2018年高考物理复习专题3 第1讲
2018年高中物理选修3-1课件:第2章 第6节 第1课时 导体电阻的影响因素的探究

系? 答案:设表面正方形的边长为 a,厚度为 h,则导体的电阻 R=ρ
a
= ,可以看
ah h
出导体的电阻与表面正方形的边长无关,所以两个导体的电阻相等.
自主检测
1.(多选)关于导体的电阻及电阻率的说法中,正确的是( AD )
A.由 R=ρ l 知,导体的电阻与长度 l、电阻率ρ成正比,与横截面积 S 成反比 S
【思考与讨论1】 请同学们用“控制变量法”制定探究步骤.先让学生 展示自己制定如何探究的方案,再请学生评价哪个方案优越.通过比较学 生设计的方案,让学生充分发表见解. 学生:(1)在导体材料、横截面积相同的情况下,研究导体电阻与导体长 度的关系;(2)在导体材料、长度相同的情况下,研究导体电阻与导体横 截面积的关系;(3)在导体横截面积、长度相同的情况下,研究导体的电 阻与导体材料的关系. 【思考与讨论2】 实验中收集实验数据非常重要,请同学们设计表格来 记录实验数据.先让学生展示自己设计的表格,再请学生评价哪个表格直 观,有利于记录实验数据. 学生:(1)研究导体电阻与导体长度的关系:
长度(mm)
电压(V)
电流(A)
电阻(Ω)
L1 L2
(2)研究导体电阻与导体横截面积的关系:
直径(mm) 第1次 第2次 第3次
平均 值
横截 面积 (m2)
电压 (V)
电流 (A)
电阻 (Ω)
L2 L3
(3)研究导体的电阻与导体材料的关系:
材料
L3(镍铬丝) L4(铜丝)
电压(V)
电流(A)
电阻(Ω)
解析:A 的密度比 B 的大,质量相同,所以根据公式 V= m 可得 B 的体积大,
根据公式 V=lS 可得 B 的横截面积大;根据公式 R=ρ电阻率 l ,由于 A 的横截 S
2018届高考物理(全国通用)一轮总复习 配套课件 3.1

第三章
第1讲 牛顿第一定律
主干知识回顾
牛顿第三定律
综合能力提升 课堂限时检测
名师考点精讲
-5-
【提示】对惯性的三点提醒: (1)惯性的有无与运动状态和受力情况无关。 (2)惯性不是惯性定律,惯性是物体的固有属性,而惯性定律是涉及物体运动的一条动力 学规律。 (3)惯性取决于物体的质量,惯性定律取决于物体是否受力。
第三章
考点一 考点二
第1讲 牛顿第一定律
主干知识回顾
牛顿第三定律
综合能力提升 课堂限时检测
名师考点精讲
-8-
考点一 对牛顿第一定律的理解 1.揭示了物体的一种固有属性 牛顿第一定律揭示了物体所具有的一个重要属性—惯性。 2.揭示了力的本质 牛顿第一定律明确了力是改变物体运动状态的原因,而不是维持物体运动的原因,物体的 运动不需要力来维持。 3.揭示了物体不受力作用时的运动状态 牛顿第一定律描述的只是一种理想状态,而实际中不受力作用的物体是不存在的,当物体 受外力但所受合力为零时,其运动效果跟不受外力作用时相同,物体将保持静止或匀速直 线运动状态。
第三章
第1讲 牛顿第一定律
主干知识回顾
牛顿第三定律
综合能力提升 课堂限时检测
名师考点精讲
-7-
【提示】作用力与反作用力的三个易混点: (1)两个大小相等、方向相反、作用在同一直线上的力不一定是作用力与反作用力。 (2)作用力与反作用力的关系不随运动状态的变化而变化。 (3)作用力与反作用力不是一对平衡力,平衡力是作用在同一物体上的力,作用力与反作 用力是作用在两个不同物体上的同一性质的力。
2014 新课标卷 Ⅰ,T17、T24; 新课标卷 Ⅱ,T17、T24
2013
2012
2018年高考物理复习专题三 第1讲

第1讲电场高考命题轨迹考情分析电场的性质是力与能在电磁学中的延续,结合带电粒子(微粒)在电场中的运动综合考查牛顿第二定律、动能定理及运动的合成与分解是常用的命题思路.2016年静电场分值略有减少,难度降低,2017年又出现计算题.可见这部分内容综合性强,仍然是命题的热点,且有轮考迹象.知识方法链接1.电场力的性质:由电场强度E描述,既有大小又有方向.某一场点的电场强度等于各场源电荷产生的电场的矢量和(注意场源电荷分布的对称性).电场线的疏密和方向形象描述电场的强弱与方向.要熟练掌握点电荷、等量同种点电荷、等量异种点电荷等的电场线分布与特点.2.电场能的性质:由电势φ和电势差U描述,没方向但有正负(在涉及功、能的计算中,电荷的正负号、电势、电势差、电势能、电场力的功等的正负号都要带着,涉及力的运算时一般不带).某一场点的电势等于各场源电荷在该处产生电势的代数和.等势面形象描述电场能的性质与电场强弱,要掌握几种典型电场的等势面分布特点.3.电荷电势能高低的判断:(1)由E p=qφ判断:正电荷在电势高的地方电势能大,负电荷在电势低的地方电势能大.(2)由W AB=E p A-E p B判断:电场力做正功,电势能减小,电场力做负功,电势能增加.(3)只有电场力做功时电荷的电势能与动能之和守恒,动能减小则电势能增加.4.运动电荷的轨迹偏向受力的一侧,即外力指向轨迹凹陷的一侧;电场力一定沿电场线切线即垂直于等势面,从而确定电荷受力方向.真题模拟精练1.(多选)(2017·全国卷Ⅰ·20)在一静止点电荷的电场中,任一点的电势φ与该点到点电荷的距离r的关系如图1所示.电场中四个点a、b、c和d的电场强度大小分别为E a、E b、E c和E d.点a到点电荷的距离r a与点a的电势φa已在图中用坐标(r a,φa)标出,其余类推.现将一带正电的试探电荷由a点依次经b、c点移动到d点,在相邻两点间移动的过程中,电场力所做的功分别为W ab、W bc和W cd.下列选项正确的是()图1A.E a∶E b=4∶1B.E c∶E d=2∶1C .W ab ∶W bc =3∶1D .W bc ∶W cd =1∶3答案 AC 解析 由题图可知,a 、b 、c 、d 到点电荷的距离分别为1 m 、2 m 、3 m 、6 m ,根据点电荷的场强公式E =k Q r 2可知,E a E b =r 2b r 2a =41,E c E d =r 2d r 2c=41,故A 正确,B 错误;电场力做功W =qU ,a 与b 、b 与c 、c 与d 之间的电势差分别为3 V 、1 V 、1 V ,所以W ab W bc =31,W bc W cd =11,故C 正确,D 错误.2.(多选)(2017·全国卷Ⅲ·21)一匀强电场的方向平行于xOy 平面,平面内a 、b 、c 三点的位置如图2所示,三点的电势分别为10 V 、17 V 、26 V .下列说法正确的是( )图2A .电场强度的大小为2.5 V/cmB .坐标原点处的电势为1 VC .电子在a 点的电势能比在b 点的低7 eVD .电子从b 点运动到c 点,电场力做功为9 eV答案 ABD解析 如图所示,设a 、c 之间的d 点电势与b 点电势相同,则ad dc =10-1717-26=79,所以d 点的坐标为(3.5 cm,6 cm),过c 点作等势线bd 的垂线,电场强度的方向由高电势指向低电势.由几何关系可得,cf 的长度为3.6 cm ,电场强度的大小E =U d =(26-17) V 3.6 cm=2.5 V/cm ,故选项A 正确;因为Oacb 是矩形,所以有U ac =U Ob ,可知坐标原点O 处的电势为1 V ,故选项B 正确;a 点电势比b 点电势低7 V ,电子带负电,所以电子在a 点的电势能比在b 点的高7 eV ,故选项C 错误;b 点电势比c 点电势低9 V ,电子从b 点运动到c 点,电场力做功为9 eV ,故选项D 正确.3.(多选)(2017·山东枣庄市一模)如图3所示,水平面内的等边三角形ABC 的边长为L ,顶点C 恰好位于光滑绝缘直轨道CD 的最低点,光滑直导轨的上端点D 到A 、B 两点的距离均为L ,D 在AB 边上的竖直投影点为O .一对电荷量均为-Q 的点电荷分别固定于A 、B 两点,在D 处将质量为m 、电荷量为+q 的小球套在轨道上(忽略它对原电场的影响),将小球由静止开始释放,已知静电力常量为k 、重力加速度为g ,且k Qq L 2=33mg ,忽略空气阻力,则( )图3A .轨道上D 点的场强大小为mg 2qB .小球刚到达C 点时,其加速度为零C .小球刚到达C 点时,其动能为32mgL D .小球沿直轨道CD 下滑过程中,其电势能先增大后减小答案 BC解析 负电荷产生的电场指向负电荷,可知两个负电荷在D 处的电场强度分别指向A 与B ,由于两个点电荷的电量是相等的,所以两个点电荷在D 点的电场强度的大小相等,则它们的合场强的方向沿∠ADB 的角平分线.由库仑定律,A 、B 在D 点的场强的大小:E A =E B =kQ L2=3mg 3q ,它们的合场强:E D =E A cos 30°+E B cos 30°=mg q,故A 错误;由几何关系知,DO =CO =32L ,则∠OCD =45°.小球刚到达C 点时,对小球进行受力分析,其受力的剖面图如图所示.由于C 到A 、B 的距离与D 到A 、B 的距离都等于L ,结合对D 点的分析可知,C 点的电场强度的大小与D 点的电场强度的大小相等,方向指向O 点,即:E C =E D =mg q.沿轨道CD 方向:mg cos 45°-F ·cos 45°=ma ,其中F 是库仑力,F =q ·E C =q ·mg q=mg ,解得a =0,故B 正确;由于C 与D 到A 、B 的距离都等于L ,结合等量同种点电荷的电场特点可知,C 点与D 点的电势是相等的,所以小球从D 到C 的过程中电场力做功的和等于0,则只有重力做功,小球的机械能守恒,得:mg ·OD =12m v 2,则小球的动能:E k =12m v 2=3mgL 2,故C 正确;由几何关系可知,在C 、D 的连线上,C 、D 连线的中点处到A 、B 的距离最小,电势最低,小球带正电,所以小球在C 、D 的连线中点处的电势能最小,则小球沿直轨道CD 下滑过程中,其电势能先减小后增大,故D 错误.4.(多选)(2017·山东济宁市模拟)如图4甲所示,Q 1、Q 2为两个被固定的点电荷,其中Q 1带负电,a 、b 两点在它们连线的延长线上.现有一带负电的粒子以一定的初速度沿直线从a 点开始经b 点向远处运动(粒子只受电场力作用),粒子经过a 、b 两点时的速度分别为v a 、v b ,其速度-时间图象如图乙所示.以下说法中正确的是( )图4A .Q 2一定带正电B .b 点的电场强度一定为零C .Q 2的电量一定大于Q 1的电量D .整个运动过程中,粒子的电势能先增大后减小答案 ABD解析 由题图的速度—时间图象可知,粒子从a 到b 做加速度减小的减速运动,在b 点时粒子的加速度为零,则电场力为零,所以该点场强为零,Q 1对负电荷的电场力向右,则Q 2对负电荷的电场力向左,所以Q 2带正电,故A 、B 正确;b 点场强为零,可见两点电荷在b 点对负电荷的电场力大小相等,根据F =k qQ r2,b 到Q 1的距离大于b 到Q 2的距离,所以Q 1的电量大于Q 2的电量,故C 错误;整个运动过程动能先减小后增大,根据能量守恒定律可知,粒子的电势能先增大后减小,故D 正确.知识方法链接1.三个公式电容定义式:C =Q U平行板电容器电容决定式:C =εr S 4πkd匀强电场中电场强度与板间电压、板间距离关系:E =U d. 2.必须明确的两个关键点(1)如图5所示,电路处于接通状态时,电容器两极板间电压不变.图5(2)电路处于断开状态时,电容器两极板所带电荷量不变.3.充放电电流方向(1)充电时电流由电源正极流向电容器正极板.(2)放电时电流由电容器正极板流向电源正极.4.平行板电容器问题的分析思路(1)明确平行板电容器中的哪些物理量是不变的,哪些物理量是变化的以及怎样变化.(2)应用平行板电容器的决定式C =εr S 4πkd分析电容器电容的变化. (3)应用电容的定义式C =Q U分析电容器所带电荷量和两板间电压的变化情况. (4)根据控制变量法对电容的变化进行综合分析,得出结论. 真题模拟精练5.(2017·湖北孝感市一模)静电计是在验电器的基础上制成的,用其指针张角的大小来定性显示金属球与外壳之间的电势差大小.如图6所示,A 、B 是平行板电容器的两个金属板,G 为静电计,开关S 闭合,静电计指针张开一定角度,为了使指针张开的角度减小些,下列采取的措施可行的是( )图6A .断开开关S 后,将A 、B 两极板分开些B .断开开关S 后,增大A 、B 两极板的正对面积C .保持开关S 闭合,将A 、B 两极板拉近些D .保持开关S 闭合,将滑动变阻器的滑动触头向右移动答案 B解析 断开开关,电容器所带电荷量Q 不变,将A 、B 分开一些,则d 增大,根据C =εr S 4πkd知,电容C 减小,根据C =Q U知,电势差增大,指针张角增大,故A 错误;断开开关,电容器所带电荷量Q 不变,增大正对面积,根据C =εr S 4πkd 知,电容C 增大,根据C =Q U知,电势差U 减小,指针张角减小,故B 正确;保持开关闭合,不论使A 、B 两板靠近些,还是使滑动变阻器的滑动触头向右移动,电容器两端的电势差总不变,则指针张角不变.故C 、D 错误.6.(多选)(2017·山东烟台市模拟)如图7所示,一平行板电容器的两极板与一电压恒定的电源相连,极板水平放置,极板间距为D ,在下极板上叠放一厚度为d 的金属板A ,d <D ,其上部空间有一带负电的粒子P 静止在电容器中,当把金属板从电容器中快速抽出后,粒子P 开始运动,已知重力加速度为g .则下列判断正确的是( )图7A .电容器的电容变大B .两板间的电场强度不变C .上极板所带电荷量变小D .粒子运动的加速度大小为d Dg 答案 CD解析 当把金属板从电容器中快速抽出后,导致极板间距增大,依据电容的决定式C =εr S 4πkd,可知,电容器的电容变小,故A 错误;因电势差U 不变,而极板间距增大,依据E =U d可知,板间的电场强度变小,故B 错误;平行板电容器的两极板与电压恒定的电源相连,则电势差U 不变,根据公式C =Q U,因电容C 变小,则极板所带电荷量变小,故C 正确;粒子受重力和电场力,开始时平衡,有:mg =q U D -d,当把金属板从电容器中快速抽出后,粒子重力大于所受电场力,根据牛顿第二定律,有:mg -q U D =ma ,解得:a =d Dg ,故D 正确.知识方法链接1.匀强电场中的直线运动的两种处理方法(1)动能定理:不涉及t 、a 时可用.(2)牛顿第二定律+运动学公式:涉及a 、t 时可用.尤其是交变电场中,最好再结合v -t 图象使用.2.匀强电场中的偏转的处理方法(1)用平抛运动处理方法:运动的分解.①沿初速度方向做匀速直线运动,运动时间t =L v 0. ②沿电场方向做初速度为零的匀加速直线运动,加速度a =F m =qE m =qU md. ③离开电场时的偏移量y =12at 2=qUL 22md v 20. ④速度偏向角tan φ=v y v 0=――――――→ qUx x=L md v 02 tan φ=qUL md v 20; 位移偏向角tan θ=y x =――――――→qUx x=L 2md v 02 tan θ=qUL 2md v 20. (2)动能定理:涉及功能问题时可用.注意:偏转时电场力的功不一定是W =qU板间,应该是W =qEy (y 为偏移量). 真题模拟精练7.(多选)(2017·河南安阳市一模)如图8所示,平行带电金属板M 、N 相距为d ,M 、N 分别与电源的正、负极相连,M 板上距左端距离为d 处有一个小孔A .当开关K 闭合时,有甲、乙两个相同的带电粒子同时射入电场,甲从两极板中间O 点处以初速度v 1平行于两极板射入,乙从A 孔以初速度v 2垂直于M 板射入,二者在电场中的运动时间相同,并且都打到N 板上的B 点,不计带电粒子的重力,下列说法正确的是( )图8A .甲、乙的初速度v 1与v 2的关系为v 1v 2=2 B .甲、乙的初速度v 1与v 2的关系为v 1v 2= 2 C .若将开关K 断开,并将N 板向下平移一小段距离,甲、乙粒子仍以各自的初速度从原来的位置开始进入电场运动,一定会同时打到N 板上的B 点D .若将开关K 断开,并将N 板向上平移一小段距离,甲、乙粒子仍以各自的初速度从原来的位置开始进入电场运动,甲一定打到N 板上B 点的左侧答案 AD解析 甲做类平抛运动,打在下极板的B 点,知甲带正电,由于甲、乙是相同的带电粒子,可知乙也带正电,乙在电场中做匀加速直线运动.对甲,水平方向:d =v 1t ①竖直方向:d 2=12at 2② 对乙,d =v 2t +12at 2③ 联立①②③得:v 1v 2=2,故A 正确,B 错误; 开关K 断开,电容器的带电荷量不变,N 板向下平移,距离增大,E =U d =Q Cd =Q εr S 4πkd·d =4πkQ εr S ,两板间的电场强度不随极板间距变化,场强不变,加速度不变,甲粒子的竖直位移变大,运动时间变大,水平位移变大,甲打在B 点的右侧,乙还打在B 点,故C 错误;同理可知,N 板向上平移一小段距离,电场强度不变,粒子加速度不变,竖直位移减小,运动时间变小,水平位移变小,所以甲一定打在N 板上B 点的左侧,故D 正确.8.(2017·湖北黄冈市模拟)静电喷漆技术具有效率高、质量好等优点,其装置示意图如图9所示,A 、B 为两块水平放置的平行金属板,间距d =1.0 m ,两板间有方向竖直向上,大小为E =1.0×103 N/C 的匀强电场,在A 板的中央放置一个安全接地的静电油漆喷枪P ,油漆喷枪的半圆形喷口可向各个方向均匀地喷出初速度大小均为v 0=1.0 m/s ,质量均为m =5.0×10-14 kg ,带电荷量均为q =-2.0×10-15 C 的带电油漆微粒,不计微粒所受空气阻力及微粒间相互作用,油漆微粒最后都落在金属板B 上,取g =10 m/s 2.下列说法错误的是( )图9A .沿水平方向喷出的微粒运动到B 板所需时间为0.2 sB .沿不同方向喷出的微粒,从喷出至到达B 板,电场力做功为2.0×10-12 JC .若其他条件均不变,d 增大为原来的2倍,则喷涂面积增大为原来的2倍D .若其他条件均不变,E 增大为原来的2倍,则喷涂面积减小为原来的12答案 D解析 沿水平方向喷出的微粒做类平抛运动,在竖直方向上,加速度a =qE +mg m=2.0×10-15×1.0×103+5.0×10-135.0×10-14=50 m/s 2,根据d =12at 2得,t =2d a =250s =0.2 s ,故A 正确;沿不同方向喷出的微粒,从喷出至到达B 板,电场力做功为W =qEd =2.0×10-15×1.0×103×1.0 J =2.0×10-12 J ,故B 正确;若其他条件均不变,d 增大为原来的2倍,根据d =12at 2得,t 变为原来的2倍,则喷涂面积的半径变为原来的2倍,面积变为原来的2倍,故C 正确;若其他条件不变,E 增大为原来的2倍,则加速度a ′=2.0×10-15×2.0×103+5.0×10-135.0×10-14=90 m/s 2,加速度变为原来的95倍,时间t 变为原来的53倍,喷涂面积的半径变为原来的53倍,面积减小为原来的59,故D 错误. 9.(多选)(2017·四川宜宾市二诊)如图10甲所示,真空中水平放置两块长度为2d 的平行金属板P 、Q ,两板间距为d ,两板间加上如图乙所示最大值为U 0的周期性变化的电压.在两板左侧紧靠P 板处有一粒子源A ,自t =0时刻开始连续释放初速度大小为v 0,方向平行于金属板的相同带电粒子.t =0时刻释放的粒子恰好从Q 板右侧边缘离开电场.已知电场变化周期T =2d v 0,粒子质量为m ,不计粒子重力及相互间的作用力.则( )图10A .在t =0时刻进入的粒子离开电场时速度大小仍为v 0B .粒子的电荷量为m v 202U 0C .在t =18T 时刻进入的粒子离开电场时电势能减少了18m v 20 D .在t =14T 时刻进入的粒子刚好从P 板右侧边缘离开电场 答案 AD10.(2015·全国卷Ⅱ·24)如图11所示,一质量为m 、电荷量为q (q >0)的粒子在匀强电场中运动,A 、B 为其运动轨迹上的两点.已知该粒子在A 点的速度大小为v 0,方向与电场方向的夹角为60°;它运动到B 点时速度方向与电场方向的夹角为30°.不计重力.求A 、B 两点间的电势差.图11答案 m v 20q解析 设带电粒子在B 点的速度大小为v B ,粒子在垂直于电场方向的速度分量不变,即v B sin 30°=v 0sin 60°由此得v B =3v 0设A 、B 两点间的电势差为U AB ,由动能定理有,qU AB =12m v 2B -12m v 2A解得U AB =m v 20q .知识方法链接匀强电场中电场力为恒力,物体重力也为恒力,二者合力也是恒力,处理电场与重力场的叠加场时可用二者合力来代替两力,称为“等效重力”.G ′=(mg )2+(qE )2,a = g 2+(qE m )2.处理圆周运动、抛体运动时,找到轨迹的“等效最低点”“等效最高点”,类比只有重力时的情况解题即可.真题模拟精练11.(多选)(2017·湖北荆门市元月调考)如图12所示,在竖直平面内xOy 坐标系中分布着与水平方向成45°角的匀强电场,将一质量为m 、带电荷量为q 的小球,以某一初速度从O 点竖直向上抛出,它的轨迹恰好满足抛物线方程x =ky 2,且小球通过点P (1k ,1k).已知重力加速度为g ,则( )图12A .电场强度的大小为mg qB .小球初速度的大小为2g kC .小球通过点P 时的动能为5mg 4kD .小球从O 点运动到P 点的过程中,电势能减少2mg k答案 CD解析 小球以某一初速度从O 点竖直向上抛出,它的轨迹恰好满足抛物线方程x =ky 2,说明小球做类平抛运动,则电场力与重力的合力沿x 轴正方向,竖直方向:qE ·sin 45°=mg ,所以qE =2mg ,电场强度的大小为E =2mg q,故A 错误;小球受到的合力:F 合=qE cos 45°=mg =ma ,所以a =g ,由平抛运动规律有:1k =v 0t ,1k =12gt 2,得小球初速度大小为v 0=g 2k ,故B 错误;由于1k =v 0t ,1k =12gt 2,小球做类平抛运动,所以v y v 0=212gt 2v 0t=2,小球通过点P 时的动能为:12m v 2=12m (v 20+v 2y )=5mg 4k,故C 正确;小球从O 到P 电势能减少,且减少的电势能等于电场力做的功,即:W =qE ·1k cos 45°=2mg k,故D 正确. 12.(2017·全国卷Ⅱ·25)如图13所示,两水平面(虚线)之间的距离为H ,其间的区域存在方向水平向右的匀强电场.自该区域上方的A 点将质量均为m ,电荷量分别为q 和-q (q >0)的带电小球M 、N 先后以相同的初速度沿平行于电场的方向射出.小球在重力作用下进入电场区域,并从该区域的下边界离开.已知N 离开电场时的速度方向竖直向下;M 在电场中做直线运动,刚离开电场时的动能为N 刚离开电场时的动能的1.5倍.不计空气阻力,重力加速度大小为g .求:图13(1)M 与N 在电场中沿水平方向的位移之比;(2)A 点距电场上边界的高度;(3)该电场的电场强度大小.答案 (1)3∶1 (2)13H (3)2mg 2q解析 (1)设小球M 、N 在A 点水平射出时的初速度大小为v 0,则它们进入电场时的水平速度仍然为v 0.M 、N 在电场中运动的时间t 相等,电场力作用下产生的加速度沿水平方向,大小均为a ,在电场中沿水平方向的位移分别为s 1和s 2.由题给条件和运动学公式得v 0-at =0①s 1=v 0t +12at 2② s 2=v 0t -12at 2③ 联立①②③式得s 1s 2=3④ (2)设A 点距电场上边界的高度为h ,小球下落h 时在竖直方向的分速度为v y ,由运动学公式 v 2y =2gh ⑤H =v y t +12gt 2⑥ M 进入电场后做直线运动,由几何关系知v 0v y =s 1H⑦ 联立①②⑤⑥⑦式可得h =13H ⑧ (3)设电场强度的大小为E ,小球M 进入电场后做直线运动,则v 0v y =qE mg⑨ 设M 、N 离开电场时的动能分别为E k1、E k2,由动能定理得E k1=12m (v 20+v 2y )+mgH +qEs 1⑩ E k2=12m (v 20+v 2y )+mgH -qEs 2⑪ 由已知条件E k1=1.5E k2⑫联立④⑤⑦⑧⑨⑩⑪⑫式得E =2mg 2q专题规范练题组1 高考真题体验1.(2016·全国卷Ⅰ·14)一平行板电容器两极板之间充满云母介质,接在恒压直流电源上.若将云母介质移出,则电容器( )A .极板上的电荷量变大,极板间电场强度变大B .极板上的电荷量变小,极板间电场强度变大C .极板上的电荷量变大,极板间电场强度不变D .极板上的电荷量变小,极板间电场强度不变答案 D解析 由C =εr S 4πkd可知,当云母介质移出时,εr 变小,电容器的电容C 变小;因为电容器接在恒压直流电源上,故U 不变,根据Q =CU 可知,当C 减小时,Q 减小.再由E =U d,由于U 与d 都不变,故电场强度E 不变,选项D 正确.2.(多选)(2016·全国卷Ⅰ·20)如图1,一带负电荷的油滴在匀强电场中运动,其轨迹在竖直面(纸面)内,且相对于过轨迹最低点P 的竖直线对称.忽略空气阻力.由此可知( )图1A .Q 点的电势比P 点高B .油滴在Q 点的动能比它在P 点的大C .油滴在Q 点的电势能比它在P 点的大D .油滴在Q 点的加速度大小比它在P 点的小答案 AB解析 由于油滴受到的电场力和重力都是恒力,所以合外力为恒力,加速度恒定不变,所以D 选项错;由于油滴轨迹相对于过P 的竖直线对称且合外力总是指向轨迹弯曲内侧,所以油滴所受合外力沿竖直向上的方向,因此电场力竖直向上,且qE >mg ,则电场方向竖直向下,所以Q 点的电势比P 点的高,A 选项正确;当油滴从P 点运动到Q 点时,电场力做正功,电势能减小,C 选项错误;当油滴从P 点运动到Q 点的过程中,合外力做正功,动能增加,所以Q 点动能大于P 点的动能,B 选项正确.3.(2016·全国卷Ⅱ·15)如图2,P 是固定的点电荷,虚线是以P 为圆心的两个圆.带电粒子Q 在P 的电场中运动,运动轨迹与两圆在同一平面内,a 、b 、c 为轨迹上的三个点.若Q 仅受P 的电场力作用,其在a 、b 、c 点的加速度大小分别为a a 、a b 、a c ,速度大小分别为v a 、v b 、v c ,则( )图2A .a a >a b >a c ,v a >v c >v bB .a a >a b >a c ,v b >v c >v aC .a b >a c >a a ,v b >v c >v aD .a b >a c >a a ,v a >v c >v b答案 D解析 由库仑定律F =kq 1q 2r 2可知,粒子在a 、b 、c 三点受到的电场力的大小关系为F b >F c >F a ,由a =F m,可知a b >a c >a a .根据粒子的轨迹可知,粒子Q 与场源电荷P 的电性相同,二者之间存在斥力,由c →b →a 整个过程中,电场力先做负功再做正功,且|W ba |>|W cb |,结合动能定理可知,v a >v c >v b ,故选项D 正确.4.(2016·全国卷Ⅲ·15)关于静电场的等势面,下列说法正确的是( )A .两个电势不同的等势面可能相交B .电场线与等势面处处相互垂直C .同一等势面上各点电场强度一定相等D .将一负的试探电荷从电势较高的等势面移至电势较低的等势面,电场力做正功 答案 B解析 若两个不同的等势面相交,则在交点处存在两个不同电势数值,与事实不符,A 错;电场线一定与等势面垂直,B 对;同一等势面上的电势相同,但电场强度不一定相同,C 错;将一负电荷从电势较高的等势面移至电势较低的等势面,电场力做负功,故D 错.5.(2015·全国卷Ⅰ·15)如图3,直线a 、b 和c 、d 是处于匀强电场中的两组平行线,M 、N 、P 、Q 是它们的交点,四点处的电势分别为φM 、φN 、φP 、φQ .一电子由M 点分别运动到N 点和P 点的过程中,电场力所做的负功相等.则( )图3A .直线a 位于某一等势面内,φM >φQB .直线c 位于某一等势面内,φM >φNC .若电子由M 点运动到Q 点,电场力做正功D .若电子由P 点运动到Q 点,电场力做负功答案 B解析 电子带负电荷,电子由M 点分别运动到N 点和P 点的过程中,电场力所做的负功相等,有W MN =W MP <0,而W MN =qU MN ,W MP =qU MP ,q <0,所以有U MN =U MP >0,即φM >φN =φP ,匀强电场中等势线为平行的直线,所以NP 和MQ 分别是两条等势线,有φM =φQ ,故A 错误,B 正确;电子由M 点到Q 点过程中,W MQ =q (φM -φQ )=0,电子由P 点到Q 点过程中,W PQ =q (φP -φQ )>0,故C 、D 错误.6.(2015·全国卷Ⅱ·14)如图4所示,两平行的带电金属板水平放置.若在两板中间a 点从静止释放一带电微粒,微粒恰好保持静止状态,现将两板绕过a 点的轴(垂直于纸面)逆时针旋转45°,再由a 点从静止释放一同样的微粒,该微粒将( )图4A .保持静止状态B .向左上方做匀加速运动C .向正下方做匀加速运动D .向左下方做匀加速运动答案 D解析 两平行金属板水平放置时,带电微粒静止有mg =qE ,现将两板绕过a 点的轴(垂直于纸面)逆时针旋转45°后,两板间电场强度方向逆时针旋转45°,电场力方向也逆时针旋转45°,但大小不变,此时电场力和重力的合力大小恒定,方向指向左下方,故该微粒将向左下方做匀加速运动,选项D 正确.7.(2014·新课标Ⅰ·25)如图5所示,O 、A 、B 为同一竖直平面内的三个点,OB 沿竖直方向,∠BOA =60°,OB =32OA ,将一质量为m 的小球以一定的初动能自O 点水平向右抛出,小球在运动过程中恰好通过A 点.使此小球带电,电荷量为q (q >0),同时加一匀强电场,场强方向与△OAB 所在平面平行.现从O 点以同样的初动能沿某一方向抛出此带电小球,该小球通过了A 点,到达A 点时的动能是初动能的3倍;若该小球从O 点以同样的初动能沿另一方向抛出,恰好通过B 点,且到达B 点时的动能为初动能的6倍,重力加速度大小为g .求:图5(1)无电场时,小球到达A 点时的动能与初动能的比值;(2)电场强度的大小和方向.答案 (1)73 (2)3mg 6q电场方向斜向右下方,与竖直方向的夹角为30°解析 (1)设小球的初速度为v 0,初动能为E k0,从O 点运动到A 点的时间为t ,令OA =d ,则OB =32d ,根据平抛运动的规律有d sin 60°=v 0t ① d cos 60°=12gt 2② 又有E k0=12m v 20③ 由①②③式得E k0=38mgd ④ 设小球到达A 点时的动能为E k A ,则E k A =E k0+12mgd ⑤ 由④⑤式得E k A E k0=73⑥ (2)加电场后,小球从O 点到A 点和B 点,高度分别降低了d 2和3d 2,设电势能分别减小ΔE p A 和ΔE p B ,由能量守恒及④式得ΔE p A =3E k0-E k0-12mgd =23E k0⑦ ΔE p B =6E k0-E k0-32mgd =E k0⑧ 在匀强电场中,沿任一直线,电势的降落是均匀的.设直线OB 上的M 点与A 点等电势,M 与O 点的距离为x ,如图,则有x 32d =ΔE p A ΔE p B ⑨ 解得x =d ,MA 为等势线,电场强度方向必与其垂线OC 方向平行.设电场强度方向与竖直向下的方向的夹角为α,由几何关系可得α=30°⑩即电场强度方向斜向右下方,与竖直方向的夹角为30°.设电场强度的大小为E ,有qEd cos 30°=ΔE p A ⑪由④⑦⑪式得E =3mg 6q。
2018版高考物理全国用大一轮复习讲义文档:第三章 牛

专题强化四牛顿运动定律的综合应用(二)专题解读 1.本专题是动力学方法在两类典型模型问题中的应用,高考常以计算题压轴题的形式命题.2.通过本专题的学习,可以培养同学们审题能力、建模能力、分析推理能力和规范表达等物理学科素养,针对性的专题强化,通过题型特点和解题方法的分析,能帮助同学们迅速提高解题能力.3.用到的相关知识有:匀变速直线运动规律、牛顿运动定律、相对运动的有关知识.命题点一“传送带模型”问题传送带模型问题包括水平传送带问题和倾斜传送带问题.1.水平传送带问题求解的关键在于对物体所受的摩擦力进行正确的分析判断.物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻.2.倾斜传送带问题求解的关键在于分析清楚物体与传送带的相对运动情况,从而确定其是否受到滑动摩擦力作用.当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变.例1如图1所示,足够长的水平传送带,以初速度v 0=6 m/s顺时针转动.现在传送带左侧轻轻放上m=1 kg的小滑块,与此同时,启动传送带制动装置,使得传送带以恒定加速度a =4 m/s2减速直至停止;已知滑块与传送带的动摩擦因数μ=0.2,设最大静摩擦力等于滑动摩擦力.滑块可以看成质点,且不会影响传送带的运动,g=10 m/s2.试求:图1(1)滑块与传送带共速时,滑块相对传送带的位移;(2)滑块在传送带上运动的总时间t.①传送带以恒定加速度减速直至停止;②滑块与传送带共速.答案(1)3 m(2)2 s解析(1)对滑块,由牛顿第二定律可得:μmg=ma1得:a1=2 m/s2设经过时间t1滑块与传送带达到共同速度v,有:v =v 0-at 1 v =a 1t 1解得:v =2 m/s ,t 1=1 s 滑块位移为x 1=v t 12=1 m传送带位移为x 2=(v 0+v )t 12=4 m故滑块与传送带的相对位移Δx =x 2-x 1=3 m(2)共速之后,设滑块与传送带一起减速,则滑块与传送带间的静摩擦力为F f ,有: F f =ma =4 N >μmg =2 N 故滑块与传送带相对滑动. 滑块做减速运动,加速度仍为a 1. 滑块减速时间为t 2,有: t 2=0-v -a 1=1 s故:t =t 1+t 2=2 s.例2 如图2所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为θ=37°,传送带AB 足够长,传送皮带轮以大小为v =2 m /s 的恒定速率顺时针转动.一包货物以v 0=12 m/s 的初速度从A 端滑上倾斜传送带,若货物与皮带之间的动摩擦因数μ=0.5,且可将货物视为质点.图2(1)求货物刚滑上传送带时加速度为多大?(2)经过多长时间货物的速度和传送带的速度相同?这时货物相对于地面运动了多远? (3)从货物滑上传送带开始计时,货物再次滑回A 端共用了多少时间?(g =10 m/s 2,已知sin 37°=0.6,cos 37°=0.8)①恒定速率顺时针转动;②货物的速度和传送带相同;③再次滑回A 端.答案 (1)10 m/s 2,方向沿传送带向下 (2)1 s 7 m (3)(2+22) s解析 (1)设货物刚滑上传送带时加速度为a 1,货物受力如图所示:根据牛顿第二定律得沿传送带方向:mg sin θ+F f =ma 1 垂直传送带方向:mg cos θ=F N 又F f =μF N由以上三式得:a 1=g (sin θ+μcos θ)=10×(0.6+0.5×0.8)=10 m/s 2,方向沿传送带向下. (2)货物速度从v 0减至传送带速度v 所用时间设为t 1,位移设为x 1,则有: t 1=v -v 0-a 1=1 s ,x 1=v 0+v 2t 1=7 m(3)当货物速度与传送带速度相等时,由于mg sin θ>μmg cos θ,此后货物所受摩擦力沿传送带向上,设货物加速度大小为a 2,则有mg sin θ-μmg cos θ=ma 2, 得:a 2=g (sin θ-μcos θ)=2 m/s 2,方向沿传送带向下. 设货物再经时间t 2,速度减为零,则t 2=0-v-a 2=1 s沿传送带向上滑的位移x 2=v +02t 2=1 m 则货物上滑的总距离为x =x 1+x 2=8 m.货物到达最高点后将沿传送带匀加速下滑,下滑加速度大小等于a 2.设下滑时间为t 3,则x =12a 2t 23,代入解得t 3=2 2 s. 所以货物从A 端滑上传送带到再次滑回A 端的总时间为t =t 1+t 2+t 3=(2+22) s.1.如图3所示为粮袋的传送装置,已知A 、B 两端间的距离为L ,传送带与水平方向的夹角为θ,工作时运行速度为v ,粮袋与传送带间的动摩擦因数为μ,正常工作时工人在A 端将粮袋放到运行中的传送带上.设最大静摩擦力与滑动摩擦力大小相等,重力加速度大小为g .关于粮袋从A 到B 的运动,以下说法正确的是( )图3A.粮袋到达B 端的速度与v 比较,可能大,可能小也可能相等B.粮袋开始运动的加速度为g (sin θ-μcos θ),若L 足够大,则以后将以速度v 做匀速运动C.若μ≥tan θ,则粮袋从A 端到B 端一定是一直做加速运动D.不论μ大小如何,粮袋从Α到Β端一直做匀加速运动,且加速度a ≥g sin θ 答案 A解析 若传送带较短,粮袋在传送带上可能一直做匀加速运动,到达B 端时的速度小于v ;若传送带较长,μ≥tan θ,则粮袋先做匀加速运动,当速度与传送带的速度相同后,做匀速运动,到达B 端时速度与v 相同;若μ<tan θ,则粮袋先做加速度为g (sin θ+μcos θ)的匀加速运动,当速度与传送带相同后做加速度为g (sin θ-μcos θ)的匀加速运动,到达B 端时的速度大于v ,选项A 正确;粮袋开始时速度小于传送带的速度,相对传送带的运动方向是沿传送带向上,所以受到沿传送带向下的滑动摩擦力,大小为μmg cos θ,根据牛顿第二定律得加速度a =mg sin θ+μmg cos θm =g (sin θ+μcos θ),选项B 错误;若μ≥tan θ,粮袋从A 到B 可能是一直做匀加速运动,也可能先匀加速运动,当速度与传送带的速度相同后,做匀速运动,选项C 、D 均错误.2.如图4所示为一水平传送带装置示意图.A 、B 为传送带的左、右端点,AB 长L =2 m ,初始时传送带处于静止状态,当质量m =2 kg 的煤块(可视为质点)轻放在传送带A 点时,传送带立即启动,启动过程可视为加速度a =2 m /s 2的匀加速运动,加速结束后传送带立即匀速运动.已知煤块与传送带间动摩擦因数μ=0.1,设最大静摩擦力等于滑动摩擦力(g 取10 m /s 2).图4(1)如果煤块以最短时间到达B 点,煤块到达B 点时的速度大小是多少? (2)上述情况下煤块运动到B 点的过程中在传送带上留下的痕迹至少多长? 答案 (1)2 m/s (2)1 m解析 (1)为了使煤块以最短时间到达B 点,煤块应一直匀加速从A 点到达B 点 μmg =ma 1得a 1=1 m/s 2v 2B =2a 1Lv B =2 m/s(2)传送带加速结束时的速度v =v B =2 m/s 时,煤块在传送带上留下的痕迹最短 煤块运动时间t =v Ba 1=2 s传送带加速过程: v B =at 1得t 1=1 s x 1=12at 21得x 1=1 m传送带匀速运动过程: t 2=t -t 1=1 s x 2=v B t 2得x 2=2 m故痕迹最小长度为Δx =x 1+x 2-L =1 m. 命题点二 “滑块-木板模型”问题 1.模型特点涉及两个物体,并且物体间存在相对滑动. 2.两种位移关系滑块由木板的一端运动到另一端的过程中,若滑块和木板同向运动,位移大小之差等于板长;反向运动时,位移大小之和等于板长.设板长为L ,滑块位移大小为x 1,木板位移大小为x 2 同向运动时:如图5所示,L =x 1-x 2图5反向运动时:如图6所示,L =x 1+x 2图63.解题步骤 审题建模→弄清题目情景,分析清楚每个物体的受力情况,运动情况,清楚题给条件和所求 ↓ 建立方程→根据牛顿运动定律准确求出各运动过程的加速度(两过程接连处的加速度可能突变) ↓明确关系→找出物体之间的位移(路程)关系或速度关系是解题的突破口,上一过程的末速度是下一过程的初速度,这是两过程的联系纽带例3 (2015·新课标Ⅱ·25)下暴雨时,有时会发生山体滑坡或泥石流等地质灾害.某地有一倾角为θ=37°(sin 37°=35)的山坡C ,上面有一质量为m 的石板B ,其上下表面与斜坡平行;B上有一碎石堆A (含有大量泥土),A 和B 均处于静止状态,如图7所示.假设某次暴雨中,A 浸透雨水后总质量也为m (可视为质量不变的滑块),在极短时间内,A 、B 间的动摩擦因数μ1减小为38,B 、C 间的动摩擦因数μ2减小为0.5,A 、B 开始运动,此时刻为计时起点;在第2s末,B的上表面突然变为光滑,μ2保持不变.已知A开始运动时,A离B下边缘的距离l=27 m,C足够长,设最大静摩擦力等于滑动摩擦力.取重力加速度大小g=10 m/s2.求:图7(1)在0~2 s时间内A和B加速度的大小;(2)A在B上总的运动时间.①μ1<μ2,可分析A、B受力;②第2 s末,B的上表面突然变为光滑.答案(1)3 m/s2 1 m/s2(2)4 s解析(1)在0~2 s时间内,A和B的受力如图所示,其中F f1、F N1是A与B之间的摩擦力和正压力的大小,F f2、F N2是B与C之间的摩擦力和正压力的大小,方向如图所示.由滑动摩擦力公式和力的平衡条件得F f1=μ1F N1 ①F N1=mg cos θ②F f2=μ2F N2 ③F N2=F N1′+mg cos θ④规定沿斜面向下为正.设A和B的加速度分别为a1和a2,由牛顿第二定律得mg sin θ-F f1=ma1 ⑤mg sin θ-F f2+F f1′=ma2 ⑥联立①②③④⑤⑥式,并代入题给条件得a1=3 m/s2 ⑦a2=1 m/s2 ⑧(2)在t1=2 s时,设A和B的速度分别为v1和v2,则v1=a1t1=6 m/s ⑨v2=a2t1=2 m/s ⑩2 s后,设A和B的加速度分别为a1′和a2′.此时A与B之间摩擦力为0,同理可得a1′=6 m/s2 ⑪a 2′=-2 m/s 2⑫由于a 2′<0,可知B 做减速运动.设经过时间t 2,B 的速度减为0,则有 v 2+a 2′t 2=0⑬联立⑩⑫⑬式得t 2=1 s在t 1+t 2时间内,A 相对于B 运动的距离为x =⎝⎛⎭⎫12a 1t 21+v 1t 2+12a 1′t 22-⎝⎛⎭⎫12a 2t 21+v 2t 2+12a 2′t 22=12 m <27 m ⑭此后B 静止不动,A 继续在B 上滑动.设再经过时间t 3后A 离开B ,则有 l -x =(v 1+a 1′t 2)t 3+12a 1′t 23⑮ 可得t 3=1 s(另一解不合题意,舍去) ⑯设A 在B 上总的运动时间为t 总,有 t 总=t 1+t 2+t 3=4 s3.(多选)如图8所示,一只猫在桌边猛地将桌布从鱼缸下拉出,鱼缸最终没有滑出桌面,若鱼缸、桌布、桌面两两之间的动摩擦因数均相等,则在上述过程中( )图8A.桌布对鱼缸摩擦力的方向向左B.鱼缸在桌布上的滑动时间和在桌面上的相等C.若猫增大拉力,鱼缸受到的摩擦力将增大D.若猫减小拉力,鱼缸有可能滑出桌面 答案 BD解析 桌布对鱼缸摩擦力的方向向右,A 项错误;各接触面间的动摩擦因数均为μ,设鱼缸的质量为m ,由牛顿第二定律可得鱼缸在桌布和桌面上滑动的加速度大小相同,均为a =μg ,鱼缸离开桌布时的速度为v ,则鱼缸在桌布上和在桌面上滑动时间均为t =vμg ,B 项正确;猫增大拉力时,鱼缸受到的摩擦为F f =μmg 不变,C 项错;若猫减小拉力,鱼缸在桌布上加速运动的时间变长,离开桌布时的速度v =μgt 增大,加速运动的位移x 1=12μgt 2增大,且鱼缸在桌面上减速滑行的位移x 2=v 22μg也增大,则鱼缸有可能滑出桌面,D 项对.4.(2016·四川理综·10)避险车道是避免恶性交通事故的重要设施,由制动坡床和防撞设施等组成,如图9所示竖直平面内,制动坡床视为与水平面夹角为θ的斜面.一辆长12 m 的载有货物的货车因刹车失灵从干道驶入制动坡床,当车速为23 m /s 时,车尾位于制动坡床的底端,货物开始在车厢内向车头滑动,当货物在车厢内滑动了4 m 时,车头距制动坡床顶端38 m ,再过一段时间,货车停止.已知货车质量是货物质量的4倍,货物与车厢间的动摩擦因数为0.4;货车在制动坡床上运动受到的坡床阻力大小为货车和货物总重的0.44倍.货物与货车分别视为小滑块和平板,取cos θ=1,sin θ=0.1,g =10 m/s 2.求:图9(1)货物在车厢内滑动时加速度的大小和方向; (2)制动坡床的长度.答案 (1)5 m/s 2 方向沿制动坡床向下 (2)98 m解析 (1)设货物的质量为m ,货物在车厢内滑动过程中,货物与车厢的动摩擦因数μ=0.4,受摩擦力大小为f ,加速度大小为a 1,则 f +mg sin θ=ma 1 ① f =μmg cos θ②联立①②并代入数据得 a 1=5 m/s 2③ a 1的方向沿制动坡床向下.(2)设货车的质量为M ,车尾位于制动坡床底端时的车速为v =23 m/s.货物在车厢内开始滑动到车头距制动坡床顶端s 0=38 m 的过程中,用时为t ,货物相对制动坡床的运动距离为s 1,在车厢内滑动的距离s =4 m ,货车的加速度大小为a 2,货车相对制动坡床的运动距离为s 2.货车受到制动坡床的阻力大小为F ,F 是货车和货物总重的k 倍,k =0.44,货车长度l 0=12 m ,制动坡床的长度为l ,则 Mg sin θ+F -f =Ma 2 ④ F =k (m +M )g ⑤ s 1=v t -12a 1t 2⑥ s 2=v t -12a 2t 2⑦ s =s 1-s 2 ⑧ l =l 0+s 0+s 2⑨ 联立①~⑨并代入数据得l =98 m.“传送带”模型的易错点典例如图10所示,足够长的传送带与水平面夹角为θ,以速度v 0逆时针匀速转动.在传送带的上端轻轻放置一个质量为m的小木块,小木块与传送带间的动摩擦因数μ<tan θ,则图中能客观地反映小木块的速度随时间变化关系的是()图10答案 D解析开始阶段,小木块受到竖直向下的重力和沿传送带向下的摩擦力作用,做加速度为a1的匀加速直线运动,由牛顿第二定律得mg sin θ+μmg cos θ=ma1,所以a1=g sin θ+μg cos θ.小木块加速至与传送带速度相等时,由于μ<tan θ,则小木块不会与传送带保持相对静止而做匀速运动,之后小木块继续加速,所受滑动摩擦力变为沿传送带向上,做加速度为a2的匀加速直线运动,这一阶段由牛顿第二定律得mg sin θ-μmg cos θ=ma2,所以a2=g sin θ-μg cos θ.根据以上分析,有a2<a1,所以,本题正确选项为D.易错诊断本题的易错点在于没有注意到关键条件“μ<tan θ”,没有准确分析小木块所受摩擦力的方向,想当然地认为传送带足够长,小木块最后总会达到与传送带相对静止而做匀速运动,从而错选C选项.理解μ与tan θ关系的含义,正确分析小木块所受摩擦力方向是解题关键.变式拓展(1)若将“μ<tan θ”改为“μ>tan θ”,答案应选什么?提示若改为μ>tan θ,则小木块加速到速度与传送带速度相等后,滑动摩擦力突然变为静摩擦力,以后与传送带相对静止而做匀速运动,故应选C选项.(2)若将传送带改为水平呢?提示若将传送带改为水平,则小木块加速到速度与传送带速度相等后,摩擦力突然消失,以后与传送带保持相对静止而做匀速运动,仍然是C选项正确.题组1 “传送带模型”问题1.如图1所示,为传送带传输装置示意图的一部分,传送带与水平地面的倾角θ=37°,A 、B 两端相距L =5.0 m ,质量为M =10 kg 的物体以v 0=6.0 m/s 的速度沿AB 方向从A 端滑上传送带,物体与传送带间的动摩擦因数处处相同,均为0.5.传送带顺时针运转的速度v =4.0 m /s ,(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:图1(1)物体从A 点到达B 点所需的时间;(2)若传送带顺时针运转的速度可以调节,物体从A 点到达B 点的最短时间是多少? 答案 (1)2.2 s (2)1 s解析 (1)设物体速度大于传送带速度时加速度大小为a 1,由牛顿第二定律得Mg sin θ+μMg cos θ=Ma 1①设经过时间t 1物体的速度与传送带速度相同, t 1=v 0-v a 1② 通过的位移x 1=v 20-v22a 1③设物体速度小于传送带速度时物体的加速度为a 2 Mg sin θ-μMg cos θ=Ma 2④由μ<tan θ=0.75知,物体继续减速,设经时间t 2到达传送带B 点 L -x 1=v t 2-12a 2t 22 ⑤联立得①②③④⑤式可得:t =t 1+t 2=2.2 s(2)若传送带的速度较大,物体沿AB 上滑时所受摩擦力一直沿传送带向上,则所用时间最短,此种情况加速度大小一直为a 2, L =v 0t ′-12a 2t ′2t ′=1 s(t ′=5 s 舍去).2.车站、码头、机场等使用的货物安检装置的示意图如图2所示,绷紧的传送带始终保持v =1 m/s 的恒定速率运行,AB 为水平传送带部分且足够长,现有一质量为m =5 kg 的行李包(可视为质点)无初速度地放在水平传送带的A 端,传送到B 端时没有被及时取下,行李包从B 端沿倾角为37°的斜面滑入储物槽,已知行李包与传送带间的动摩擦因数为0.5,行李包与斜面间的动摩擦因数为0.8,g 取10 m/s 2,不计空气阻力(sin 37°=0.6,cos 37°=0.8).图2(1)求行李包相对于传送带滑动的距离;(2)若B 轮的半径为R =0.2 m ,求行李包在B 点对传送带的压力;(3)若行李包滑到储物槽时的速度刚好为零,求斜面的长度.答案 (1)0.1 m (2)25 N ,方向竖直向下 (3)1.25 m解析 (1)行李包在水平传送带上加速时μ1mg =ma 1若行李包达到水平传送带的速度所用时间为t ,则v =a 1t行李包前进距离x 1=12a 1t 2 传送带前进距离x 2=v t行李包相对传送带滑动的距离Δx =x 2-x 1=0.1 m(2)行李包在B 点,根据牛顿第二定律,有mg -F N =m v 2R解得:F N =25 N根据牛顿第三定律可得:行李包在B 点对传送带的压力为25 N ,方向竖直向下.(3)行李包在斜面上时,根据牛顿第二定律:mg sin 37°-μ2mg cos 37°=ma 2行李包从斜面滑下过程:0-v 2=2a 2x解得:x =1.25 m.题组2 “滑块-木板模型”问题3.如图3所示,水平传送带以v =12 m/s 的速度顺时针做匀速运动,其上表面的动摩擦因数μ1=0.1,把质量m =20 kg 的行李包轻放上传送带,释放位置距传送带右端4.5 m 处.平板车的质量M =30 kg ,停在传送带的右端,水平地面光滑,行李包与平板车上表面间的动摩擦因数μ2=0.3,平板车长10 m ,行李包从传送带滑到平板车过程速度不变,行李包可视为质点.(g =10 m/s 2)求:图3(1)行李包在平板车上相对于平板车滑行的时间是多少?(2)若要想行李包不从平板车滑出,求行李包释放位置应满足什么条件?答案 (1)0.6 s (2)见解析解析 (1)行李包放上传送带做匀加速直线运动.a 1=μ1gv 2=2a 1x解得:v =3 m/s因v =3 m /s <12 m/s ,符合题意行李包滑上平板车后,行李包减速,平板车加速.a 2=μ2g =3 m/s 2a 3=μ2mg M=2 m/s 2 v -a 2t =a 3t解得:t =0.6 s相对位移x =v t -12a 2t 2-12a 3t 2=0.9 m <10 m ,符合题意. (2)当行李包刚好滑到平板车右端时,行李包与平板车的相对位移等于车长.设行李包刚滑上平板车时速度为v 0,L 为平板车长,则v 0-a 2t ′=a 3t ′v 0t ′-12a 2t ′2-12a 3t ′2=L 解得v 0=10 m /s <12 m/s故行李包在传送带上一直做匀加速直线运动v 20=2a 1x ′解得:x ′=50 m所以行李包释放位置距离传送带右端应不大于50 m.4.一平板车,质量M =100 kg ,停在水平路面上,车身的平板离地面的高度h =1.25 m ,一质量m =50 kg 的小物块置于车的平板上,它到车尾的距离b =1 m ,与车板间的动摩擦因数μ=0.2,如图4所示,今对平板车施加一水平方向的恒力,使车向前行驶,结果物块从车板上滑落,物块刚离开车板的时刻,车向前行驶距离x 0=2.0 m ,求物块落地时,落地点到车尾的水平距离x (不计路面摩擦,g =10 m/s 2).图4答案 1.625 m解析 设小物块在车上运动时,车的加速度为a 1,物块的加速度为a 2.则a 2=μmg m=μg =0.2×10 m /s 2=2 m/s 2. 由x =12at 2得: x 0=12a 1t 2,x 0-b =12a 2t 2. 故有a 1a 2=x 0x 0-b =22-1=21, a 1=2a 2=4 m/s 2.对车,由牛顿第二定律得:F -μmg =Ma 1.F =Ma 1+μmg =100×4 N +0.2×50×10 N =500 N. 小物块滑落时车速v 1=2a 1x 0=2×4×2 m /s =4 m/s , 小物块速度v 2=2a 2(x 0-b )=2×2×1 m /s =2 m/s物块滑落后,车的加速度a ′=F M =500100m /s 2=5 m/s 2 小物块落地时间t ′=2h g =2×1.2510s =0.5 s. 车运动的位移x 车′=v 1t ′+12a ′t 2=4×0.5 m +12×5×0.52 m =2.625 m. 小物块平抛的水平位移x 物′=v 2·t ′=2×0.5 m =1 m. 物块落地时,落地点与车尾的水平位移为:x =x 车′-x 物′=2.625 m -1 m =1.625 m.。
零雾市雹输学校高考物理一轮复习 第三章 牛顿运动律 1 第一节 牛顿第一律 牛顿第三律课后达标

碌雷州零雾市雹输学校第一节牛顿第一定律牛顿第三定律(建议用时:40分钟)一、单项选择题1.(2018·4月浙江选考)通过理想斜面实验得出“力不是维持物体运动的原因”的科学家是( ) A.亚里士多德B.伽利略C.笛卡儿D.牛顿解析:选B.亚里士多德认为力是维持物体运动状态的原因,故A错误;伽利略通过理想斜面实验提出了力不是维持物体运动的原因,故B正确;笛卡儿在伽利略研究的基础上第一次表述了惯性定律,故C错误;牛顿在伽利略等前人研究的基础上提出了牛顿第一定律,认为力是改变物体运动状态的原因,但不是第一个根据实验提出力不是维持物体运动原因的科学家,也不是第一个提出惯性的科学家,故D错误.2.(2020·福建三明清流一中段考)如图所示,人沿水平方向拉牛,但没有拉动,下列说法正确的是( )A.绳拉牛的力小于牛拉绳的力B.绳拉牛的力与牛拉绳的力是一对平衡力C.绳拉牛的力与地面对牛的摩擦力是一对平衡力D.绳拉牛的力与地面对牛的摩擦力是相互作用力解析:选C.绳拉牛的力和牛拉绳的力是作用力与反作用力,大小相等、方向相反,故A、B错误;由于没有拉动牛,可知绳拉牛的力与地面对牛的摩擦力是一对平衡力,故C正确,D错误.3.本组照片记录了一名骑车人因自行车前轮突然陷入一较深的水坑而倒地的过程.下面是从物理的角度去解释此情境,其中正确的是( )A.这是因为水坑里的水对自行车前轮的阻力太大,而使人和车一起倒地的B.骑车人与自行车原来处于运动状态,车前轮陷入水坑后立刻静止,但人与车的后半部分由于惯性仍保持原有的运动状态,因此摔倒C.因为自行车的前轮陷入水坑后,自行车还能加速运动,所以人和车一起倒地了D.因为自行车的前轮陷入水坑后,自行车的惯性立即消失,而人由于惯性将保持原有的运动状态,故人向原来的运动方向倒下了解析:选B.骑车人与自行车本身处于运动状态,车的前轮陷入水坑时,前轮会立即静止,但人与车的后半部分由于惯性,仍要继续向原来的运动方向运动,故人和车的后半部分向原来运动的方向摔倒,因此B正确.4.一列以速度v匀速行驶的列车内有一水平桌面,桌面上A处有一相对桌面静止的小球.由于列车运动状态的改变,车厢中的旅客发现小球沿如图(俯视图)中的虚线从A点运动到B点,则说明列车是减速且在向南拐弯的图是( )解析:选A.由于列车原来做匀速运动,小球和列车保持相对静止,现在列车要减速,由于惯性小球必向前运动,C、D错误;又因列车要向南拐弯,由做曲线运动的条件知,列车要受到向南的力的作用,即桌子受到向南的力的作用,所以小球相对桌面向北运动,A正确,B错误.5.如图所示,一个盛水的容器固定在一个小车上,在容器中分别悬挂和拴住一只铁球和一只乒乓球.容器中的水和铁球、乒乓球都处于静止状态.当容器随小车突然向右运动时,两球的运动状况是(以小车为参考系)( )A.铁球向左,乒乓球向右B.铁球向右,乒乓球向左C.铁球和乒乓球都向左D.铁球和乒乓球都向右解析:选A.因为小车突然向右运动,铁球和乒乓球都有向右运动的趋势,但由于与同体积的“水球”相比,铁球质量大,惯性大,铁球的运动状态难改变,即速度变化慢,而同体积的水球的运动状态容易改变,即速度变化快,而且水和车一起加速运动,所以小车加速运动时铁球相对小车向左运动.同理,由于乒乓球与同体积的“水球”相比,质量小,惯性小,乒乓球相对小车向右运动.6.一个箱子放在水平地面上,箱内有一固定的竖直杆,在杆上套着一个环,箱与杆的质量为M,环的质量为m,如图所示.已知环沿杆匀加速下滑时,环与杆间的摩擦力大小为f,则此时箱子对地面的压力大小为( )A.Mg+f B.Mg-fC.Mg+mg D.Mg-mg解析:选A.环在竖直方向上受重力及箱子的杆给它的竖直向上的摩擦力f,受力情况如图甲所示,根据牛顿第三定律,环应给杆一个竖直向下的摩擦力f′,故箱子竖直方向上受重力Mg、地面对它的支持力N及环给它的摩擦力f′,受力情况如图乙所示,由于箱子处于平衡状态,可得N=f′+Mg=f+Mg.根据牛顿第三定律,箱子对地面的压力大小等于地面对箱子的支持力,即N′=Mg+f,故A正确.7.如图所示,质量为m的木块在质量为M的长木板上水平向右加速滑行,长木板与地面间的动摩擦因数为μ1,木块与长木板间的动摩擦因数为μ2,若长木板仍处于静止状态,则长木板对地面的摩擦力大小一定为( )A.μ1(m+M)g B.μ2mgC.μ1mg D.μ1mg+μ2Mg解析:选B.木块在长木板上向右滑行过程中,受到长木板对其水平向左的滑动摩擦力,由牛顿第三定律可知,木块对长木板有水平向右的滑动摩擦力,大小为μ2mg,由于长木板处于静止状态,水平方向合力为零,故地面对长木板的静摩擦力方向水平向左,大小为μ2mg,由牛顿第三定律可知,长木板对地面的摩擦力大小为μ2mg,故B正确.8.某同学为了取出如图所示羽毛球筒中的羽毛球,一只手拿着球筒的中部,另一只手用力击打羽毛球筒的上端,则( )A.此同学无法取出羽毛球B.羽毛球会从筒的下端出来C.羽毛球筒向下运动过程中,羽毛球受到向上的摩擦力才会从上端出来D.该同学是在利用羽毛球的惯性解析:选D.羽毛球筒被手击打后迅速向下运动,而羽毛球具有惯性要保持原来的静止状态,所以会从筒的上端出来,D正确.9.如图所示,质量相等的甲、乙两人所用绳子相同,甲拉住绳子悬在空中处于静止状态;乙拉住绷紧绳子的中点把绳子拉断了.则( )A.绳子对甲的拉力大小小于甲的重力大小B.绳子对甲的拉力大小大于甲对绳子的拉力大小C.乙拉断绳子前瞬间,绳子上的拉力大小一定小于乙的重力大小D.乙拉断绳子前瞬间,绳子上的拉力大小一定大于乙的重力大小解析:选D.由平衡条件可知,绳子对甲的拉力大小等于甲受到的重力大小,A错;由作用力与反作用力的关系可知绳子对甲的拉力大小等于甲对绳子的拉力大小,B错;乙能把绳子拉断,对于具有同样承受能力的绳子,说明乙拉断绳子前的瞬间绳子的拉力大小一定大于绳子的承受力,而甲拉的绳子能承受甲的重力,甲、乙质量相等,因此乙拉的绳子上的拉力大小一定大于乙的重力大小,C错,D对.10.如图所示为英国人阿特伍德设计的装置,不考虑绳与滑轮的质量,不计轴承、绳与滑轮间的摩擦.初始时两人均站在水平地面上,当位于左侧的甲用力向上攀爬时,位于右侧的乙始终用力抓住绳子,最终至少一人能到达滑轮.下列说法中正确的是( )A.若甲的质量较大,则乙先到达滑轮B.若甲的质量较大,则甲、乙同时到达滑轮C.若甲、乙质量相同,则乙先到达滑轮D.若甲、乙质量相同,则甲先到达滑轮解析:选A.由于滑轮光滑,甲拉绳子的力等于绳子拉乙的力,若甲的质量大,则由甲拉绳子的力等于乙受到的绳子拉力,得甲攀爬时乙的加速度大于甲,所以乙会先到达滑轮,A正确,B错误;若甲、乙的质量相同,甲用力向上攀爬时,甲拉绳子的力等于绳子拉乙的力,甲、乙具有相同的加速度和速度,所以甲、乙应同时到达滑轮,C、D错误.二、多项选择题11.伽利略根据小球在斜面上运动的实验和理想实验,提出了惯性的概念,从而奠定了牛顿力学的基础.早期物理学家关于惯性有下列说法,其中正确的是( )A.物体抵抗运动状态变化的性质是惯性B.没有力的作用,物体只能处于静止状态C.行星在圆周轨道上保持匀速率运动的性质是惯性D.运动物体如果没有受到力的作用,将继续以同一速度沿同一直线运动解析:选AD.惯性是物体抵抗运动状态变化而保持静止或匀速直线运动状态的性质,A正确;没有力的作用,物体将处于静止或匀速直线运动状态,B错误;行星做匀速圆周运动是由于受中心天体的引力作用,不是由于具有惯性,C错误;运动物体如果没有受到力的作用,将一直做匀速直线运动,D正确.12.如图所示,某人用手托着苹果处于静止状态,则( )A.手所受压力是由于苹果的形变而产生的B.手所受压力和手对苹果的支持力是一对平衡力C.苹果所受重力和手对苹果的支持力是一对平衡力D.苹果所受重力和苹果对手的压力是作用力和反作用力解析:选AC.苹果对手的压力是由于苹果发生形变而产生的,A正确;手所受压力和手对苹果的支持力是一对作用力与反作用力,B错误;苹果所受重力和手对苹果的支持力都作用在苹果上,大小相等,方向相反,是一对平衡力,C正确;苹果对手的压力是由于形变而产生的,是苹果与手之间的作用,而重力是由于地球的吸引而产生的,是苹果与地球的相互作用,D错误.13.(2020·浙江嘉兴模拟)如图所示是我国首次立式风洞跳伞实验,风洞喷出竖直向上的气流将实验者加速向上“托起”.此过程中( )A.地球对人的吸引力和人对地球的吸引力大小相等B.人受到的重力和人受到气流的力是一对作用力与反作用力C.人受到的重力大小等于气流对人的作用力大小D.人被向上“托起”时处于超重状态解析:选AD.地球对人的吸引力和人对地球的吸引力是一对相互作用力,等大反向,A正确;相互作用力是两个物体间的相互作用,而人受到的重力和人受到气流的力涉及人、地球、气流三个物体,不是一对相互作用力,B错误;由于风洞喷出竖直向上的气流将实验者加速向上“托起”,在竖直方向上合力不为零,所以人受到的重力大小不等于气流对人的作用力大小,C错误;人被向上“托起”时加速度向上,处于超重状态,D正确.14.(2020·山东潍坊模拟)在水平路面上有一辆匀速行驶的小车,车上固定一盛满水的碗.现突然发现碗中的水洒出,水洒出的情况如图所示,则关于小车的运动情况,下列叙述正确的是( ) A.小车匀速向左运动B.小车可能突然向左加速C.小车可能突然向左减速D.小车可能突然向右减速解析:选BD.原来水和小车相对静止以共同速度运动,水突然向右洒出有两种可能:①原来小车向左运动,突然加速,碗中的水由于惯性保持原速度不变,故相对碗向右洒出;②原来小车向右运动,突然减速,碗中的水由于惯性保持原速度不变,相对于碗向右洒出,故B、D正确.15.(2020·四川宜宾检测)如图所示,光滑水平面上静止着一辆小车,在酒精灯加热一段时间后塞子喷出.下列说法正确的是( )A.由于塞子的质量小于小车的质量,喷出时塞子受到的冲击力将大于小车受到的冲击力B.由于塞子的质量小于小车的质量,喷出时塞子受到的冲击力将小于小车受到的冲击力C.塞子喷出瞬间,小车对水平面的压力大于小车整体的重力D.若增大试管内水的质量,则可以增大小车整体的惯性解析:选CD.喷出时塞子受到的冲击力和小车受到的冲击力大小相等,方向相反,故A、B错误;塞子喷出瞬间,试管内的气体对小车整体有斜向左下的作用力,所以小车对水平面的压力大于小车整体的重力,故C正确;若增大试管内水的质量,则小车整体的惯性增大,故D正确.。
2018年物理真题及解析_2018年全国统一高考物理试卷(新课标ⅲ)(1)

2018年全国统一高考物理试卷(新课标Ⅲ)一、选择题:本题共8个小题,每题6分,共48分。
在每个小题给出的四个选项中,第1-4题只有一项符合题目要求,第5-8题有多项符合题目要求。
全部选对的得6分,选对不全的得3分,有选错的得0分。
1.(6.00分)1934年,约里奥﹣居里夫妇用α粒子轰击铝核Al,产生了第一个人工放射性核素X:α+Al→n+X.X的原子序数和质量数分别为()A.15和28 B.15和30 C.16和30 D.17和312.(6.00分)为了探测引力波,“天琴计划”预计发射地球卫星P,其轨道半径约为地球半径的16倍;另一地球卫星Q的轨道半径约为地球半径的4倍。
P与Q 的周期之比约为()A.2:1 B.4:1 C.8:1 D.16:13.(6.00分)一电阻接到方波交流电源上,在一个周期内产生的热量为Q方;若该电阻接到正弦交流电源上,在一个周期内产生的热量为Q正.该电阻上电压的峰值均为u0,周期均为T,如图所示。
则Q方:Q正等于()A.1:B.:1 C.1:2 D.2:14.(6.00分)在一斜面顶端,将甲、乙两个小球分别以v和的速度沿同一方向水平抛出,两球都落在该斜面上。
甲球落至斜面时的速率是乙球落至斜面时速率的()A.2倍 B.4倍 C.6倍 D.8倍5.(6.00分)甲、乙两车在同一平直公路上同向运动,甲做匀加速直线运动,乙做匀速直线运动。
甲、乙两车的位置x随时间t的变化如图所示。
下列说法正确的是()A.在t1时刻两车速度相等B.从0到t1时间内,两车走过的路程相等C.从t1到t2时间内,两车走过的路程相等D.在t1到t2时间内的某时刻,两车速度相等6.(6.00分)地下矿井中的矿石装在矿车中,用电机通过竖井运送到地面。
某竖井中矿车提升的速度大小v随时间t的变化关系如图所示,其中图线①②分别描述两次不同的提升过程,它们变速阶段加速度的大小都相同;两次提升的高度相同,提升的质量相等。
2018年高考全国卷三物理卷及参考答案1

2018年全国卷三理科综合物理试题及参考答案二、选择题:(本题8小题,每小题6分,共48分。
在每小题给出的四个选项中,第14-17题只有一项符合要求,第18-21题有多项符合要求,全部选对的得6分,选对但不全的得3分,有选错的得0分)14、1934年,约里奥-居里夫妇用α粒子轰击Al 2713,产生了第一人式放射性核素X :α+Al 2713−−−→−n + X ,X 的原子序数和质量数分别为( )A .15和28B 、15各30C 、16和30D 、17和3115、为了测引力波,“天琴计划”预计发射地球卫星P ,其轨道半径约为地球半径的16倍,另一地球卫星Q 的轨道径约为地球半径的4倍,P 与Q 的周期之比为( )A 、2:1B 、4:1C 、8:1D 、16:116、一电阻接致电方波交流电源上,在一个周期内产生的热量为Q 方;若该电阻接到正弦交流电源上,在一个周期产生的热量为Q E ,该电阻上电压的峰值为u 0,周期均为T ,如图所示,则Q 方:Q E等于( )A 、1:2B 、2:1C 、1:2D 、2:117、在一斜面顶端,将甲、乙两个小球分别以v 和2v 的速度沿同一方向水平抛出,两球都落在该斜面上,甲球落至斜面时的速率是乙球落至斜面时速率的( )A 、2倍B 、4倍C 、6倍D 、8倍18、甲、乙两车在同一平直公路上同向运动,甲做匀加速直线运动,乙做匀速直线运动,甲、乙两车的位置x 随时间t 的变化如图所示。
下列说法正确的是( )A 、在t 1时刻两车速度相等B 、从0到t 1时间内,两车走过的路程相等C 、从t 1到t 2时间内,两车走过的路程相等D 、在t 1到t 2时间内的某时刻,两车速度相等19、地下矿井中的矿石装在矿车中,用电机通过竖井运送到地面,某竖井中矿车提升的速度大小v 随时间的变化关系如图所示,其中图线①②分别描述两次不同的提升过程,它们变速阶段的加速度的大小相同;两次提升的高度相同,提升的质量相等,不考虑摩擦阻力和空气阻力。
2018年高考物理复习第3章 第1讲

)
)
(7)人走在松软的土地上下陷时,人对地面的压力大于地面对人的支持力。
(
)
返回导航
必修一 第三章 牛顿运动定律
答案:(1)×
状态)。 (3)× 关。
人 教 版
物体不受外力作用时处于平衡状态(匀速直线运动状态或静止
在水平面上滑动的木块最终停下来是因为受摩擦阻力的结果。 (4)× 物体的惯性与运动状态无 (6)√ (7)× 人对地面的压
人 教 版
2.力是物体产生加速度的原因 加速度 ,所 外力的作用使物体的速度发生改变,而速度发生改变一定有_________ 以力是使物体产生加速度的原因。
物 理
返回导航
必修一 第三章 牛顿运动定律
牛顿第一定律
匀速直线运动 状态或 _______ 静止 1. 牛顿第一定律的内容: 一切物体总保持 ______________ 状态,直到有外力迫使它改变这种状态为止。
物 理
(2)×
物体惯性大小的唯一量度是质量。 (5)×
作用力与反作用力性质完全相同。
力和地面对人的支持力是一对作用力与反作用力,而作用力与反作用力大小相
等。
返回导航
必修一 第三章 牛顿运动定律
1.伽利略用两个对接的斜面,一个斜面固定,让小球从固定斜面上滚下,又 滚上另一个倾角可以改变的斜面,斜面倾角逐渐改变至 0,如图所示。伽利略设 计这个实验的目的是说明 导学号 51342250 ( C )
人 教 版 物 理
运动而不需要力来维持 ” 是外推的结果。本实验是为了否定亚里士多德的观
点,揭示物体的运动不需要力来维持。所以C正确,A、B、D均错误。
返回导航
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题3 第1讲1.(2017·湖北襄阳调研)公元前600年左右,希腊人泰勒斯就发现了用毛皮摩擦过的琥珀能吸引轻小物体.公元一世纪,我国学者王充在《论衡》一书中也写下了“顿牟掇芥”.关于静电场,下列说法正确的是(C)A.沿电场线方向电场强度越来越小B.若电场中某点的电场强度为零,则该点电势也必然为零C.等势面一定与电场强度的方向垂直D.初速度为零的带电粒子在电场中一定沿电场线运动解析在匀强电场中,沿电场线方向电场强度不变,选项A错误;电势与场强无关,等量同种点电荷连线中点处的场强为0、电势不为0(选无穷远处电势为0),选项B错误;沿电场线方向电势降低,等势面与电场线垂直,选项C正确;在非匀强电场中,初速度为零的带电粒子不一定沿电场线运动,选项D错误.2.(2017·河北二校联考)一个带负电的粒子仅在电场力作用下运动,其电势能随时间变化规律如图所示,则下列说法正确的是(D)A.该粒子可能做直线运动B.该粒子在运动过程中速度保持不变C.t1、t2两个时刻,粒子所处位置电场强度一定相同D.粒子运动轨迹上各点的电势一定相等解析粒子的电势能不变,电场力不做功,而带电粒子只受电场力,不可能做直线运动,选项A错误;根据能量守恒定律可知粒子的动能不变,速度大小不变,粒子做曲线运动,速度方向在改变,选项B错误;粒子的电势能不变,电场力不做功,根据电场力公式W=qU知粒子运动轨迹上各点的电势一定相等,而电场强度与电势无关,t1、t2两个时刻,粒子所处位置电场强度不一定相同,选项C错误,D正确.3.(2017·山西重点中学模拟)如图所示,一个质量为m、带电荷量为-q的滑块(可视为质点)放置在质量为M的光滑斜劈上,斜劈的倾角为θ=30°,斜劈固定在水平地面上,现在斜劈的底端C 点竖直放置一绝缘杆,绝缘杆的顶端放置一带电荷量为+Q 的小球(可视为质点).已知斜劈的斜边长为L ,绝缘杆的高度也为L ,静电力常量为k ,现给滑块一沿斜劈向下的初速度v ,让滑块沿斜面下滑,若滑块始终在斜面上运动,则下列说法中正确的是( B )A .运动过程中滑块所受库仑力一直增大B .滑块受到的库仑力最大值为4kqQ 3L 2C .滑块运动到斜面中点时速度最大D .滑块运动到C 点时的速度大小为v解析 滑块沿斜面向下运动的过程中与小球的距离先减小后增大,故所受库仑力先增大后减小,当滑块运动到斜面的中点时所受库仑力最大,此时F 库=kqQ (L cos θ)2=4kqQ 3L 2,故选项A 错误,B 正确.当滑块所受重力沿斜面向下的分力等于库仑力沿斜面向上的分力时,滑块的速度最大,滑块运动到斜面中点时加速度方向沿斜面向下,所以滑块运动到斜面中点时速度不是最大,选项C 错误;滑块运动到C 点的过程中,根据对称性,库仑力对滑块做的总功为零,由动能守恒可得12m v 2+mgL ·sin θ=12m v 2C,故v C >v ,选项D 错误. 4.(2017·陕西咸阳模拟)如图,真空中a 、b 、c 、d 四点共线且等距.先在a 点固定一点电荷+Q ,测得b 点场强大小为E .若再将另一点电荷+2Q 放在d 点,则( B )A .b 点场强大小为94E B .c 点场强大小为74E C .若将电子从b 点移动到c 点,其电势能不变D .b 点电势比c 点电势高解析 设a 、b 之间的距离为r ,则b 、d 之间的距离为2r ,a 、c 之间的距离为2r ,c 、d之间的距离为r ,+Q 在b 点产生的电场强度E =k Q r 2,方向由a 指向d .若再将另一点电荷+2Q 放在d 点,它在b 点产生的电场强度E ′=k 2Q (2r )2=k Q 2r 2,方向由d 指向a .根据电场叠加原理,b 点的场强大小为E b =E -E ′=k Q r 2-k Q 2r 2=k Q 2r 2=E 2,方向由a 指向d ,选项A 错误;+Q 在c 点产生的电场强度E 1=k Q (2r )2,+2Q 在c 点产生的电场强度E 2=k 2Q r 2,二者方向相反,c 点的场强大小为E c =E 2-E 1=k 2Q r 2-k Q 4r 2=74k Q r 2=74E ,方向由d 指向a ,选项B 正确;若将电子从b 点移动到c 点,电场力先做负功后做正功,其电势能先增大后减小,选项C错误;b 点的电势比c 点的电势低,选项D 错误.5.(2017·江苏高考题)如图所示,三块平行放置的带电金属薄板A 、B 、C 中央各有一小孔,小孔分别位于O 、M 、P 点.由O 点静止释放的电子恰好能运动到P 点.现将C 板向右平移到P ′点,则由O 点静止释放的电子( A )A .运动到P 点返回B .运动到P 和P ′点之间返回C .运动到P ′点返回D .穿过P ′点解析 电子在A 、B 板间的电场中加速运动,在B 、C 板间的电场中减速运动,设A 、B 板闻的电压为U ,B 、C 板间的电场强度为E ,M 、P 两点间的距离为d ,则有eU -eEd =0,若将C 板向右平移到P ′点,B 、C 两板所带电荷量不变,由E =U d =Q C 0d =4πkQ εS可知,C 板向右平移到P ′时,B 、C 两板间的电场强度不变,由此可以判断,电子在A 、B 板间加速运动后,在B 、C 板间减速运动,到达P 点时速度为零,然后返回,A 项正确,B 、C 、D 项错误.6.(2017·河南郑州预测)等量异种点电荷在周围空间产生静电场,其连线(x 轴)上各点的电势φ随x 的分布图象如图所示.x 轴上AO <OB <,A 、O 、B 三点的电势分别为φA 、φO 、φB ,电场强度大小分别为E A 、E O 、E B ,电子在A 、O 、B 三点的电势能分别为E p A 、E p O 、E p B .下列判断正确的是( D )A .φB >φA >φOB .E A >E O >E BC .E p O <E p A <E p BD .E p B -E p O >E p O -E p A解析 正电荷周围电势较高,负电荷周围电势较低,φA >φO >φB ,选项A 错误;根据电场强度的合成可知B 点场强最大,O 点最小,选项B 错误;电子带负电.根据电势能E p =qφ,可知E p B 最大,E p A 最小,选项C 错误;由图象可知U OB >U AO ,根据电场力做功W =qU ,电子带负电,可知W BO >W OA ,即E p B -E p O >E p O -E p A ,故选项D 正确.7.(2017·湖北武汉调考)(多选)如图所示,水平放置的平行金属板A 、B 连接一恒定电压,两个质量相等的电荷M 和N 同时分别从极板A 的边缘和两极板的正中间沿水平方向进入板间电场,两电荷恰好在板间某点相遇,若不考虑电荷的重力和它们之间的相互作用,则下列说法正确的是( AC )A .电荷M 的电荷量大于电荷N 的电荷量B .两电荷在电场中运动的加速度相等C .从两电荷进入电场到两电荷相遇,电场力对电荷M 做的功大于电场力对电荷N 做的功D .电荷M 进入电场的初速度大小与电荷N 进入电场的初速度大小一定相同解析 从轨迹可以看出y M >y N ,故12·Uq M dm M t 2>12·Uq N dm N t 2,计算得出Uq M dm M >Uq N dm N ,q M >q N,选项A 正确,B 错误;根据动能定理,电场力的功为W =12m v 2y,质量m 相同,M 电荷竖直分位移大,竖直方向的末速度v y =2y t也大,故电场力对电荷M 做的功大于电场力对电荷N 做的功,选项C 正确;从轨迹可以看出x M >x N ,故v M >v N ,选项D 错误.8.(2017·宁夏银川模拟)(多选)一平行板电容器两极板的正对面积为S ,两极板间的距离为d .若两极板之间为空气,则电容为C .若将此电容器串联一个电阻R 后接到电动势为E 、内阻为r 的电源两端充电,如图所示.下列说法正确的是( BC )A .若保持开关闭合,增大d ,则极板带电荷量Q 不变B .若保持开关闭合,减小S ,则两极板之间的电场强度不变C .若断开开关,增大d ,则两极板之间的电场强度不变D .若断开开关,在两极板间插入云母片,两极板之间的电压不变解析 若保持开关闭合,则两极板之间的电压不变.增大d ,根据C =εr S 4πkd,可知电容减小,由C =Q U ,可知极板带电荷量Q 减小,选项A 错误.由E =U d可知,减小S ,则两极板之间的电场强度不变,选项B 正确.若断开开关,则极板带电荷量Q 不变,由E =U d =Q Cd=4πkQ εr S,可知增大d ,两极板之间的电场强度不变,选项C 正确.在两极板间插入云母片,电容增大,由C =Q U,可知两极板之间的电压减小,选项D 错误. 9.(2017·河北保定调研)(多选)在匀强电场中,一电荷量为+q 的粒子(不计重力)以初动能E 0由A 点沿某一方向射出;通过C 点时其动能为3E 0;若将该粒子还以初动能E 0由A 点沿另一方向射出,粒子通过B 点时动能为9E 0.如图所示,A 、B 、C 三点构成直角三角形且∠ABC = 30°,匀强电场平行于△ABC 所在平面.U AB 、U AC 分别表示A 、B 两点与A 、C 两点间电势差,已知AC =d ,下列说法正确的是( BC )A .U AC ∶U AB =1∶3B .U AC ∶U AB =1∶4C .匀强电场的电场强度大小为4E 0qdD .匀强电场沿BC 方向解析带电粒子由A 到C 的过程,由动能定理得qU AC =3E 0-E 0,带电粒子由A 到B 的过程,由动能定理得qU AB =9E 0-E 0,解得U AC ∶U AB =1∶4,选项A 错误,B 正确;由分析可知,C 点的电势比B 点的电势高,且在AB 上与C 点电势相等的点为D 点,D 点为AB 的四等分点,如图所示,由几何关系知CD ⊥AB ,因此电场强度的方向由A 指向B ,又AB =2d ,则E =U AB 2d =4E 0qd,选项C 正确,D 错误.10.(2017·河北石家庄二中模拟)(多选)如图所示在两个等量同种负点电荷连线的中垂面上以连线中点O 为圆心的两个同心圆,两圆上有a 、b 、c 、d 四个点,Oac 三点共线,则( BD )A .a 、c 两点的电场强度方向相同,大小不可能相等B .a 、b 两点的电势相同C .将带正电的试探电荷在平面内从b 移到d 点,电场力不做功D .带正电的试探电荷仅在电场力作用下在此平面内可能做匀速圆周运动解析 根据两个等量同种负点电荷电场线特点,a 、c 两点的电场强度方向相同,大小可能相等,选项A 错误;a 、b 两点在同一等势面上,两点的电势相同,选项B 正确;由于b 、d 两点不在同一等势面上,将带正电的试探电荷在平面内从b 移到d 点,电场力做负功,选项C 错误;在中垂面内带正电的试探电荷始终受到方向指向O 点的电场力,在此平面内可能做匀速圆周运动,选项D 正确.11.(2017·广西柳州模拟)(多选)如图甲所示,竖直极板A 、B 之间距离为d 1,电压为U 1,水平极板C 、D 之间距离为d 2,GH 为足够长的荧光屏,到极板C 、D 右侧的距离为L .极板C 、D 之间的电压如图乙所示.在A 板中央有一电子源,能不断产生速率几乎为零的电子.电子经极板A 、B 间电场加速后从极板B 中央的小孔射出,之后沿极板C 、D 的中心线射入极板C 、D 内.已知t =0时刻射入C 、D 间的电子经时间T 恰好能从极板C 的边缘飞出.不计阻力、电子的重力以及电子间的相互作用,下列说法正确的是( AC )A .电子在荧光屏上形成的亮线长度为d 23B .保持其他条件不变,只增大d 1,荧光屏上形成的亮线长度变长C .保持其他条件不变,只增大d 2,荧光屏上形成的亮线长度变短D .保持其他条件不变,只增大L ,荧光屏上形成的亮线长度变长解析 t =0时刻射入C 、D 间的电子,eU 22md 2⎝⎛⎭⎫T 22+eU 2md 2⎝⎛⎭⎫T 22=d 22,则t =T 2时刻射入C 、D 间的电子,eU 22md 2⎝⎛⎭⎫T 22=d 26,因为电子穿过C 、D 运动的时间相等,则出电场时竖直方向的速度恒定,所有电子均平行射出电场,故亮线长度为d 22-d 26=d 23,选项A 正确;若只增大d 1,则电子射入C 、D 间时的速度不变,荧光屏上形成的亮相长度不变,选项B 错误;若增大C 、D 间距离为d ′2,则有eU 22md ′2⎝⎛⎭⎫T 22+eU 2md ′2⎝⎛⎭⎫T 22=d 222d ′2和eU 22md ′2⎝⎛⎭⎫T 22=d 226d ′2,d 222d ′2-d 226d ′2=d 223d ′2<d 23,即荧光屏上形成的亮线长度变短,选项C 正确;因为电子均平行射出电场,故亮线长度与L 无关,选项D 错误.12.(2017·江苏南京模拟)(多选)一个带正电的试探电荷,仅在电场力作用下在x 轴上从-x 1向x 1运动,其速度v 随位置x 变化的图象如图所示,由图象可知( BD )A .电荷从x =-x 1运动到x =0的过程做匀减速直线运动B .从x =0到x =x 1,电场强度逐渐增大C .在x 轴上,x =0处电势最低D .从x =-x 1到x =x 1的过程中,电荷的电势能先增大后减小解析 速度随着位移逐渐减小,但不是匀减速直线运动,选项A 错误;从x =0到x =x 1,速度与位移成正比,速度的平方对位移求导表示加速度,所以电场强度逐渐增大,选项B 正确;从x =-x 1到x =x 1的过程中,动能先减小后增大,所以电荷的电势能先增大后减小,选项D 正确;在x 轴上,x =0处电势最高,选项C 错误.13.(2017·山西重点中学联考)如图所示为一多级加速器模型,一质量为m =1.0×10-3kg 、电荷量为q =8.0×10-5C 的带正电小球(可视为质点)通过1、2级无初速度地进入第3级加速电场,之后沿位于轴心的光滑浅槽,经过多级加速后从A 点水平抛出,恰好能从MN 板的中心小孔B 垂直金属板进入两板间,A 点在MN 板左端M 点正上方,倾斜平行金属板MN 、PQ 的长度均为L =1.0 m ,金属板与水平方向的夹角为θ=37°,sin 37°=0.6,cos 37°=0.8,重力加速度g =10 m/s 2.(1)忽略在加速级中带电小球重力的影响,求A 点到M 点的高度以及多级加速电场的总电压U ;(2)若该平行金属板间有图示方向的匀强电场,且电场强度大小E =100 V/m ,要使带电小球不打在PQ 板上,则两板间的距离d 至少要多长?解析 (1)设小球从A 点到B 点的运动时间为t 1,小球的初速度为v 0,A 点到M 点的高度为y ,则有v 0gt 1=tan θ, ① L 2cos θ=v 0t 1, ② y -L 2sin θ=12gt 21, ③联立①②③并代人数据解得v 0= 3 m/s ,y =1730m . ④ 带电小球在多级加速器加速的过程,根据动能定理有qU =12m v 20-0, ⑤代人数据解得U =18.75 V. (2)进入电场时,以沿板向下为x 轴正方向和垂直于板向下为y 轴正方向建立直角坐标系,将重力正交分解,则沿y 轴方向有F y =mg cos θ-qE =0,⑥ 沿x 轴方向有F x =mg sin θ, ⑦故小球进入电场后做类平抛运动,设刚好从P 点离开,则有F x =ma , ⑧L 2=12at 22, ⑨ d min =v 0sin θ t 2,○10 联立④⑦⑧⑨⑩并代人数据,解得d min =526 m , 即两板间的距离d 至少为526m. 答案 (1)18.75 V (2)526m 14.(2017·四川重点中学联考)如图,将一内壁光滑的绝缘细圆管做成的圆环BDC 固定在竖直面内,圆环的圆心为O ,D 为圆环的最低点,其中∠BOC =90°,圆环的半径为R =2L ,过OD 的虚线与过BC 的虚线垂直且交于点S ,虚线BC 的上方存在水平向右的范围足够大的匀强电场.圆心O 的正上方A 点有一质量为m 、带电荷量为-q 的绝缘小球(可视为质点),其直径略小于圆管内径,AS =L .现将该小球无初速度释放,经过一段时间小球刚好无碰撞地进入圆管中并继续在圆管中运动,重力加速度大小用g 表示.(1)求虚线BC 上方匀强电场的电场强度大小;(2)求当小球运动到圆环的最低点D 时对圆环压力的大小;(3)小球从管口C 离开后,经过一段时间后落到虚线BC 上的F 点(图中未标出),则C 、F 两点间的电势差为多大?解析 (1)小球被释放后在重力和电场力的作用下做匀加速直线运动,小球从B 点沿切线方向进入,则此时速度方向与竖直方向的夹角为45°,即加速度方向与竖直方向的夹角为45°,则tan 45°=mg Eq ,解得E =mg q. (2)小球从A 点到D 点的过程中,根据动能定理得12m v 2D-0=mg (2L +2L )+EqL , 当小球运动到圆环的最低点D 时,根据牛顿第二定律得F N -mg =m v 2D R,联立解得F N =3(2+1)mg , 根据牛顿第三定律得小球运动到圆环的最低点D 时对圆环的压力大小为3(2+1)mg .(3)小球从A 点到B 点的过程中,根据动能定理得12m v 2B=mgL +EqL ,解得v B =2gL , 小球从C 点抛出后做类平抛运动,抛出时的速度大小v C =v B =2gL ,小球的加速度大小g ′=2g .当小球沿抛出方向和垂直抛出方向的位移相等时,回到虚线BC 上,则有v C t =12g ′t 2,解得t =22L g, 则小球沿虚线BC 方向运动的位移 x CF =2v C t =2×2gL ×22L g=8L , 沿着电场线方向电势降低,则C 点与F 点间的电势差为U CF =-Ex CF =-8mgL q. 答案 (1)mg q (2)3(2+1)mg (3)-8mgL q15.(2017·安徽师大附中模拟)如图所示,在场强大小为E 、方向竖直向上的匀强电场内取一个半径为R 的圆周,圆周所在平面平行于电场方向,O 点为该圆周的圆心,A 点是圆周上的最低点,B 点是圆周上最右侧的点.在A 点有放射源,在圆周所在的平面内沿着垂直电场向右的方向释放出相同的粒子,这些粒子从A 点射出时的初速度大小各不相同,已知粒子的质量为m ,带电荷量为+q ,不计重力.(1)某一粒子运动轨迹经过圆周上的B 点,求该粒子从A 点射出时的初速度大小;(2)取圆周上的C 点,使OC 连线与OA 夹角为θ,试求出粒子经过C 点时的动能表达式;(3)若第(2)问中的C 点位置满足θ=60°,则从B 、C 之间穿过圆周的这些粒子中经过圆周时所获得的最大动能和最小动能分别是多少?解析 (1)根据牛顿第二定律得a =qE m, 水平方向有R =v 0t ,竖直方向有R =12at 2, 联立解得v 0=qER 2m. (2)水平方向有R sin θ=v 0t ,竖直方向有R -R cos θ=12at 2, 得v 20=qER sin 2θ2m (1-cos θ), 12v 20=qER sin 2θ4(1-cos θ)=qER (1+cos θ)4, 经过C 点时的动能E k =Eq (R -R cos θ)+12m v 20=14EqR (5-3cos θ). (3)由(2)中的结论可以看出,当θ从0°变化到180°时,电荷经过圆周时的动能逐渐增大,因此穿过C 点的电荷的末动能最小,穿过B 点的电荷的末动能最大E k C =14EqR (5-3cos 60°)=78EqR , E k B =14EqR (5-3cos 90°)=54EqR . 答案 (1)qER 2m (2)3m v 202qL (3)见解析。