《幂函数》PPT课件
合集下载
幂函数课件(优质课)(共20张PPT)

1 x ④y ( ) 否 2
③y x 2 x 否
⑤y x 0 是
2 2
⑥y 1 否
2、若函数 f ( x) (a 3a 3) x 是幂函数,求a的值。 -1或4 规律
x 的系数是1
底数是单一的x 指数是常数
总结
幂函数的定义 幂函数的定义:一般地函数 y 其中x是自变量,α是常数。
上是增函数,0.5< 3 ∴ ∴ ( )2 (
3 2 3 ∴( ) ( ) 底数相同,若指数相同利用幂函数的
9 10
9 10
1.40.5 1.4 3
5
) 2∴ ( ) 2 ( ) 3 10 5 10
课堂练习 1、下列函数不是幂函数的是( c )
3 1 A y x B y x C y 2x D y x
定义域
y x2
R
(0,+∞)
O
x
值域
奇偶性
偶
单调性(-∞,0)减
(0,+∞)增
y
y x3
函数
y x3
定义域 R
O
x
值域
R
奇偶性 奇
单调性 增
y
1 x2
y
函数
y
1 x2
定义域 [0,+∞)
O
x
值域
[0,+∞)
奇偶性 非奇非偶
单调性
增
幂函数的性质
函数 定义域 值域 奇偶性
yx
yx
5
(
9 10
1 )3
9 2 (4)取中间量 ( ) ,∵函数 9 x 10 y ( ) 在R 上是增函数
③y x 2 x 否
⑤y x 0 是
2 2
⑥y 1 否
2、若函数 f ( x) (a 3a 3) x 是幂函数,求a的值。 -1或4 规律
x 的系数是1
底数是单一的x 指数是常数
总结
幂函数的定义 幂函数的定义:一般地函数 y 其中x是自变量,α是常数。
上是增函数,0.5< 3 ∴ ∴ ( )2 (
3 2 3 ∴( ) ( ) 底数相同,若指数相同利用幂函数的
9 10
9 10
1.40.5 1.4 3
5
) 2∴ ( ) 2 ( ) 3 10 5 10
课堂练习 1、下列函数不是幂函数的是( c )
3 1 A y x B y x C y 2x D y x
定义域
y x2
R
(0,+∞)
O
x
值域
奇偶性
偶
单调性(-∞,0)减
(0,+∞)增
y
y x3
函数
y x3
定义域 R
O
x
值域
R
奇偶性 奇
单调性 增
y
1 x2
y
函数
y
1 x2
定义域 [0,+∞)
O
x
值域
[0,+∞)
奇偶性 非奇非偶
单调性
增
幂函数的性质
函数 定义域 值域 奇偶性
yx
yx
5
(
9 10
1 )3
9 2 (4)取中间量 ( ) ,∵函数 9 x 10 y ( ) 在R 上是增函数
3.3幂函数(共43张PPT)

解决幂函数图象问题应把握的原则 (1)依据图象高低判断幂指数大小,相关结论为:①在(0,1)上,指数越大, 幂函数图象越靠近 x 轴(简记为指大图低);②在(1,+∞)上,指数越大,幂 函数图象越远离 x 轴(简记为指大图高). (2)依据图象确定幂指数 α 与 0,1 的大小关系,即根据幂函数在第一象限内 的图象(类似于 y=x-1 或 y=x12或 y=x3)来判断.
()
解析:选 D.由题意设 f(x)=xn, 因为函数 f(x)的图象经过点(3, 3), 所以 3=3n,解得 n=12, 即 f(x)= x, 所以 f(x)既不是奇函数,也不是偶函数, 且在(0,+∞)上是增函数,故选 D.
4.函数 y=x-3 在区间[-4,-2]上的最小值是_____________. 解析:因为函数 y=x-3=x13在(-∞,0)上单调递减, 所以当 x=-2 时,ymin=(-2)-3=(-12)3=-18. 答案:-18
B.-3 D.3
()
【解析】 (1)②⑦中自变量 x 在指数的位置,③中系数不是 1,④中解析式 为多项式,⑤中底数不是自变量本身,所以只有①⑥是幂函数.
(2)因为函数 y=(m2+2m-2)xm 为幂函数且在第一象限为增函数,所以 m2+2m-2=1, m>0, 所以 m=1.
【答案】 (1)B (2)A
所以( 2)-32>( 3)-32.
6
6
6
6
(3)因为 y=x5为 R 上的偶函数,所以(-0.31)5=0.315.又函数 y=x5为[0,
+∞)上的增函数,且 0.31<0.35,
6
6
6
6
所以 0.315<0.355,即(-0.31)5<0.355.
《幂函数》新教材PPT完美课件

第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T) 第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T)
第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T) 第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T)
第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T) 第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T)
பைடு நூலகம்
第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T) 第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T)
第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T) 第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T)
第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T) 第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T)
第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T) 第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T)
幂函数-课件ppt

5.已知点 33,3 3在幂函数 f(x)的图象上,则 f(x)的定义域
为___(_-__∞_,__0_)_∪__(_0_,__+__∞_)___,奇偶性为_____奇__函__数________, 单调减区间为__(_-__∞_,__0_)_和__(_0_,__+__∞_)_____.
二次函数的解析式 已知二次函数 f(x)有两个零点 0 和-2,且它有最 小值-1. (1)求 f(x)解析式; (2)若 g(x)与 f(x)图象关于原点对称,求 g(x)解析式. [课堂笔记]
(1)幂函数的形式是 y=xα(α∈R),其中只有参数 α,因此只 需一个条件即可确定其解析式. (2)若幂函数 y=xα(α∈R)是偶函数,则 α 必为偶数.当 α 是 分数时,一般将其先化为根式,再判断.
(3)若幂函数 y=xα 在(0,+∞)上单调递增,则 α>0,若在(0, +∞)上单调递减,则 α<0.
分类讨论思想在求二次函数最值中的应用
(2014·山东青岛模拟)已知 f(x)=ax2-2x(0≤x≤1),
求 f(x)的最小值. [解] (1)当 a=0 时,f(x)=-2x 在[0,1]上递减, ∴f(x)min=f(1)=-2. (2)当 a>0 时,f(x)=ax2-2x 图象的开口方向向上,且对称 轴为 x=1a.
在(-∞,-2ba)上是 ___增_____函数;在(-
2ba,+∞)上是增函数 2ba,+∞)上是减函数
最值
a>0
当 x=-2ba时,
ymin=
4ac-b2 4a
a<0
当 x=-2ba时, ymax=4ac4-a b2
1.已知函数 f(x)=ax2+x+5 的图象在 x 轴上方,则 a 的取
为___(_-__∞_,__0_)_∪__(_0_,__+__∞_)___,奇偶性为_____奇__函__数________, 单调减区间为__(_-__∞_,__0_)_和__(_0_,__+__∞_)_____.
二次函数的解析式 已知二次函数 f(x)有两个零点 0 和-2,且它有最 小值-1. (1)求 f(x)解析式; (2)若 g(x)与 f(x)图象关于原点对称,求 g(x)解析式. [课堂笔记]
(1)幂函数的形式是 y=xα(α∈R),其中只有参数 α,因此只 需一个条件即可确定其解析式. (2)若幂函数 y=xα(α∈R)是偶函数,则 α 必为偶数.当 α 是 分数时,一般将其先化为根式,再判断.
(3)若幂函数 y=xα 在(0,+∞)上单调递增,则 α>0,若在(0, +∞)上单调递减,则 α<0.
分类讨论思想在求二次函数最值中的应用
(2014·山东青岛模拟)已知 f(x)=ax2-2x(0≤x≤1),
求 f(x)的最小值. [解] (1)当 a=0 时,f(x)=-2x 在[0,1]上递减, ∴f(x)min=f(1)=-2. (2)当 a>0 时,f(x)=ax2-2x 图象的开口方向向上,且对称 轴为 x=1a.
在(-∞,-2ba)上是 ___增_____函数;在(-
2ba,+∞)上是增函数 2ba,+∞)上是减函数
最值
a>0
当 x=-2ba时,
ymin=
4ac-b2 4a
a<0
当 x=-2ba时, ymax=4ac4-a b2
1.已知函数 f(x)=ax2+x+5 的图象在 x 轴上方,则 a 的取
高一数学幂函数ppt课件.ppt

(4)只有1项; (5)这些例子中涉及的函数都是形 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
幂函数的定义
一 般 地 ,函 数 y x 叫 做 幂 函 数 ,其 中 x 是 自 变 量 ,
下面我们一起来尝试幂函数性质的简单应用:
(基础练习)例4:写出下列函数的定义域,并指出它们的奇偶
性和单调性.
(1)y x4
1
(2) y x 4
(3)y x3
解:(1)函数 y x4的定义域为R,它是偶函数,在 [0,)上是增函数,
在(,0)上是减函数.
1
(2)函数 y x 4 的定义域为[0,),它是非奇非偶函数,在[0,)上是增函数.
(3)yx2 x(×)(4)yx2 (1 ×)
(5)y x2
(×) (6)y
1 x3
(√)
[总结]要判断一个函数是幂函数,判断的标准是它的定
义.根据定义,可以把幂函数的形式特征概括为:两个系
数为1,只有一项.
4
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
(巩固提升)例3:已知函数f(x)(m 22m )xm 2m 1,m为何值
时,是:(1)正比例函数;(2)反比例函数;(3)二次
函数;(4)幂函数.
解 :
(感受理解)例5:比较下列各组中两个值的大小,并说明理由.
1
幂函数(课件)

04
利用导数研究幂函数的极值 和拐点
01 03
详细描述
02
幂函数与其他初等函数的复 合函数性质
THANKS
感谢观看
幂函数在物理中的应用
力学
在力学中,幂函数可以描 述物体的运动规律,例如 加速度与时间的关系。
热力学
在热力学中,幂函数可以 描述气体分子的速度分布 规律。
电磁学
在电磁学中,幂函数可以 描述电流与电压的关系。
幂函数在其他领域的应用
经济学
计算机科学
在经济学中,幂函数可以用于描述商 品的需求量与价格的关系、消费者的 购买决策等。
02
幂函数的运算规则
幂的乘法规则
总结词
同底数幂相乘,指数相加
详细描述
幂函数是数学中一种重要的函数,其形式为 (a^x)(其中 (a) 是底数,(x) 是指 数)。当两个幂函数相乘时,如果它们的底数相同,则它们的指数相加。即, (a^x times a^y = a^{x+y})。
幂的除法规则
总结词
幂函数(优秀课件)
目 录
• 幂函数的基本概念 • 幂函数的运算规则 • 幂函数的应用 • 幂函数的扩展知识 • 幂函数的习题与解析
01
幂函数的基本概念
幂函数的定义
总结词
幂函数是一种数学函数,其一般形式 为$y=x^n$,其中$n$是一个实数。
详细描述
幂函数是函数的一种,其一般形式为$y=x^n$ ,其中$x$是自变量,$y$是因变量,$n$是一 个实数。当$n>0$时,幂函数在$(0, +infty)$ 区间内单调递增;当$n<0$时,幂函数在$(0, +infty)$区间内单调递减;当$n=0$时,幂函 数值为1。
利用导数研究幂函数的极值 和拐点
01 03
详细描述
02
幂函数与其他初等函数的复 合函数性质
THANKS
感谢观看
幂函数在物理中的应用
力学
在力学中,幂函数可以描 述物体的运动规律,例如 加速度与时间的关系。
热力学
在热力学中,幂函数可以 描述气体分子的速度分布 规律。
电磁学
在电磁学中,幂函数可以 描述电流与电压的关系。
幂函数在其他领域的应用
经济学
计算机科学
在经济学中,幂函数可以用于描述商 品的需求量与价格的关系、消费者的 购买决策等。
02
幂函数的运算规则
幂的乘法规则
总结词
同底数幂相乘,指数相加
详细描述
幂函数是数学中一种重要的函数,其形式为 (a^x)(其中 (a) 是底数,(x) 是指 数)。当两个幂函数相乘时,如果它们的底数相同,则它们的指数相加。即, (a^x times a^y = a^{x+y})。
幂的除法规则
总结词
幂函数(优秀课件)
目 录
• 幂函数的基本概念 • 幂函数的运算规则 • 幂函数的应用 • 幂函数的扩展知识 • 幂函数的习题与解析
01
幂函数的基本概念
幂函数的定义
总结词
幂函数是一种数学函数,其一般形式 为$y=x^n$,其中$n$是一个实数。
详细描述
幂函数是函数的一种,其一般形式为$y=x^n$ ,其中$x$是自变量,$y$是因变量,$n$是一 个实数。当$n>0$时,幂函数在$(0, +infty)$ 区间内单调递增;当$n<0$时,幂函数在$(0, +infty)$区间内单调递减;当$n=0$时,幂函 数值为1。
高一数学《幂函数》PPT课件

函数的性质不同
指数函数的底数是一个大于0且 不等于1的常数,而幂函数的底 数可以是任意实数。此外,指 数函数的值域为正实数集,而 幂函数的值域为非负实数集。
图像的形状不同
指数函数的图像是一条经过点 (0,1)的曲线,而幂函数的图像 是一条经过原点的曲线。
02
常见幂函数类型及其特点
一次幂函数
表达式
幂的乘方法则
幂的乘方
底数不变,指数相乘。公式: (a^m)^n = a^(m×n)
举例
(2^3)^4 = 2^(3×4) = 2^12; (x^2)^5 = x^(2×5) = x^10
积的乘方法则
积的乘方
把积的每一个因式分别乘方,再把所得的幂相乘。公式: (ab)^n = a^n × b^n
举例
在幂函数中,指数a可以取任意实数,但不同的a值会导致函数性质的不
同。学生需要注意区分不同a值对应的函数性质。
02 03
函数定义域
幂函数的定义域与指数a的取值有关。例如,当a≤0时,函数定义域为 非零实数集;当a>0且a为整数时,函数定义域为全体实数集。学生需 要注意根据指数a的取值来确定函数的定义域。
幂函数性质
幂函数的性质包括定义域、值域、奇偶性、单调性等。例如,当a>0时,幂函数在定义域内 单调递增;当a<0时,幂函数在定义域内单调递减。
幂函数图像
幂函数的图像根据a的不同取值而呈现出不同的形态,如直线、抛物线、双曲线等。通过图像 可以直观地了解幂函数的性质。
易错难点剖y = x^n(n为实数)
图像
02
一条直线(n=1时)或射线(n≠1时)
性质
03
当n>0时,函数在(0, +∞)上单调递增;当n<0时,函数在(0,
《幂函数》函数的概念与性质PPT教学课件

提示:2.3-0.2和2.2-0.2可以看作幂函数f(x)=x-0.2的两个函数值,因 为函数f(x)=x-0.2在(0,+∞)上单调递减,所以2.3-0.2<2.2-0.2.
栏目导航
【例3】 比较下列各组中幂值的大小: (1)0.213,0.233;(2)1.212,0.9-12, 1.1.
[思路点拨] 构造幂函数,借助其单调性求解. [解] (1)∵函数y=x3是增函数,且0.21<0.23, ∴0.213<0.233. (2)0.9-12=19012, 1.1=1.112. ∵1.2>190>1.1,且y=x12在[0,+∞)上单调递增, ∴1.212>19012>1.112,即1.212>0.9-12> 1.1.
x∈(-∞,0)
时,减函数
时,减函数
栏目导航
6
C [只有y=3x不符合幂函数y 1.下列函数中不是幂函数的是 =xα的形式,故选C.] () A.y= x B.y=x3 C.y=3x D.y=x-1
栏目导航
7
2.已知 f(x)=(m+1)xm2+2 是幂函
D [由题意可知m+1=1,即m
数,则 m=( )
第三章 函数的概念与性质
3.3 幂函数
2
学习目标
核心素养
1.了解幂函数的概念,会求幂函数的解析式.(重点、 1.结合幂函数的图
易混点)
象,培养直观想象
2.结合幂函数 y=x,y=x2,y=x3,y=1x,y=x12的图
的数学素养. 2.借助幂函数的性
象,掌握它们的性质.(重点、难点)
质,培养逻辑推理
3.能利用幂函数的单调性比较指数幂的大小.(重点) 的数学素养.
栏目导航
栏目导航
【例3】 比较下列各组中幂值的大小: (1)0.213,0.233;(2)1.212,0.9-12, 1.1.
[思路点拨] 构造幂函数,借助其单调性求解. [解] (1)∵函数y=x3是增函数,且0.21<0.23, ∴0.213<0.233. (2)0.9-12=19012, 1.1=1.112. ∵1.2>190>1.1,且y=x12在[0,+∞)上单调递增, ∴1.212>19012>1.112,即1.212>0.9-12> 1.1.
x∈(-∞,0)
时,减函数
时,减函数
栏目导航
6
C [只有y=3x不符合幂函数y 1.下列函数中不是幂函数的是 =xα的形式,故选C.] () A.y= x B.y=x3 C.y=3x D.y=x-1
栏目导航
7
2.已知 f(x)=(m+1)xm2+2 是幂函
D [由题意可知m+1=1,即m
数,则 m=( )
第三章 函数的概念与性质
3.3 幂函数
2
学习目标
核心素养
1.了解幂函数的概念,会求幂函数的解析式.(重点、 1.结合幂函数的图
易混点)
象,培养直观想象
2.结合幂函数 y=x,y=x2,y=x3,y=1x,y=x12的图
的数学素养. 2.借助幂函数的性
象,掌握它们的性质.(重点、难点)
质,培养逻辑推理
3.能利用幂函数的单调性比较指数幂的大小.(重点) 的数学素养.
栏目导航
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4) y x
1 2
(5) y x
1
(-2,4)
4
y=x3
(2,4) y=x2 y=x (4,2)
1
3
y=x 2
2
1
(-1,1)
-6 -4 -2
(1,1)
2
y=x-1
4 6
-1
(-1,-1)
-2
幂函数的图象都通过点(1,1) α为奇数时,幂函数为奇函数, α为偶数时,幂函数为偶函数.
在第一象限内,
-3
-4
a >0,在(0,+∞)上为增函数; a <0,在(0,+∞)上为减函数.
练习:利用单调性判断下列各值的大小。 (1)5.20.8 与 5.30.8 (2)0.20.3-2 与 0.30.3 -2
(3)
2.5
5
与 2.7
5
解:(1)y= x0.8在(0,∞)内是增函数, ∵5.2<5.3 ∴ 5.20.8 < 5.30.8 (2)y=x0.3在(0,∞)内是增函数
二、五个常用幂函数的图像和性质
3 2 y x y x (1) (2) y x (3)
(4) y x
1 2
(5) y x
1
函数
y x的图像
定义域: 值 域:
R R
奇偶性: 在R上是奇函数
单调性:在R上是增函数
函数 y x 的图像
2
定义域:
R
值 域: [0,) 奇偶性: 在R上是偶函数
高中数学必修 ①人教版A
§2.3幂函数
y x 中 x 前面的系数是1,后面没有其它项。
一、幂函数的定义: 一般地,我们把形如 y x 的函数叫做 x为自变量, 幂函数,其中 为常数。
x 2 2 2
练习1:判断下列函数哪几个是幂函数?
1 (5) y x
( 1 )y 3 ; (2) y x ; (3) y 2 x ; (4) y x 1;
奇函数
1
奇偶性 奇函数
非奇非偶 函数
在(-∞,0] 在R上 上是减函 单调性 是增函 数,在(0, 数 +∞)上是 增函数 公共点
在R上 在(0,+∞) 在( -∞,0), 是增函 上是增函数 (0, +∞)上是 减函数 数
(1,1)
下面将5个函数的图像画在同一坐标系中
3 2 y x y x (1) (2) y x (3)
3.如果α>0,则幂函数 在(0,+∞)上为增函数; 如果α<0,则幂函数 在(0,+∞)上为减函数。
α>1 0<α<1
α<0
a=1
作业: 利用单调性判断下列各值的大小。
(1)1.3 与1.5
1 4
0.5
0.5
(2)5.1 与5.09
1 4
2
2
(3) 1.79 与 1.81
思考:指数函数y=ax与幂 函数y=xα有什么区别? 答案(2)(5)
例1 :已知f ( x) m m 1 x
2
2 m 3
是幂函数,
求m的值。
解 : 因为f ( x)是幂函数
m m 1 1
2
解之得: m 2或m 1
m 2或m 1
练习3:已知幂函数f(x)的图像经过点(3,27), 求证:f(x)是奇函数。
证明 : 设所求的幂函数为y x 函数的图像过点(3, 27)
3
27 3 ,即3 3 3 3 f ( x) x 3 3 f ( x)的定义域为R, f ( x) ( x) x
f ( x) f ( x)
f ( x)是奇函数
在[0,)上是增函数 单调性:
在(,0]上是减函数
1 y x 函数 的图像
定义域:{x x 0} 值 域:{ y
y 0}
在{x x 0}上是奇函数 奇偶性:
单调性: 在(0,)上是减函数
在(,0)上是减函数
函数 y x 的图像
1 2
定义域: [0,)
值 域: [0,) 奇偶性: 非奇非偶函数
奇偶性: 在R上是奇函数 单调性:在R上是增函数
幂函数的定义域、值域、奇偶性和单调性,随常 数α取值的不同而不同.
y=x
定义域 值域 R R
y = x2
R [0,+∞) 偶函数
y=
x3
y x
[0,+∞) [0,+∞)
1 2
R R 奇函数
yx 0 (0,+) , 0 (0,+) ,
单调性: 在[0,)上是增函数
x y=x3 y=x1/2
… … …
-2 -8 /
-1 -1 /
y 8
0 0 0
1 1 1
2 8
2
3 27
4 … 64 …
3
2 …
y=x3
6
4 2
y=x
1 2 3 4 x
1 2
-3
-2
-1
0 -2 -4 -6 -8
函数 y x 的图像
3
定义域:
值 域:
R R
∵0.2<0.3∴ 0.20.3 <0.30.3
(3)y=x-2/5在(0,∞)内是减函数 ∵2.5<2.7∴ 2.5-2/5>2.7-2/5
小结: 幂函数的性质:
幂函数的定义域、值域、奇偶性和单调性,随 常数α取值的不同而不同.
1.所有幂函数的图象都通过点(1,1);
2.当α为奇数时,幂函数为奇函数, 当α为偶数时,幂函数为偶函数.