2014人教A版数学必修五 3.1《不等关系与不等式》(2)导学案
高中数学3.1《不等关系与不等式》导学案新人教A版必修5

?不等关系与不等式〔1〕?导学案【学习目标】1.了解现实世界和日常生活中存在着的不等关系;2.会从实际问题中找出不等关系,并能列出不等式与不等式组.【重点难点】比较大小的根本步骤及其应用【知识链接】复习1:写出一个以前所学的不等关系_________复习2:用不等式表示,某地规定本地最低生活保障金x不低于400元______________________【学习过程】※学习探究探究1:文字语言数学符号文字语言数学符号大于至多小于至少大于等于不少于小于等于不多于探究2:限速40km/h的路标,指示司机在前方路段行驶时,应使汽车的速度v不超过40km/h,写成不等式就是_______________某品牌酸奶的质量检查规定,酸奶中脂肪的含量p应不少于2.5%,蛋白质的含量q应不少于2.3%,写成不等式组就是_________________※典型例题例1 设点A与平面的距离为d,B为平面上的任意一点,那么其中不等关系有 ______________例2某种杂志原以每本元的价格销售,可以售出8万本.据市场调查,假设单价每提高元,销售量就可能相应减少2000本.假设把提价后杂志的定价设为x元,怎样用不等式表示销售的总收入仍不低于20万元呢?例3某钢铁厂要把长度为4000mm的钢管截成500mm和600mm两种.按照生产的要求,600mm的数量不能超过500mm钢管的3倍.怎样写出满足所有上述不等关系的不等式呢?※动手试试练1.用不等式表示下面的不等关系:1〕a与b的和是非负数_________________2〕某公路立交桥对通过车辆的高度h“限高4m〞_____________________(3)如图(见课本74页),在一个面积为350的矩形地基上建造一个仓库,四周是绿地,仓库的长L大于宽W的4倍练2.有一个两位数大于50而小于60,其个位数字比十位数大2.试用不等式表示上述关系,并求出这个两位数(用a和b分别表示这个两位数的十位数字和个位数字).【学习反思】※学习小结1.会用不等式〔组〕表示实际问题的不等关系;2.会用不等式〔组〕研究含有不等关系的问题.※知识拓展“等量关系〞和“不等量关系〞是“数学王国〞的两根最为重要的“支柱〞,相比较其它一些科学王国来说,“证明精神〞可以说是“数学王国〞的“血液和灵魂〞.【根底达标】※自我评价你完本钱节导学案的情况为〔〕.A. 很好B. 较好C. 一般D. 较差※当堂检测〔时量:5分钟总分值:10分〕计分:1. 以下不等式中不成立的是〔〕.A.12B.12C.11D.122 .用不等式表示,某厂最低月生活费a不低于300元〔〕. A.a300B.a300C.a300D.a3003.ab0,b 0,那么a,b,a,b的大小关系是〔〕.A.abb a B.ab abC.a bb a D.abab用不等式表示:a与b的积是非正数___________用不等式表示:某学校规定学生离校时间t在16点到18点之间_______________________【拓展提升】某夏令营有48人,出发前要从A、B两种型号的帐篷中选择一种.A型号的帐篷比B型号的少5顶.假设只选A型号的,每顶帐篷住4人,那么帐篷不够;每顶帐篷住5人,那么有一顶帐篷没有住满.假设只选B型号的,每顶帐篷住3人,那么帐篷不够;每顶帐篷住4人,那么有帐篷多余.设A型号的帐篷有x顶,用不等式将题目中的不等关系表示出来.2.某正版光碟,假设售20元/本,可以发10张,售价每体2元,发行量就减5000张,如价行高少何定价可使销售总收入不低于224万元?。
高中数学 3.1不等式与不等关系 精品导学案 新人教A版必修5

湖南省邵阳市隆回县第二中学高中数学 3.1不等式与不等关系导学案 新人教A 版必修5【学习目标】(1)通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景;(2)经历由实际问题建立数学模型的过程,体会其基本方法; (3)掌握作差比较法判断两实数或代数式大小;(4)通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯. 【自主学习】阅读教材P72—73,独立完成下列问题:1、表示 关系的式子叫做不等式,常用符号 表示不等关系.2、比较两实数大小的方法——作差比较法:a-b>0 ⇔ a b a-b<0 ⇔ a b a-b=0 ⇔ a b3、比较(3)(5)a a +-与(2)(4)a a +-的大小;【合作探究】1、某杂志以每本2元的价格发行时,发行量为10万册.经过调查,若价格每提高0.2元,发行量就减少5000册.(1)若设每本杂志价格提高x 元,怎样用不等式表示销售收入大于22.4万元呢?(2)若设提价后杂志的定价为x 元,又怎样用不等式表示销售收入大于22.4万元呢?2、某校学生以面粉和大米为主食.已知面食每100克含蛋白质6个单位,含淀粉4个单位;米饭每100克含蛋白质3个单位,含淀粉7个单位.某快餐公司给学生配餐,现要求每盒至少含8个单位的蛋白质和10个单位的淀粉.设每盒快餐需面食x 百克、米饭y 百克,试写出,x y 满足的条件.【目标检测】(A 级、全体学生做) 1、用不等式表示下面的不等关系: (1)a 与b 的和是非负数;(2)某公路立交桥对通过车辆的高度h “限高4m ”;(3)在一个面积为350m 2的矩形地基上建造一个仓库,四周各留5m 的绿地,仓库的长L 大于宽W 的4倍;2、比较2)6()7)(5(+++x x x 与 的大小;(B 级选做题)某企业生产A 、B 两种产品,生产每一吨产品所需的劳动力、煤和电耗如下表:产品品种劳动力(个)煤(吨)电(千瓦)A 产品 3 9 4B 产品1045现因条件限制,该企业仅有劳动力300个,煤360吨,并且供电局只能供电200千瓦,设A,B 这两种产品各x 吨,y 吨,那么x ,y 应满足怎样的关系?学习反思:本节课我学到了什么?本节课我的学习效率如何?本节课还有哪些没学懂?§3.1不等式与不等关系(第2课时)【学习目标】(1)使学生掌握常用不等式的基本基本性质; (2)会将一些基本性质结合起来应用.(3)学习如何利用不等式的有关基本性质研究不等关系. 【自主学习】任务一:请同学们回忆初中不等式的的基本性质(1)不等式的两边同时加上或减去______ _____,不等号的方向____________; (2)不等式的两边同时乘以或除以____________,不等号的方向____________; (3)不等式的两边同时乘以或除以____________,不等号的方向____________。
人教A版高中数学必修五河北省张家口第三章不等关系与不等式学案

3.1 不等关系与不等式(一)一、教学目标1.通过具体实例使学生感受到在现实世界和日常生活中存在着大量的不等关系,在学生了解了一些不等式(组)产生的实际背景的前提下,能列出不等式与不等式组,解决实际问题。
让学生学会用数学思想来思考问题,用数学知识来解决问题。
2. 掌握实数的运算性质与大小顺序之间的关系,学会比较两个代数式的大小.3. 培养学生转化的数学思想和逻辑推理能力。
二、教学重、难点用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题,理解不等式(组)对于刻画不等关系的意义和价值。
差值比较法:作差→变形→判断差三、教学过程(一)[创设问题情境]下面的几个不等关系用什么样的不等词表示?能用简洁的数学符号表示吗?你还能列举出你周围日常生活中的不等关系吗?1. 限速40km/h 的路标,表示汽车的速度v 不超过40km/h 。
2. 某品牌酸奶的质量检查规定,酸奶中脂肪的含量应不少于2.5%,蛋白质的含量应不少于2.3%。
3. a 与b 的和是非负数。
4. 大圆1O 的半径为R ,小圆2O 的半径为r ,两圆的圆心距为d ,若两圆相交,则d 需要满足什么条件?5. 某种杂志原以每本2.5元的价格销售,可以售出8万本。
根据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本。
若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元?6. 某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 两种,按照生产的要求,600mm 钢管的数量不能超过500mm 钢管的3倍。
7. 某厂使用两种零件A 、B,装配两种产品甲乙,该厂的生产能力是甲月产量最多2500件,乙月产量最多1200件,而组装一件产品,甲需要4个A ,2个B ;乙需要6个A ,8个B 。
某个月,该厂能用的A 最多有14000个,B 最多有12000个,用不等式将甲乙两种产品产量之间的关系表示出来。
人教版高中数学必修五 第三章3.1第2课时不等式的性质与应用

第三章 不等式 3.1 不等关系与不等式 第2课时不等式的性质与应用A 级 基础巩固一、选择题1.若a >0,b >0,则不等式-b <1x <a 等价于( )A .-1b <x <0或0<x <1aB .-1a <x <1bC .x <-1a 或x >1bD .x <-1b 或x >1a解析:由题意知a >0,b >0,x ≠0, (1)当x >0时,-b <1x <a ⇔x >1a ;(2)当x <0时,-b <1x <a ⇔x <-1b.综上所述,不等式-b <1x <a ⇔x <-1b 或x >1a .答案:D2.设0<b <a <1,则下列不等式成立的是( ) A .ab <b 2<1 B .log 12b <log 12a <0C .2b <2a <2D .a 2<ab <1答案:C3.已知实数x,y,满足-4≤x-y≤-1,-1≤4x-y≤5,则9x-y 的取值范围是()A.[-7,26] B.[-1,20]C.[4,15] D.[1,15]答案:B4.已知a<b<0,那么下列不等式成立的是()A.a3<b3B.a2<b2C.(-a)3<(-b)3D.(-a)2<(-b)2解析:取a=-2.b=-1.验证知B,C,D均错,故选A.答案:A5.如下图所示,y=f(x)反映了某公司的销售收入y与销量x之间的函数关系,y=g(x)反映了该公司产品的销售成本与销售量之间的函数关系,当销量x满足下列哪个条件时,该公司盈利()A.x>a B.x<aC.x≥a D.0≤x≤a解析:当x<a时,f(x)<g(x);当x=a时,f(x)=g(x);当x>a 时,f(x)>g(x),故选A.答案:A二、填空题6.若x>y,a>b,则在①a-x>b-y,②a+x>b+y,③ax>by,④x-b>y-a这四个式子中,恒成立的序号是________. 答案:②④7.若角α,β满足-π2<α<β<π3,则α-β的取值范围是________.答案:(-56π,0)8.设x >1,-1<y <0,试将x ,y ,-y 按从小到大的顺序排列如下________.答案:y <-y <x 三、解答题9.已知a >b >0,c <d <0,判断b a -c 与ab -d 的大小.解:因为a >b >0,c <d <0,所以-c >-d >0,所以a -c >b -d >0, 所以0<1a -c <1b -d,又因为a >b >0,所以b a -c <ab -d.10.已知0<x <1,0<a <1,试比较|log a (1-x )|和 |log a (1+x )|的大小.解:法一:|log a (1-x )|2-|log a (1+x )|2=[log a (1-x )+log a (1+x )]·[log a (1-x )-log a (1+x )]=log a (1-x )2log a 1-x 1+x.因为0<1-x 2<1,0<1-x1+x<1,所以log a (1-x 2)log a 1-x1+x>0.所以|log a (1-x )|>|log a (1+x )|.法二:⎪⎪⎪⎪⎪⎪log a (1-x )log a (1+x )=|log 1+x (1-x )|= -log 1+x (1-x )=log 1+x 11-x =log 1+x 1+x 1-x 2=1-log 1+x (1-x 2). 因为0<1-x 2<1,1+x >1, 所以log 1+x (1-x 2)<0. 所以1-log 1+x (1-x 2)>1. 所以|log a (1-x )|>|log a (1+x )|. 法三:因为0<x <1,所以0<1-x <1,1<1+x <2, 所以log a (1-x )>0,log a (1+x )<0. 所以|log a (1-x )|-|log a (1+x )|= log a (1-x )+log a (1+x )=log a (1-x 2). 因为0<1-x 2<1,且0<a <1, 所以log a (1-x 2)>0.所以|log a (1-x )|>|log a (1+x )|.B 级 能力提升1.对下列不等式的推论中: ①a >b ⇒c -a >c -b ; ②a >b +c ⇒(a -c )2>b 2; ③a >b ⇒ac >bc ;④a >b >c >0⇒(a -c )b >(b -c )b ;⑤a >b ,1a >1b ⇒a >0,b <0.其中正确的个数是( ) A .2 B .3 C .4 D .5 答案:A2.若-2<c <-1<a <b <1,则(c -a )(a -b )的取值范围为________.答案:(0,6)3.若二次函数f (x )的图象关于y 轴对称,且1≤f (1)≤2;3≤f (2)≤4,求f (3)的取值范围.解:由题意设f (x )=ax 2+c (a ≠0),则⎩⎪⎨⎪⎧f (1)=a +c ,f (2)=4a +c ,所以⎩⎨⎧a =f (2)-f (1)3,c =4f (1)-f (2)3,而f (3)=9a +c =3f (2)-3f (1)+4f (1)-f (2)3=8f (2)-5f (1)3,因为1≤f (1)≤2,3≤f (2)≤4, 所以5≤5f (1)≤10,24≤8f (2)≤32, 所以-10≤-5f (1)≤-5, 所以14≤8f (2)-5f (1)≤27, 所以143≤8f (2)-5f (1)3≤9,即143≤f (3)≤9.。
高三数学必修五《不等关系与不等式》教案

高三数学必修五《不等关系与不等式》教案【导语】高考竞争异常激烈,千军万马争过独木桥,秋天到了,而你正以凌厉的步伐迈进这段特别的岁月中。
这是一段青涩而又平淡的日子,每个人都隐身于高考,而平淡之中的张力却只有真正的勇士才可以破译。
为了助你一臂之力,无忧考网高中频道为你精心准备了《高三数学必修五《不等关系与不等式》教案》助你金榜题名!教案【一】整体设计教学分析本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.通过本节课的学习,让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程.即能用不等式或不等式组把这些不等关系表示出来.在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上点的一一对应关系,从数与形两方面建立实数的顺序关系.要在温故知新的基础上提高学生对不等式的认识.三维目标1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系.2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围.3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美.重点难点教学重点:比较实数与代数式的大小关系,判断二次式的大小和范围.教学难点:准确比较两个代数式的大小.课时安排1课时教学过程导入新课思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.这些不等关系怎样在数学上表示出来呢?让学生自由地展开联想,教师组织不等关系的相关素材,让学生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课.推进新课新知探究提出问题1回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式研究及表示不等关系?2在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗?3数轴上的任意两点与对应的两实数具有怎样的关系?4任意两个实数具有怎样的关系?用逻辑用语怎样表达这个关系?活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“<”“≠”“≥”“≤”表示,而不等式则是表示两者的不等关系,可用“a>b”“a教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系.在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容.实例1:某天的天气预报报道,气温32℃,最低气温26℃.实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则xA实例3:若一个数是非负数,则这个数大于或等于零.实例4:两点之间线段最短.实例5:三角形两边之和大于第三边,两边之差小于第三边.实例6:限速40km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40km/h.实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.教师进一步点拨:能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢?学生很容易想到,用不等式或不等式组来表示这些不等关系.那么不等式就是用不等号将两个代数式连结起来所成的式子.如-7<-5,3+4>1+4,2x≤6,a+2≥0,3≠4,0≤5等.教师引导学生将上述的7个实例用不等式表示出来.实例1,若用t表示某天的气温,则26℃≤t≤32℃.实例3,若用x表示一个非负数,则x≥0.实例5,|AC|+|BC|>|AB|,如下图.|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.|AB|-|BC|<|AC|、|AC|-|BC|<|AB|、|AB|-|AC|<|BC|.交换被减数与减数的位置也可以.实例6,若用v表示速度,则v≤40km/h.实例7,f≥2.5%,p≥2.3%.对于实例7,教师应点拨学生注意酸奶中的脂肪含量与蛋白质含量需同时满足,避免写成f≥2.5%或p≥2.3%,这是不对的.但可表示为f≥2.5%且p≥2.3%.对以上问题,教师让学生轮流回答,再用投影仪给出课本上的两个结论.讨论结果:(1)(2)略;(3)数轴上任意两点中,右边点对应的实数比左边点对应的实数大.(4)对于任意两个实数a和b,在a=b,a>b,a0��a>b;a-b=0��a=b;a-b<0��a应用示例例1(教材本节例1和例2)活动:通过两例让学生熟悉两个代数式的大小比较的基本方法:作差,配方法.点评:本节两例的求解,是借助因式分解和应用配方法完成的,这两种方法是代数式变形时经常使用的方法,应让学生熟练掌握.变式训练1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系是()A.f(x)>g(x)B.f(x)=g(x)C.f(x)答案:A解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).2.已知x≠0,比较(x2+1)2与x4+x2+1的大小.解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.∵x≠0,得x2>0.从而(x2+1)2>x4+x2+1.例2比较下列各组数的大小(a≠b).(1)a+b2与21a+1b(a>0,b>0);(2)a4-b4与4a3(a-b).活动:比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定.本例可由学生独立完成,但要点拨学生在最后的符号判断说理中,要理由充分,不可忽略这点.解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].∵2a2+(a+b)2≥0(当且仅当a=b=0时取等号),又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]<0.∴a4-b4<4a3(a-b).点评:比较大小常用作差法,一般步骤是作差――变形――判断符号.变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用.变式训练已知x>y,且y≠0,比较xy与1的大小.活动:要比较任意两个数或式的大小关系,只需确定它们的差与0的大小关系.解:xy-1=x-yy.∵x>y,∴x-y>0.当y<0时,x-yy<0,即xy-1<0.∴xy<1;当y>0时,x-yy>0,即xy-1>0.∴xy>1.点评:当字母y取不同范围的值时,差xy-1的正负情况不同,所以需对y分类讨论.例3建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了?请说明理由.活动:解题关键首先是把文字语言转换成数学语言,然后比较前后比值的大小,采用作差法.解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为m,根据问题的要求a由于a+mb+m-ab=m b-a b b+m>0,于是a+mb+m>ab.又ab≥10%,因此a+mb+m>ab≥10%.所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.点评:一般地,设a、b为正实数,且a0,则a+mb+m>ab.变式训练已知a1,a2,…为各项都大于零的等比数列,公比q≠1,则()A.a1+a8>a4+a5B.a1+a8C.a1+a8=a4+a5D.a1+a8与a4+a5大小不确定答案:A解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).∵{an}各项都大于零,∴q>0,即1+q>0.又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.知能训练1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的个数为()A.3B.2C.1D.02.比较2x2+5x+9与x2+5x+6的大小.答案:1.C解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,③x2+y2-2xy=(x-y)2≥0.∴只有①恒成立.2.解:因为2x2+5x+9-(x2+5x+6)=x2+3>0,所以2x2+5x+9>x2+5x+6.课堂小结1.教师与学生共同完成本节课的小结,从实数的基本性质的回顾,到两个实数大小的比较方法;从例题的活动探究点评,到紧跟着的变式训练,让学生去繁就简,联系旧知,将本节课所学纳入已有的知识体系中.2.教师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方.鼓励学有余力的学生对节末的思考与讨论在课后作进一步的探究.作业习题3―1A组3;习题3―1B组2.设计感想1.本节设计关注了教学方法的优化.经验告诉我们:课堂上应根据具体情况,选择、设计最能体现教学规律的教学过程,不宜长期使用一种固定的教学方法,或原封不动地照搬一种实验模式.各种教学方法中,没有一种能很好地适应一切教学活动.也就是说,世上没有万能的教学方法.针对个性,灵活变化,因材施教才是成功的施教灵药.2.本节设计注重了难度控制.不等式内容应用面广,可以说与其他所有内容都有交汇,历来是高考的重点与热点.作为本章开始,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响.3.本节设计关注了学生思维能力的训练.训练学生的思维能力,提升思维的品质,是数学教师直面的重要课题,也是中学数学教育的主线.采用一题多解有助于思维的发散性及灵活性,克服思维的僵化.变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升.备课资料备用习题1.比较(x-3)2与(x-2)(x-4)的大小.2.试判断下列各对整式的大小:(1)m2-2m+5和-2m+5;(2)a2-4a+3和-4a+1.3.已知x>0,求证:1+x2>1+x.4.若x5.设a>0,b>0,且a≠b,试比较aabb与abba的大小.参考答案:1.解:∵(x-3)2-(x-2)(x-4)=(x2-6x+9)-(x2-6x+8)=1>0,∴(x-3)2>(x-2)(x-4).2.解:(1)(m2-2m+5)-(-2m+5)=m2-2m+5+2m-5=m2.∵m2≥0,∴(m2-2m+5)-(-2m+5)≥0.∴m2-2m+5≥-2m+5.(2)(a2-4a+3)-(-4a+1)=a2-4a+3+4a-1=a2+2.∵a2≥0,∴a2+2≥2>0.∴a2-4a+3>-4a+1.3.证明:∵(1+x2)2-(1+x)2=1+x+x24-(x+1)=x24,又∵x>0,∴x24>0.∴(1+x2)2>(1+x)2.由x>0,得1+x2>1+x.4.解:(x2+y2)(x-y)-(x2-y2)(x+y)=(x-y)[(x2+y2)-(x+y)2]=-2xy(x-y).∵x0,x-y<0.∴-2xy(x-y)>0.∴(x2+y2)(x-y)>(x2-y2)(x+y).5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a≠b,当a>b>0时,ab>1,a-b>0,则(ab)a-b>1,于是aabb>abba.当b>a>0时,0则(ab)a-b>1.于是aabb>abba.综上所述,对于不相等的正数a、b,都有aabb>abba. 教案【二】教学准备教学目标熟练掌握不等式的证明问题教学重难点熟练掌握不等式的证明问题教学过程不等式的�C明二【基�A��】1.若,,�t下列不等始�K正�_的是()2.�Oa,b����担�且,�t的最小值是()4.求�C:�θ魏问��x,y,z,下述三��不等式不可能同�r成立。
【教材分析与导入设计】2014年高中数学必修5(人教A版)第三章 【精品课件】3.1 不等式与不等关系

1、今天的天气预报说:明天白天的最高 温度为13℃;
白天的气温t与13℃之间存在不等关系
t≤13℃ 2、a是一个非负实数。 a≥0
a 的取值与0之间存在不等关系
3、右图是限速40km/h的路标,指示 司机在前方路段行驶时,应使汽车的 速度v不超过40km/h 。 汽车的速度v 与40km/h之间存在不等关系
引例:
1、三角形三边之间的关系。
2、同班同学身高之间的关系。 3、公路上各种车辆的速度之间的关系。
同学们,你能不能再举出一些 存在着不等关系的例子呢?
请同学们指出下列问题中哪两者之间存在着不等 关系?
1、今天的天气预报说:明天白天的最高 温度为13℃;
白天的气温t与13℃之间存在不等关系
2、a是一个非负实数。
分析:设甲、乙两种产品产量分别为x,y件,则
感悟体验5、某厂使用两种零件A、B,装配两种产
甲x 需要A 需要B 限制 4x 2x 2500
乙y 6y 8y 1200
限制 14000 12000
由表格可知
0 x 2500 0 y 1200 4 x 6 y 14000 2 x 8 y 12000
说明: 1、分析好各不等关系的内在联系,是用 不等式(组)表示不等关系的前提。 2、在不等关系不容易提炼的情况下,可 以借助表格使问题明朗化。
感悟体验4 某钢铁厂要把长度为4000mm的钢 管截成500mm和600mm的两种规格。按照生产 的要求,600mm的钢管的数量不能超过500mm 钢管的3倍。怎样写出满足上述所有不等关系 的不等式呢?
a 的取值与0之间存在不等关系
3、右图是限速40km/h的路标,指示 司机在前方路段行驶时,应使汽车的 速度v不超过40km/h 。 汽车的速度v 与40km/h之间存在不等关系
2014年人教A版必修五课件 3.1 不等关系与不等式

例(补充). 用不等式表示下面的不等关系: (3) 某钢铁厂要把长度为 4000 mm 的钢管截成 500 mm 和 600 mm 两种. 按照生产的要求, 600 mm 钢管的数量 x 不能超过 500 mm 钢管数 y 的 3 倍. 写 出满足上述所有不等关系的不等式. 解: ① 600 mm 钢管数 x 不能超过 500 mm 钢管 数 y 的 3 倍: x≤3y, ② 总长度不能大于 4000 mm: 600x500y≤4000 x 3 y, ③ 钢管数不能为负: 600x 500 y 4000, x≥0, y≥0, x 0, 由①②③得: y 0.
2. 有一个两位数大于50而小于60, 其个位数字 比十位数字大 2. 试用不等式表示上述关系, 并求出 这个两位数 (用 a 和 b 分别表示这个两位数的十位数 字和个位数字). 解: 10ab>50, ① 10ab<60, ② ③ b=a2. 48 ; a ③代入①得 ④ 11 58 ③代入②得 a . ⑤ 11 由④⑤得 a = 5, 则 b = 7. ∴这个两位数是 57.
f 2.5%, p 2.3%.
Hale Waihona Puke 例(补充). 用不等式表示下面的不等关系: (1) 设点 A 与平面 a 的距离为 d, B 为平面 a 上 任意一点, 写出 |AB| 与 d 的大小关系. (2) 某种杂志原以每本 2.5 元的价格销售, 可以售 出 8 万本. 据市场调查, 若单价每提高 0.1 元, 销售 量就可能相应减少 2000本. 若把提价后杂志的定价设 为 x 元, 写出销售的总收入不低于20万元的不等式. (3) 某钢铁厂要把长度为 4000 mm 的钢管截成 500 mm 和 600 mm 两种. 按照生产的要求, 600 mm 钢管的数量不能超过 500 mm 钢管的 3 倍. 写出满足 上述所有不等关系的不等式.
人教A版高中数学必修5教案3.1不等关系与不等式(2)

例2:如果30<x<42,16<y<24,求x+y,x-2y及 的取值范围.
∵30<x<42,16<y<24∴-48<-2y<-32,
∴30+16<x+y<42+24即46<x+y<66;
∴30-48<x-2y<42-32即-18<x-2y<10;
例3.已知 ,求 的取值范围。
(三)随堂练习1、教材P74面第3题
A. B. C. D.
6. ,则 的取值范围是(B)
A. B.
C. D.
(四)小结:不等式的性质及其证明,利用不等式的基本性质证明不等式。
(五)作业:
板书设计:
教学后记:
2、回答下列问题:
(1)如果a>b,c>d,是否可以推出ac>bd?举例说明;
(2)如果a>b,c<d,且c≠0,d≠0,是否可以推出 ?举例说明.
3.若 ,则下列不等式总成立的是(C)
A. B。 C。 D。
4.有以下四个条件: (3) ;(4)
其中能使 成立的有3个
5.若a、b、c ,a>b,则下列不等式成立的是(C)
(1)若a>b,则a+c>b+c,a-c>b-c;
(2)若a>b,c>0,则ac>bc, > ;
(3)若a>b,c<0,则ac<bc, < ..
(二)新授
常用的不等式的基本性质
(1) (对称性)(2) (传递性)
(3) (可加性)
(4) ; (可乘性)
(5) (同向不等式的可乘性)
(6) (可乘方性、们学过的不等式的基本性质是什么?
基本性质1不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.
基本性质2不等式两边都乘(或除以)同一个正数,不等号的方向不变.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1 《不等关系与不等式(2)》导学案
1. 掌握不等式的基本性质;
2. 会用不等式的性质证明简单的不等式;
3. 会将一些基本性质结合起来应用. 【重点难点】
比较大小的基本步骤及其应用
【知识链接】
1.设点A 与平面α之间的距离为d ,B 为平面α上任意一点,则点A 与平面α的距离小于或等于A 、B 两点间的距离,请将上述不等关系写成不等式.
2.在初中,我们已经学习过不等式的一些基本性质. 请同学们回忆初中不等式的的基本性质.
(1),___a b b c a c >>⇒
(2)____a b a c b c >⇒++
(3),0____a b c ac bc >>⇒
(4),0____a b c ac bc ><⇒
【学习过程】
※ 学习探究
问题1:如何比较两个实数的大小.
问题2:同学们能证明
以上的不等式的基本性质吗?并利用以上基本性质,证明不等式的下列性质:
(1),;
(2)0,0;
(3)0,,1n n a b c d a c b d a b c d ac bd a b n N n a b >>⇒+>+>>>>⇒>>>∈>⇒>
※ 典型例题
例1 比较大小:
(1)2 6+(2)2 21);(3
;
(4)当0a b >>时,12log a _______12log b .
变式:比较(3)(5)a a +-与(2)(4)a a +-的大小.
例2 已知0,0,a b c >><求证c c a b
>.
变式: 已知0a b >>,0c d >>
例3已知1260,1536,a a b a b b
<<<<-求及的取值范围.
变式:已知41,145a b a b -≤-≤--≤-≤,求9a b -的取值范围.
※ 动手试试
练1. 用不等号“>”或“<”填空:
(1),____a b c d a c b d ><⇒--;(2)0,0____a b c d ac bd >><<⇒;
(3)0a b >>;(4)22110___a b a b >>⇒
.
练2. 已知x >012
x +.
【学习反思】
※ 学习小结
本节课学习了不等式的性质,并用不等式的性质证明了一些简单的不等式,还研究了如何比较两个实数(代数式)的大小——作差法,其具体解题步骤可归纳为: 第一步:作差并化简,其目标应是n 个因式之积或完全平方式或常数的形式;
第二步:判断差值与零的大小关系,必要时须进行讨论;
第三步:得出结论.
※ 知识拓展
“作差法”、“作商法”比较两个实数的大小
(1)作差法的一般步骤:
作差——变形——判号——定论
(2)作商法的一般步骤: 1比较大小——定论
).
A. 很好
B. 较好
C. 一般
D. 较差
※ 当堂检测(时量:5分钟 满分:10分)计分:
1. 若2()31f x x x =-+,2()21g x x x =+-,则()f x 与()g x 的大小关系为( ).
A .()()f x g x >
B .()()f x g x =
C .()()f x g x <
D .随x 值变化而变化
2. 已知0x a <<,则一定成立的不等式是( ).
A .220x a <<
B .22x ax a >>
C .20x ax <<
D .22x a ax >>
3. 已知22ππαβ-≤<≤,则2αβ-的范围是( ). A .(,0)2π- B .[,0]2π- C .(,0]2π- D .[,0)2
π- 4. 如果a b >,有下列不等式:①22a b >,②11a b
<,③33a b >,④lg lg a b >,其中成立的是 .
5. 设0a <,10b -<<,则2,,a ab ab 三者的大小关系为 .
.。