分式方程应用(难)
分式方程应用题专项训练

分式方程应用题专题训练一.行程问题(1)一般行程问题1、从甲地到乙地有两条公路:一条是全长600Km的普通公路,另一条是全长480Km的高速公路。
某客车在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。
2、我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度。
(2)水航问题3、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。
已知水流的速度是3千米/时,求轮船在静水中的速度。
二.工程问题1、一台甲型拖拉机4天耕完一块地的一半,加一天乙型拖拉机,两台合耕,1天耕完这块地的另一半。
乙型拖拉机单独耕这块地需要几天?2、某市为治理污水,需要铺设一段全长3000米的污水输送管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成了任务,实际每天铺设多长管道?三.利润(成本、产量、价格、合格)问题1、某煤矿现在平均每天比原计划多采330吨,已知现在采煤33000吨煤所需的时间和原计划采23100吨煤的时间相同,问现在平均每天采煤多少吨。
2、某校办工厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合后,其平均价比原甲种原料0.5kg少3元,比乙种原料0.5kg多1元,问混合后的单价0.5kg是多少元。
3、一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款。
小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果购买60枝,那么可以按批发价付款,同样需要120元,(1)这个八年级的学生总数在什么范围内?(2)若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?四.其它开放性新题型1、某农场原有水田400公顷,旱田150公顷,为了提高单位面积产量,准备把部分旱田改为水田,改完之后,要求旱田占水田的10%,问应把多少公顷旱田改为水田。
分式方程重难点题型

常见重难点题型分析例题1、当x =3时,分式bx a x 352-+的值为0,而当x =2时,分式无意义,则求ab 的值时多少?的值时多少?例题2、不论x 取何值,分式mx x +-212总有意义,求m 的取值范围。
的取值范围。
例题3、(1)已知0132=+-x x ,求①,求① 221xx +的值。
的值。
② 求441xx +的值的值(2)已知31=+xx ,求1242++x x x的值。
的值。
例题4、已知21)2)(1(43-+-=---x B x A x x x 是恒等式,求A 和B 的值。
的值。
练习:练习: 1、已知21)2)(1(73-+-=---y B y A y y y ,求A ,B 的值。
的值。
例题5、已知2,3==xy xy ,求代数式yx xy +的值。
的值。
例题6、计算1814121111842+-+-+-+--x x x x x例题7、试证明代数式12211222+-¸-+-x x x x x 的值与x 无关,写出证明过程。
无关,写出证明过程。
例题8、计算)2009)(2007(2)5)(3(2)3)(1(2+++++++++x x x x x x例题9、设实数y x ,满足0256822=++++y x y x ,求yx x y xy x y x 24442222+-++-的值。
的值。
八年级下第三章分式测试题八年级下第三章分式测试题一、选择题。
一、选择题。
1、下列代数式中,是分式的是(、下列代数式中,是分式的是( ) A 、2x B 、p21-x C 、x21 D 、y x xy 221+2、使分式有意义的x 的取值范围是(的取值范围是( )A 、2¹xB 、2=xC 、0=xD 、2-¹x 3、下列各式成立的是(、下列各式成立的是( ) A 、22a b a b = B 、ca cb ab ++=C 、222)(b a b a ba b a +-=+- D 、2222y x y x yx y x -+=-+4、计算:x y yy x x222-+-,结果为(,结果为() A 、1 B 、-1 C 、y x +2 D 、y x +5、几名同学包租一两面包车去游玩,面包车的租价为180元,出发时,又增加了两名同学,结果每名同学比原来少分摊了3元车费,若设实际参加游玩的同学共有x 人,则所列方程为(人,则所列方程为( ) A 、32180180=+-x xB 、31802180=-+x xC 、32180180=--x xD 、31802180=--xx二、填空题。
分式方程应用题及解题技巧

分式方程应用题及解题技巧分式方程是代数中的重要内容之一,它的应用广泛而且深远。
分式方程常常出现在实际生活中的各种问题中,比如物体的速度、加速度、浓度、比例关系等等。
学习分式方程的应用,不仅可以帮助我们解决实际生活中的问题,还可以提高我们的数学分析和解决问题的能力。
在本文中,我们将介绍分式方程的应用题,并给出解题技巧,希望能够帮助大家更好地掌握这一部分知识。
一、分式方程的应用题1.速度问题小明骑自行车以每小时10公里的速度向前行驶,小李以每小时8公里的速度向前追赶小明,问小李追上小明需要多长时间?解:设小李追上小明需要t小时,那么小明与小李的相对速度为10-8=2公里/小时,根据速度=路程/时间,可得速度的分式方程为:10t = 8t + 8解得t=4,所以小李追上小明需要4小时。
2.浓度问题一瓶含有30%酒精的溶液200毫升,现在加了一些蒸馏水,使得酒精浓度变为20%,问加了多少蒸馏水?解:设加了x毫升的蒸馏水,那么酒精的量为0.3*200,水的量为x,根据浓度=溶质的量/溶液的总量,可得浓度的分式方程为:0.3*200 / (200+x) = 0.2解得x=100,所以加了100毫升的蒸馏水。
二、分式方程的解题技巧1.设未知数在应用题中,需要根据实际情况设立未知数,一般来说,设立一个未知数是最为合适的。
比如速度问题中,可以设小明与小李相对速度t小时后能相遇;浓度问题中,可以设加了x毫升的蒸馏水。
2.建立方程根据实际情况,可以建立出分式方程,一般是根据速度=路程/时间,浓度=溶质的量/溶液的总量等公式建立分式方程。
3.求解方程利用分式方程的性质,将方程化简为一元方程,然后求解,得到未知数的值。
4.检验解将求得的未知数代入原方程中,检验是否符合实际情况,如果符合则说明解是正确的。
通过以上的介绍,相信大家对分式方程的应用题及解题技巧有了一定的了解。
在解决实际问题时,我们可以根据问题中的实际情况设立未知数,建立分式方程,并通过求解方程来得到问题的解。
分式方程应用题

分式方程应用题分式方程是数学中常见的一种类型,通过分式方程我们可以解决许多实际问题。
在日常生活中,我们会遇到各种各样的应用问题,而分式方程正是解决这些问题的有效工具之一。
下面将通过一些具体的例子来说明分式方程在实际问题中的应用。
假设有一个水池,水池里有两个进水管和一个出水管。
其中一个进水管每小时进水100升,另一个进水管每小时进水80升,而出水管每小时将水池里的水排出30升。
如果水池一开始是空的,问多长时间可以将水池装满?设装满水池所需的时间为x小时,则根据进水和出水的关系,可以列出如下的分式方程:\[100x + 80x - 30x = 1\]简化方程得到:\[150x = 1\]解方程得到:\[x = \frac{1}{150}\]所以,装满水池所需的时间为\(\frac{1}{150}\)小时。
另外,分式方程还可以应用在物体速度、工作人员效率等方面。
比如,如果两辆列车分别从A地和B地同时出发,相向而行,如果其中一列列车的速度是60km/h,另一列列车的速度是80km/h,问他们相遇需要多长时间?设相遇所需的时间为t小时,则根据运动的关系,可以列出如下的分式方程:\[\frac{60}{t} + \frac{80}{t} = 1\]简化方程得到:\[\frac{140}{t} = 1\]解方程得到:\[t = \frac{140}{1}\]所以,两列列车相遇需要1小时。
综上所述,分式方程在实际问题中有着广泛的应用,通过建立适当的分式方程,可以有效解决各种实际问题,帮助我们更好地理解和解决日常生活中的困难和挑战。
希望通过这些具体的例子,读者能对分式方程的应用有更深入的理解和掌握。
方程与不等式之分式方程难题汇编附解析

方程与不等式之分式方程难题汇编附解析 、选择题1.已知A 、C 两地相距40千米,B 、C 两地相距50千米,甲乙两车分别从 A 、B 两地同时出发到C 地•若乙车每小时比甲车多行驶 为x 千米/小时,依题意列方程正确的是(故选B .故选A【点睛】 本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题应用 的等量关系为:工作时间 =工作总量 M 效.3.体育测试中,小进和小俊进行 800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了 40秒,设小俊的速度是 x 米/秒,则所列方程正确的是()40 A .X 【答案】 【解析】 试题解析: 50x 12 B B . 设乙车的速度为 由题意得,40 50x 12 x40 50x 12 xx 千米/小时, 40 50C.x x 1240 50D .x 12 x则甲车的速度为(x-12) 千米/小时,12千米,则两车同时到达 )C 地.设乙车的速度2.某市在旧城改造过程中,需要整修一段全长 交通所造成的影响,实际工作效率比原计划提高了 计划每小时修路的长度•若设原计划每小时修路24002400°A .8x (1 20%) x 2400 2400 °C.8(1 20%) x x【答案】A 【解析】 【分析】求的是原计划的工效,工作总量为 是:提前8小时完成任务 【详解】原计划用的时间为:B .D.2400m 的道路.为了尽量减少施工对城市20%,结果提前8小时完成任务.求原 xm ,则根据题意可得方程()2400 2400 °8(1 20%) x x2400 2400° 8x (1 20%) x2400,根据工作时间来列等量关系.本题的关键描述语 等量关系为:原计划用的时间 -实际用的时间=8.实际用的时间为:2400 x 1 20%.所列方程为:2400x2400 20%=8.13【详解】 小进跑800米用的时间为-8也 秒,小俊跑800米用的时间为 型 秒,1.25x x•••小进比小俊少用了 40秒,800 800万程是 40,x 1.25x故选C.【点睛】 本题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键.4.从4 , 2 , 1, 0,1, 2, 4, 6这八个数中,随机抽一个数,记为 a .若数a 使关y a 1 3有整数解,确定a 的值即可判断.y 11 y【详解】2 2方程x 2 a 4 x a 0有实数解,•••△ =4(a- 4)2- 4a 2? 0,解得a? 2•满足条件的a 的值为-4, -2, -1, 0, 1, 2 方程y a y 131有整数解,则符合条件的 a 的值的和是( 1 y)A .6B .4C. 2D . 2【答案】 C【解析】【分析】由一兀— .次方程x 2 a4 x a 2 0有实数解,确定a的取值范围, 由分式方程0有实数解.且关于 y 的分式方程A . 4 1.25x 40x 800800 800 40 B.——x 2.25x 800 800 800 800 C.40D .40x1.25x1.25x x【答案】C 【解析】 【分析】先分别表示出小进和小俊跑 800米的时间,再根据小进比小俊少用了 40秒列出方程即可. 于x 的一元二次方程 x22 a 4 x a 2解得y=a+22••• y有整数解--a=-4, 0, 2, 4, 6综上所述,满足条件的a的值为-4, 0, 2,符合条件的a的值的和是-2故选:C【点睛】本题考查了一元二次方程根据方程根的情况确定方程中字母系数的取值范围;以及分式方程解的定义:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫分式方程的解.5. 若关于x的方程2 —有增根,则a的值为()x 4 x 4A. -4B. 2C. 0D. 4【答案】D【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根•让最简公分母x-4=0,得到x=4.再将x=4代入去分母后的方程即可求出a=4.【详解】解:由分式方程的最简公分母是x-4,•••关于x的方程亠2 —有增根,x 4 x 4••• x-4=0,•••分式方程的增根是x=4.关于x的方程」 2 —去分母得x=2(x-4)+a,x 4 x 4代入x=4得a=4故选D.【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.6. 某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本,求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()240120240 120A. 4B. 4x 20x x 20 x120 240120 240C.4D. 4x x20x x 20【答案】D【解析】【分析】设第一次买了x本资料,则第二次买了(x+ 20)本资料,由等量关系第二次比第一次优惠了4列出方程即可解答.【详解】解:设第一次买了x本资料,则第二次买了(x + 20)本资料,根据题意可得:120 240 ,4x x 20故选:D【点睛】本题考查由实际问题抽象出分式方程,找到关键描述语,设出未知数,找到等量关系是解题的关键.2x a7. 关于x的分式方程1的解为负数,贝V a 的取值范围是()x 1A. a 1B. a 1 c. a 1 且a 2 D. a 1 且a 2【答案】D【解析】【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据分式方程解为负数列出关于a的不等式,求出不等式的解集即可确定出a的范围.【详解】分式方程去分母得:x 1 2x a,即x 1 a,因为分式方程解为负数,所以1 a 0,且1 a 1 ,解得:a 1且a 2,故选D.【点睛】本题考查了分式方程的解,熟练掌握解分式方程的一般步骤及注意事项是解题的关键•注意在任何时候都要考虑分母不为0.&新能源汽车环保节能,越来越受到消费者的喜爱•各种品牌相继投放市场•一汽贸公司经销某品牌新能源汽车•去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元•销售数量与去年一整年的相同•销售总额比去年一整年的少20%,今年1~5月【解析】 【分析】首先根据所设今年每辆车的价格,可表示出去年的价格,同样根据销售总额的关系可表示 出今年的销售总额,然后再根据去年和今年 1~5月份销售汽车的数量相同建立方程即可得解• 【详解】•••今年1~5月份每辆车的销售价格为 x 万元, •••去年每辆车的销售价格为(x+1)万元,50005000(1 -20%)则有一|x+ 1x故选A. 【点睛】此题主要考查分式方程的应用,解题的关键是找出题中去年和今年的关系9.某一景点改造工程要限期完成,甲工程队独做可提前一天完成,乙工程队独做要误期6天,现由两工程队合做 4天后,余下的由乙工程队独做,正好如期完成,若设工程期限为x 天,则下面所列方程正确的是 ( )4 x A .1x 1 x 6C.【答案】D 【解析】 【分析】1首先根据工程期限为 x 天,结合题意得出甲每天完成总工程的,而乙每天完成总工程x 11的,据此根据题意最终如期完成了工程进一步列出方程即可x 6【详解】•••工程期限为x 天,1 1•甲每天完成总工程的,乙每天完成总工程的 1份每辆车的销售价格是多少万元 列方程正确的是()50005000(1 - 20%)A .X + 1 X 5000 5000(1 - 20%)C. --------- = ------------------------x * I x【答案】A ?设今年1~5月份每辆车的销售价格为 x 万元•根据题意,B . D .3000 5000(1 + 20%) 50005000(1 + 20%)xx 1 x 6 •••由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,•••可列方程为:x 1 x 6故选:D.1,【点睛】本题主要考查了分式方程的实际应用,根据题意正确找出等量关系是解题关键10.解分式方程2x xx 1 12x1丄时,去分母后所得的方程正确的是(2)A. 2x x 20B. 4x 2x 4 x 1C. 4x2x 4x 1D. 2x x 2 x 1【答案】C【解析】【分析】根据等式的性质,方程两边冋时乘以最简公分母 2 (x-1),整理即可得答案【详解】.2x x21x 11x22x x21x 1x12方程两边同时乘以最简公分母 2 (x-1)得:4x+2(x-2)=x-1,去括号得:4x+2x-4=x-1,故选:C.【点睛】本题考查解分式方程,正确得出最简公分母是解题关键.11.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()1000100010001000A. =2B. =2x x 30x 30x1000100010001000C.=2D. =2x x 30x 30x【答案】A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30) 米,根据:原计划所用时间-实际所用时间=2,列出方程即可.详解:设原计划每天施工x米,则实际每天施工(x+30) 米,根据题意,可列方程: =2,1000 1000故选A.x 30点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.1 kx 112. 若分式方程2+ = 有增根,则k的值为()x 2 2 xA.- 2B.- 1C. 1D. 2【答案】C【解析】【分析】根据分式方程有增根得到x=2,将其代入化简后的整式方程中求出k即可.【详解】解:分式方程去分母得: 2 (x-2)+1- kx=- 1,由题意将x= 2代入得:1 - 2k=- 1,解得:k= 1.故选:C.【点睛】此题考查分式方程的增根,由增根求方程中其他未知数的值,根据增根的定义得到方程的解是解题的关键•13. 已知甲车行驶35千米与乙车行驶45千米所用时间相同,且乙车每小时比甲车多行驶15千米,设甲车的速度为x千米/小时,依据题意列方程正确的是| ) 354535 4535 453545A. B. C.D.x x 15x+15 x x-15 x x x+15【答案】D【解析】【分析】首先根据甲车的速度为x千米/小时,表示出乙车的速度为(x+15)千米/小时, 再根据关键是语句甲车行驶35千米与乙车行驶45千米所用时间相同”列出方程即可.【详解】解:设甲车的速度为x千米/小时,则乙车的速度为(x+15)千米/小时,由题意得:35 45x x+15'故选D.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,表示出甲乙两车的速度,再根据关键是语句列出方程即可•此题用到的公式是:路程谨度=时间.a x a14. 若整数a使关于x的分式方程1 的解为负数,且使关于x 的不等式组x 1 x 1a ) 0无解,则所有满足条件的整数2x 13解分式方程和不等式得出关于x 的值及x 的范围,根据分式方程的解不是增根且为负数和不等式组无解得出 a 的范围,继而可得整数 a 的所有取值,然后相加. 【详解】a) 0无解,2x 13…a £4,•••则所有满足条件的整数 a 的值是:2、3、4,和为9, 故选:C. 【点睛】本题主要考查分式方程的解和一元一次不等式组的解,熟练掌握解分式方程和不等式组的 方法,并根据题意得到a 的范围是解题的关键.2(x a 的值之和是(A . 5【答案】C 【解析】【分析】B . 7 C. 9 D . 10解:解关于x 的分式方程-x汁,得“-2a+1,•/X M ±,•••关于x 的分式方程a 的解为负数,1- 2a+1 v 0,解不等式a) 0,得: x v a ,解不等式2x 1丁,得:•••关于x 的不等式组2(x 15.若关于x 的分式方程 3m 2 x2有增根,则m 的值为(A .1B . 0C. 1D . 23【答案】C 【解析】 【分析】增根是化为整式方程后产生的不适合分式方程的根•所以应先确定增根的可能值,让最简 公分母x - 2= 0,得到x = 2,然后代入化为整式方程的方程,满足即可.【详解】解:方程两边都乘 x - 2, 得 x+m - 3m = 2 (x - 2), •••原方程有增根, •••最简公分母x - 2 = 0, 解得x = 2,当 x = 2 时,2+m - 3m = 0,m = 1,故选:C. 【点睛】本题考查了分式方程的增根,难度适中.确定增根可按如下步骤进行: ① 让最简公分母为0确定可能的增根; ② 化分式方程为整式方程;③ 把可能的增根代入整式方程,使整式方程成立的值即为分式方程的增根.3a a 使得关于x 的方程2的解为非负数,且使得关于y 的不等式x 2 2 x至少有四个整数解,则所有符合条件的整数 a 的和为().解:不等式组整理得:16.若整数3y 2组丁y a 3A . 17【答案】C 【解析】 【分析】表示出不等式组的解集,B . 18 C. 22 D . 25由不等式至少有四个整数解确定出非负数以及分式有意义的条件求出满足题意整数 【详解】a 的值,再由分式方程的解为 a 的值,进而求出之和.600 480 A.x 40600 480 B.x 40由不等式组至少有四个整数解,得到- 1< y^a,解得:a>3即整数a = 3, 4, 5, 6,…,3 a2 一x 2 2 x去分母得:2 (x—2)—3 =—a,7 a解得:x=27 a 7 a- >0且工22 2••• a<7 且a^3,由分式方程的解为非负数以及分式有意义的条件,得到a为4, 5, 6, 7,之和为22.故选:C.【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.17. 2017年,全国部分省市实施了免费校车工程”.小明原来骑自行车上学,现在乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.已知小明家距学校5千米,若校车速度是他骑车速度的2倍,设小明骑车的速度为x千米/时,则下面所列方程正确的为()515551 5 “55“5A. + —=B. = + -C. — + 10 =D.——10 =x62x x2x6x2x x2x 【答案】B【解析】【分析】设小明骑车的速度为x千米/小时,校车速度为2x千米/小时,等量关系为:小明骑车所走的时间减去校车所走的时间=10分钟,据此列方程.【详解】设小明骑车的速度为x千米/小时,校车速度为2x千米/小时,5 5 1由题意得,=—+丄x 2x 6所以答案为B.【点睛】本题考查了分式方程,解题的关键是根据实际问题列出分式方程18.某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x台机器,根据题意,下面列出的方程正确的是()x xC. D.——x x 40x x 40【答案】B 【解析】 【分析】由题意分别表达出原来生产 480台机器所需时间和现在生产 600台机器所需时间,然后根据两者相等即可列出方程,再进行判断即可. 【详解】解:设原计划每天生产 x 台机器,根据题意得:480600x x 40故选B . 【点睛】读懂题意,用含x 的代数式表达出原来生产 480台机器所需时间为台机器所需时间为-605天是解答本题的关键.x 40四则运算•若(―3 x =2 x ,则x 的值为(A . -2B . -1I【答案】B 【解析】 【分析】利用题中的新定义变形已知等式,然后解方程即可. 【详解】根据题中的新定义化简得: —9 3x经检验x=- 1是分式方程的解. 故选B . 【点睛】本题考查了新定义和解分式方程,利用了转化的思想,解分式方程注意要检验.20.某车间加工12个零件后,采用新工艺,工效比原来提高了50%,这样加工同样多的零件就少用1小时,那么采用新工艺前每小时加工的零件数为()600 480 600 480 480天和现在生产600x19.对于实数a 、b ,定义一种新运算 ?"为:a3 ab,这里等式右边是通常的D . 2C. 1汽;,去分母得:12 - 6x=27+9x ,解得:x= - 1,A. 3个B. 4个C. 5个D. 6个【答案】B【解析】【分析】根据题意,找出题目的等量关系,列出方程,解方程即可得到答案.【详解】解:根据题意,得:12 12 ,1,x x(1 50%)解得:x 4 ;经检验,x 4是原分式方程的解.•••那么采用新工艺前每小时加工的零件数为4个;故选:B.【点睛】此题主要考查了分式方程的应用,其中找出方程的关键语,找出数量关系是解题的关键.注意解分式方程需要检验.。
分式方程的应用问题

分式方程的应用问题分式方程是包含了分数形式的方程,可以用来解决很多与比例、比率和分数有关的实际问题。
在本文中,将探讨分式方程在不同应用问题中的实际应用。
1. 比例问题比例问题是分式方程的一种常见应用。
比如,假设小明每小时跑步的速度是x米,而小红每小时跑步的速度是y米,我们可以得到以下方程:x / y = 4 / 5其中4 / 5是两者速度的比例。
通过解这个分式方程,我们可以计算出小明和小红的速度。
这种应用问题通常涉及到多个变量之间的比例关系。
2. 比率问题比率问题是另一种使用分式方程的应用。
比如,假设一个容器中有3升柠檬汁和2升橙汁,我们可以得到以下方程:3 / 2 = x / 10其中3 / 2是柠檬汁和橙汁的比率,而10是容器中液体的总量。
通过解这个分式方程,我们可以计算出柠檬汁的数量x。
这种应用问题通常涉及到比率和总量之间的关系。
3. 速度、时间和距离问题在许多速度、时间和距离相关的问题中,分式方程也经常被使用。
假设小华以每小时60公里的速度行驶,并且需要2个小时到达目的地。
我们可以得到以下方程:60 * 2 / x = 1其中60 * 2是小华总共行驶的距离,而x是小华的速度。
通过解这个分式方程,我们可以计算出小华的速度。
这种应用问题通常涉及到速度、时间和距离之间的关系。
4. 货币兑换问题货币兑换问题也可以使用分式方程进行建模和解决。
假设1美元可以兑换85日元,而小明用400美元兑换了多少日元。
我们可以得到以下方程:1 / 85 = 400 / x其中1 / 85是兑换比率,而400是小明用来兑换的美元数量。
通过解这个分式方程,我们可以计算出小明兑换的日元数量。
这种应用问题通常涉及到不同货币之间的比率关系。
通过以上几个例子,我们可以看到分式方程在比例、比率、速度、时间、距离以及货币兑换等方面的广泛应用。
通过建立适当的数学模型,并解决相应的分式方程,我们能够更好地理解和解决各种实际问题。
分式方程的应用问题不仅能够提高学生的数学能力,还能够加深对实际问题的理解和分析能力。
分式方程应用题及解题技巧

分式方程应用题及解题技巧嘿,你问分式方程应用题及解题技巧?这事儿咱可得好好唠唠。
分式方程应用题呢,就是那种带着分数的方程问题,一般都是讲生活中的事儿。
比如说工程问题啊,路程问题啊啥的。
做这种题呢,首先得读懂题目,搞清楚题目在说啥。
就像你听别人讲故事,得先明白故事的情节吧。
比如说题目说“甲做一项工程要 10 天,乙做同样的工程要 15 天,两人合作要几天完成?”你就得明白这是个工程问题,涉及到工作效率和工作时间。
然后呢,设未知数。
不能瞎设哦,得设一个能帮你解题的未知数。
比如说上面那个问题,你可以设两人合作要 x 天完成。
这样就有了一个目标,后面就可以根据题目中的条件来列方程了。
接着,根据题目中的条件列方程。
这一步很关键哦,要仔细分析题目中的关系。
比如说工程问题,工作效率×工作时间=工作总量。
在上面那个问题中,甲的工作效率是 1/10,乙的工作效率是 1/15,两人合作的工作效率就是 1/10 + 1/15,工作总量是 1。
所以可以列出方程(1/10 + 1/15)x= 1。
列好方程后,就解方程呗。
这一步就像玩解谜游戏,把未知数解出来。
解方程的时候要注意分母不能为零哦,不然就出错啦。
最后,检验答案。
把解出来的未知数代入原方程,看看等式是不是成立。
还要看看答案是不是符合实际情况。
比如说时间不能是负数啥的。
我记得有一次,做一道分式方程应用题。
题目是“一艘船顺流航行 120 千米用的时间和逆流航行 90 千米用的时间相同,已知水流速度是 3 千米/小时,求船在静水中的速度。
”我先设船在静水中的速度是 x 千米/小时。
然后根据顺流速度和逆流速度的关系,列出方程 120/(x + 3) = 90/(x - 3)。
接着解方程,得到 x = 21。
最后检验了一下,答案是正确的。
总之呢,做分式方程应用题要读懂题目、设未知数、列方程、解方程、检验答案。
就像打怪升级,一步一步来,就能解决问题。
咋样,明白了不?。
初二数学八年级下册分式方程应用题难点解法和分式解法

初二数学八年级下册分式方程应用题难点解法和分式解法分式方程题在数学中被广泛使用,是一种对分式变量进行求解的方法。
可以利用它来解决八年级下册分式方程应用题难点。
一、简述:分式方程是指由分式变量构成的方程,其形式是P/Q=R,其中P、Q和R是实数或分数。
解分式方程的步骤为:1.将分式方程转换为乘积等于常数的形式;2.分解因式;3.求出所有未知数的值。
二、难点解法:1.由分式方程组解出的方程,要求求出其解的方法有时可能很复杂。
具体的解法应基于所给的问题把握其特点,然后将其转化为求解联立方程的工作,选择合适的解法求出方程的解。
2.有时分式方程形式比较复杂,可能出现分母和分子有共同因子的情况,或者形如(A+B)/(A-B),在这种情况下,可以把分式方程先转化为a/b形式,然后求出a和b的值,从而求出分式方程的解。
3.有时分式方程中可能含有括号,求解非常复杂,此时可以将括号的内容分别单独拿出来,分别计算,然后将计算结果进行代入,求解分式方程组。
三、分式解法:1.由实际问题出发,从出题的角度出发,根据题目得出的分式方程组,可以先把分式方程组写出来,转化出分式形式,然后分解成一个个独立分式,然后求出各个独立分式的值,最后将每个独立分式的值带入分式方程组中进行求解,即可得到最终结果。
2.另一种解法是将分式方程组先转换成一元一次方程的形式,从而运用现有的数学方法,将方程的解求出来。
这种方法适合只有分式变量的方程组,即每项都是独立分式进行运算的分式方程组。
四、总结:八年级下册分式方程应用题难点解法和分式解法可以分别采用以上提及的两种不同的解题方法,也可以结合使用,其原则就是根据题目要求,把握题目特点,以最简便有效的方法,把题目转化为求解联立方程的形式,以此来求得题目的解决方案。
只有在能够从概念上理解分式方程的复杂性,并能把握解题思路和步骤,才能解决这些问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.A 、B 两位采购员同去一家饲料公司购买同一种饲料两次,两次饲料的价格有变化,但两位采购员的购货方式不同.其中,采购员A 每次购买1000千克,采购员B 每次用去800元,而不管购买饲料多少,问选用谁的购货方式合算?
2.某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元,乙、丙两队合做10天完成,厂家需付乙、丙两队共9500元,甲、丙两队合做5天完成全部工程的3
2,厂家需付甲、丙两队共5500元. ⑴求甲、乙、丙各队单独完成全部工程各需多少天?
⑵若工期要求不超过15天完成全部工程,问由哪个队单独完成此项工程花钱最少?请说明理由.。