交AB于点Q,交CA的延长线于点R。请观察AR与AQ,它们相等吗?并证明你的猜想。
(2)如图(2)如果点P沿着底边BC 所在的直线,按由C向B的方向运动到CB的延长线上时,(1)中所得的
结论还成立吗?请你在图 (2)中完成图形,并给予证明.
一、选择题:(每小题3分,共30分)
1.c 2. C 3. A 4. D 5.B 6.B 7.B 8.C 9.D 10.C
二、填空题:(每小题3分,共24分)
三、解答下列各题:(19-20题,每小题6分;21-23题,每小题6分;
24题10分,本大题共46分)
20. 解:∵DE是线段AC的垂直平分线 ∴AD=CD ∵△ABD的周长为13cm
∴AB+BC=13cm∵AE=3cm∴AC=2AE=6cm. ∴△ABC的周长为:AB+BC+AC=19cm.
21、(6分)证明:∵∠EAC=∠DAB
∴∠EAC+∠DAC=∠DAB+∠DAC
即∠EAD=∠BAC………………2分
在△EAD和△CAB中,
……………3分
∴△EAD=△CAB(SAS)…………1分
22.
(9分)证明:(1)∵OE平分∠AOB EC⊥OA ED⊥OB ∴DE=CE∴∠EDC=∠ECD(2)∵∠EDC=∠ECD ∴
△EDC是等腰三角形∵∠DOE=∠CDE……∴∠DEO=∠CEO
∴OE是∠DEC的角平分线
即DE是CD的垂直平分线
23证明:∵∠ABC=90°,∴∠CBF=∠ABE=90°,在Rt△ABE和Rt△CBF中,AE=CF AB=BC
∴Rt△ABE≌Rt△CBF(HL);∵AB=BC,∠ABC=90°,∴∠CAB=∠ACB=45°,
又∵∠BAE=∠CAB-∠CAE=45°-30°=15°,由(1)知:Rt△ABE≌Rt△CBF,∴∠BCF=∠BAE=15°,
∴∠ACF=∠BCF+∠ACB=45°+15°=60°
24、
(12分)解:(1)AR=AQ ∵△ABC是等腰三角形∴∠B=∠C ∵RP⊥BC∴∠C+∠R=90°∠B=∠PQB=90°
∴∠PQB=∠R又∠PQB=∠AQR ∴∠R=∠AQR∴AQ=AR
(2)成立,依旧有AR=AQ补充的图如图所示∵△ABC为等腰三角形∴∠C=∠ABC∵PQ⊥PC∴∠C+∠R=90°
∠Q+∠PBQ=90°∵PBQ=∠ABC∴∠R=∠Q∴AR=AQ