导电高分子材料
导电高分子材料

什么是导电高分子的掺杂呢?
纯净的导电聚合物本身并不导电,必须经过掺 杂才具备导电性
掺杂是将部分电子从聚合物分子链中迁移出来 从而使得电导率由绝缘体级别跃迁至导体级别 的一种处理过程
导电聚合物的掺杂与无机半导体的掺杂完全不 同
导电高分子的掺杂与无机半导体的掺杂的对比
目前掺杂的方式主要有两种 :
氧化还原掺杂 :可通过化学或电化学手段来实现 。化学 掺杂会受到磁场的影响
遗憾的是目前为止还没有发现外加磁场对聚合物的室温电 导率有明显的影响
质子酸掺杂 :一般通过化学反应来完成,近年发现也可 通过光诱导施放质子的方法来完成
还有掺杂—脱掺杂—再掺杂的反复处理方法,这种掺杂方 法可以得到比一般方法更高的电导率和聚合物稳定性
6
导电机理与结构特征
④π价电子 两个成键原子中p电子相互重叠后产生 π键,构成π键的电子称为π价电子。当π电子孤立 存在时这种电子具有有限离域性,电子在两个原 子之间可以在较大范围内移动。当两个π键通过一 个σ键连接时,π电子可以在两个π键之间移动,这 种分子结构称为共轭π键。
7
导电机理与结构特征
利用导电高分子与金属线圈当电极,半导体高分子在中间,当两电 极接上电源时,半导体高分子将会开始发光。比传统的灯泡更节省能源 而且产生较少的热,具体应用包括平面电视机屏幕、交通信息标志等。
导电高分子材料的应用
半导体特性的应用-太阳能电池
导电高分子可制成太阳电池,结 构与发光二极管相近,但机制却相反 ,它是将光能转换成电能。 优势在于 廉价的制备成本,迅速的制备工艺, 具有塑料的拉伸性、弹性和柔韧性 。
导电高分子材料的应用
导体特性的应用
抗静电 理想的电磁屏蔽材料,可以应用在计算机、电视机、起搏器等 电磁波遮蔽涂布 能够吸收微波,因此可以做隐身飞机的涂料 防蚀涂料 能够防腐蚀,可以用在火箭、船舶、石油管道等
导电高分子材料

导电高分子材料引言导电高分子材料是一类具有导电性能的高分子材料,通常通过将一定量的导电剂与高分子基体进行混合来实现。
导电高分子材料具有许多独特的性能和应用,因此在电子学、能源技术、催化剂等领域有着广泛的应用和巨大的发展潜力。
1. 导电机制导电高分子材料的导电性能主要来源于导电剂的存在。
常见的导电剂包括金属粉末、碳纳米管、导电聚合物等。
这些导电剂在高分子基体中形成导电网络,使得材料能够传导电流。
导电高分子材料的导电性能与导电剂的种类、含量、分散性以及高分子基体的性质密切相关。
2. 特殊性能与应用导电高分子材料具有许多特殊的性能,使得其在多个领域具有广泛的应用。
2.1 电子学领域导电高分子材料在电子学领域有着重要的应用,例如导电高分子材料可以用于制备有机导电薄膜晶体管(OFET),用于构建柔性显示器、智能传感器和可穿戴设备等。
导电高分子材料不仅具有良好的导电性能,还具有优秀的可拉伸性和柔韧性,能够适应各种复杂的电子设备形状。
2.2 能源技术领域导电高分子材料在能源技术领域也有广泛的应用。
例如,导电高分子材料可以用于制备柔性太阳能电池,用于光电转换、能源收集和储存等。
导电高分子材料具有较高的导电性能和光吸收性能,可以有效提高太阳能电池的能量转换效率。
2.3 催化剂领域导电高分子材料还可以作为催化剂载体,用于催化剂的载体和固定。
导电高分子材料具有较大的比表面积和多孔结构,能够提供更多的活性位点和催化反应的接触面积,从而提高催化剂的反应效率和稳定性。
3. 导电高分子材料的制备方法导电高分子材料的制备方法多种多样,常见的制备方法包括物理共混法、化学共混法、原位聚合法等。
其中,物理共混法是将导电剂和高分子基体通过物理混合来制备导电高分子材料,适用于一些导电剂与高分子基体相容性较好的体系;化学共混法是通过化学反应将导电剂与高分子基体结合,适用于一些导电剂与高分子基体相容性较差的体系;原位聚合法是在高分子合成过程中引入导电剂,使导电剂与高分子基体同时合成。
导电高分子材料

导电高分子材料所谓导电高分子是具有共轭Π键的高分子经化学或电化学掺杂使其由绝缘体转变为导体的一类高分子材料。
它完全不同于金属或碳粉末与高分子共混而制成的导电塑料,通常导电高分子的结构特征是具有高分子链结构和与链非键合的一价阴离子或阳离子共同组成。
即在导电高分子结构中,除了具有高分子链外,还含有由“掺杂”而引入的一价对阴离子或对阳离子。
导电聚合物最引人注目的一个特点是其电导率可以在绝缘体-半导体-金属态较宽的范围里变化。
这是目前其他材料所无法比拟的。
分类,按照材料的结构与组成,可将导电高分子分成两大类。
一类是结构型导电高分子,另一类是复合型导电高分子。
结构型导电高分子的导电机理为物质的导电过程是载流子在电场作用下定向移动的过程。
高分子聚合物导电必须具备两个条件:一要能产生足够数量的载流子,二是大分子链内和链间要能够形成导电通道。
在离子型导电高分子材料中,聚醚,聚酯等的大分子呈螺旋体空间结构,与其配位络合的阳离子在大分子链段运动作用下,就能够在螺旋孔道内通过空位迁移;或被大分子溶剂化了的阴阳离子同时在大分子链的空隙间跃迁扩散。
对于电子型导电高分子材料,作为主体的高分子聚合物大多为共轭体系,长链中的Π键较为活泼,特别是与掺杂剂形成电荷转移络合物后,容易从轨道上逃逸出来形成自由电子。
大分子链内与链间Π电子轨道重叠交盖所形成的导电能带为载流子的转移和跃迁提供了通道。
在外加能量和大分子链振动的推动下,便可传导电流。
复合型导电高分子复合型导电高分子是在本身不具备导电性的高分子材料中掺混入大量导电物质,如炭黑,金属粉,箔等,通过分散复合,层级复合,表面复合等方法构成的复合材料,其中以分散复合最为常用。
与结构型导电高分子不同,在复合型导电高分子中,高分子材料本身并不具备导电性,只充当了粘合剂的角色,导电性是通过混合在其中的导电性物质如炭黑,金属粉等获得的。
由于它们制备方便,有较强的实用性,因此在结构型导电高分子尚有许多技术问题没有解决的今天,人们对他们有着极大的兴趣。
导电高分子材料通用课件

加工性能
要点一
总结词
加工性能是导电高分子材料的另一个重要性能参数,它决 定了材料在加工过程中的可加工性和加工效果。
要点二
详细描述
加工性能包括材料的熔融流动性、热稳定性、可塑性和延 展性等。良好的加工性能能够保证导电高分子材料在加工 过程中具有良好的可加工性和加工效果,从而提高材料的 实用性和生产效率。
导电高分子材料通用课件
目 录
• 导电高分子材料的导电机理 • 导电高分子材料的制备方法 • 导电高分子材料的性能参数 • 导电高分子材料的发展趋势与挑战
目 录
• 导电高分子材料在新能源领域的应 • 导电高分子材料在智能材料与器件
01
CATALOGUE
导电高分子材料简介
导电高分子材料的定义
总结词
详细描述
聚合物共混法是通过将导电高分子材料与非 导电高分子材料混合,制备成复合材料的方 法。这种方法可以充分利用各种高分子材料 的优点,制备出性能优异的复合材料,但需 要解决相容性问题,以保证良好的导电性能。
04
CATALOGUE
导电高分子材料的性能参数
电导 率
总结词
电导率是导电高分子材料最重要的性 能参数之一,它决定了材料的导电能 力和效率。
物理掺杂法
总结词
通过物理方式将导电物质掺入高分子材料中, 使其获得导电性能的方法。
详细描述
物理掺杂法是一种简单易行的方法,通过将 导电物质如碳黑、石墨烯、金属纳米颗粒等 掺入高分子材料中,使其获得导电性能。这 种方法工艺简单,成本低,但导电性能受掺 杂物质种类和含量影响较大。
聚合物共混法
总结词
将导电高分子材料与非导电高分子材料混合, 形成具有导电性能的复合材料的方法。
导电高分子材料

导电高分子材料导电高分子材料是一种具有导电性能的高分子材料,它在电子、光电子、信息和通信等领域具有广泛的应用前景。
与传统的金属导电材料相比,导电高分子材料具有重量轻、柔韧性好、加工成型方便等优点,因此备受研究和开发的关注。
首先,导电高分子材料的导电机理是通过在高分子基质中添加导电填料来实现的。
导电填料可以是导电碳黑、导电纳米颗粒、导电聚合物等,它们在高分子基质中形成导电网络,从而赋予材料导电性能。
同时,导电高分子材料的导电性能受填料浓度、填料形貌、填料分散性等因素的影响,因此需要在材料设计和制备过程中进行精细控制。
其次,导电高分子材料在电子领域具有重要的应用。
例如,导电高分子材料可以用于制备柔性电子器件,如柔性电子显示屏、柔性电池、柔性传感器等。
由于其轻薄柔软的特性,导电高分子材料可以实现器件的弯曲和拉伸,从而拓展了电子器件的应用场景。
此外,导电高分子材料还可以用于制备导电薄膜,用于电磁屏蔽、抗静电、防雷击等领域。
此外,导电高分子材料在光电子领域也有着重要的应用。
例如,导电高分子材料可以用于制备有机太阳能电池、有机发光二极管等光电子器件。
由于其可塑性和可加工性,导电高分子材料可以实现器件的柔性化和大面积制备,从而降低了器件的制造成本,并且有望实现可穿戴电子产品的发展。
总之,导电高分子材料具有广泛的应用前景,它在电子、光电子、信息和通信等领域都有着重要的作用。
随着材料科学和工程技术的不断发展,导电高分子材料的性能和应用将会得到进一步的提升,为人类社会的发展和进步做出更大的贡献。
希望通过对导电高分子材料的研究和开发,能够推动材料科学和工程技术的发展,为人类社会的可持续发展做出更多的贡献。
导电高分子材料

简述:传统的高分子材料为绝缘材料,在使用时存在静电积累、电磁波干扰等危害,如用其制造的传送带,在传送煤炭的过程中易发生火灾和爆炸;油船因静电引起火灾;塑料薄膜在生产过程中常因静电发生事故。
随着大规模集成电路的迅速发展,静电及电磁波公害更加突出。
随着电子线路集成化水平的提高,电磁波的影响将会引起误动等危害。
这些问题的出现已严重阻碍了高分子材料的发展,因此,必须研制开发导电高分子材料来解决上述问题。
导电高分子材料的分类按照材料的结构与组成,可将导电高分子材料分为两大类。
一类是复合型导电高分子材料,另一类是结构型(或本征型)导电高分子材料。
一、结构导电机理所谓结构型导电高分子是高分子本身结构显示导电性, 通过离子或电子而导电。
所以, 结构型导电高分子材料又可分为电子导电高分子材料和离子导电高子材料两类。
复合型导电高分子材料复合型导电高分子材料是将各种导电性物质以不同的方式和加工工艺(如分散聚合、层积复合、形成表面电膜等)填充到聚合物基体中而构成的材料。
几乎所有的聚合物都可制成复合型导电高分子材料。
其一般的制备方法是填充高效导电粒子或导电纤维,如填充各类金属粉末、金属化玻璃纤维、碳纤维、铝纤维、不锈钢纤维及锰、镍、铬、镁等金属纤维,填充纤维的最佳直径为7Lm。
复合型导电高分子材料在技术上比结构型导电高分子材料具有更加成熟的优势,用量最大最为普及的是炭黑填充型和金属填充型。
结构型导电高分子材料结构型(又称作本征型)导电高分子是指那些高分子材料本身或经过掺杂后具有导电功能的聚合物。
这种高分子材料本身具有/固有0的导电性,由其结构提供导电载流子,一旦经掺杂后,电导率可大幅度提高,甚至可达到金属的导电水平。
从导电时载流子的种类来看,结构型导电高分子材料又被分为离子型和电子型两类。
离子型导电高分子通常又称为高分子固体电解质,它们导电时的载流子主要是离子。
电子型导电高分子指的是以共轭高分子为主体的导电高分子材料。
导电时的载流子是电子(或空穴),这类材料是目前世界导电高分子中研究开发的重点。
导电高分子材料与器件

导电高分子材料与器件导电高分子材料是一类具有导电性能的聚合物材料,广泛应用于电子器件、传感器、光伏设备等领域。
本文将介绍导电高分子材料的基本原理、制备方法以及其在不同领域的应用。
一、导电高分子材料的原理导电高分子材料的导电性能源于其中的导电性掺杂物或功能团。
它们可以分为有机导电高分子和无机导电高分子两大类。
1. 有机导电高分子有机导电高分子采用有机导电聚合物作为基材,通常通过掺杂的方式引入电子供体或受体,从而调整材料的导电性能。
有机导电聚合物通常具有共轭结构,形成了类似于金属的电子能带结构,电子在材料内部的传导使其具有导电性能。
常见的有机导电高分子材料有聚噻吩、聚苯胺等。
2. 无机导电高分子无机导电高分子主要由无机导电材料制备而成,如金属、碳纳米管、石墨烯等。
这些无机材料具有良好的导电性能,能够在高分子基材中提供电子传导通道,从而赋予材料导电性。
无机导电高分子具有导电性能稳定、机械强度高等优点。
二、导电高分子材料的制备方法导电高分子材料的制备方法多种多样,可以通过物理方法或化学方法进行。
1. 物理方法最常用的物理制备方法是导电高分子材料的加工和复合。
例如,可以采用热压、注塑、挤出等方式将导电高分子与基材进行复合,形成导电高分子复合材料。
此外,还可以通过电化学沉积、溶液旋转涂覆等方法将导电高分子层薄覆盖在基材上。
2. 化学方法化学方法主要包括合成法和化学改性法。
合成法是指通过化学反应将导电性团体引入到基材中,形成导电高分子材料。
化学改性法则是通过对已有的高分子材料进行化学改性,引入导电性团体或进行导电材料的反应,提高其导电性能。
三、导电高分子材料的应用领域导电高分子材料具有导电性能和良好的可塑性,因此在各个领域都有广泛的应用。
1. 电子器件导电高分子材料在电子器件中起到了重要的作用。
例如,导电高分子可以用于制备柔性电子器件,如柔性显示屏、可穿戴设备等。
此外,导电高分子也可应用于电池、传感器等电子元件的制备。
导电性高分子材料-用途广泛的高分子材料(全文)

导电性高分子材料:用途广泛的高分子材料导电性高分子材料一般分为复合型和结构型两大类。
复合型导电高分子材料,它是由导电性物质与高分子材料复合而成。
这是一类已被广泛应用的功能性高分子材料。
复合型导电高分子材料分类有很多种,根据电阻值的不同可分为:半导电体、除静电体、导电体、高导电体;根据导电填料的不同可分为:抗静电剂系、碳系(炭黑、石墨等)、金属系(各种金属粉末、纤维、片等);根据树脂的形态不同可分为:导电塑料、导电橡胶、导电涂料、导电胶粘剂、导电薄膜等;还可根据其功能不同分为:防静电材料、除静电材料、电极材料、发热体材料、电磁波屏蔽材料。
结构型导电高分子材料是有机聚合掺杂后的聚乙炔,具有类似金属的电导率。
纯粹的结构型导电高分子聚合物至今只有聚氮化硫类,其他许多导电聚合物几平均需采纳氧化还原、离子化或电化学等手段进行掺杂之后才能有较高的导电性。
其代表性产物有聚乙炔、聚对苯撑、聚吡咯、聚噻吩、聚吡啶、聚苯硫醚等。
还有一种叫做热分解导电高分子,这是把聚酰亚胺、聚丙烯腈等在高温下热处理,使之生成与石墨结构相近的物质,从而获得导电性。
这些热分解导电高分子的特征是无须掺杂处理,故具有优异的稳定性。
结构型导电高分子材料主要用途是导电材料、蓄电池电极材料、光功能元件、半导体材料。
渔用无毒导电高分子防污涂料项目简介:该产品是具有导电性能的新一代无毒防污涂料,它是建立在导电高分子应用研究取得突破进展的基础上,与传统树脂复合而制成的高科技产品。
首先要制备高性能的可溶的导电高分子材料,然后再通过相应的工艺技术与传统的树脂颜填料复合。
将该种涂料涂敷于渔具(主要是聚乙烯XX线和尼龙XX线)上,具有良好的附着性能、可使渔具具有优良的抗拉、抗拆、抗冲击能力,并极富弹性。
该产品可有效地防止藻类、蛸类等海洋生物在XX上附着而堵塞XX孔,使营养和氧分能够畅通无阻地进入XX箱内,提高养殖产量和质量。
高性能导电涂料项目简介:该项目主要进行了以超细银为导电介质的导电涂料研制,采纳超细银表面原位聚合技术,使超细银介质以超细状态分散于高分子介质中,大大提高导电涂料的防沉降性和导电介质的分散均匀性,从而提高导电性,并具有卓越的电磁屏蔽效果,对300MHz-1.8GHz的电磁波屏蔽效果达80dB;解决了超细粉体及高分子基体与溶剂的相互作用关系,解决了导电涂料引起被涂基材应力开裂的关键技术,采纳低毒复合溶剂,解决了溶剂对环境和人体的污染,解决了环保型超细导电涂料产业化和应用中的重点和关键技术:导电涂料与被涂基材的相互作用关系;超细化导电涂料的大规模机器人自动化喷涂技术;超细化导电涂料涂层均一性操纵;解决导电涂料涂装中粒子沉降而堵塞管路技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导电高分子材料高分子材料自问世至今,已经有一百多年的历史。
1856年硝化纤维作为第一个塑料专利问世,20世纪60年代;许多性能优良的工程塑料相继投入工业化生产;20世纪80年代,材料科学已渗透各个领域,可以说已经进入高分子时代。
大多数高分子材料都是不导电的,因而高分子材料被广泛地作为绝缘材料使用。
1862年,英国Letheby在硫酸中电解苯胺而得到少量导电性物质;1954年,米兰工学院G.Natta用Et3Al-Ti(OBu)4为催化剂制得聚乙炔;1970年,科学家发现类金属的无机聚合物聚硫氰(SN)x具有超导性,有机高分子与无机高分子导电聚合物的开发研究合在一起开始了探寻之旅。
1974年日本筑波大学H.Shirakawa在合成聚乙炔的实验中,偶然地投入过量1000倍的催化剂,合成出令人兴奋的有铜色的顺式聚乙炔薄膜与银白色光泽的反式聚乙炔。
1980年,英国Durham大学的W.Feast得到更大密度的聚乙炔。
1983年,加州理工学院的H.Grubbs以烷基钛配合物为催化剂将环辛四烯转换了聚乙炔,其导电率达到35000S/m,但是难以加工且不稳定。
1987年,德国康采思巴斯夫公司BASF科学家N.Theophiou对聚乙炔合成方法进行了改良,得到的聚乙炔电导率与铜在同一数量级,达到107S/m。
导电高分子材料的研究和发展开始逐渐走向成熟,并且亟待着可以走向应用领域,导电高分子材料已经在功能高分子材料及导电体中占有重要的地位。
一.导电高分子的定义与导电机理导电高分子又称为导电聚合物,是由具有共轭π键的高分子经化学或电化学“掺杂”使其由绝缘体转变为导体的一类高分子材料。
导电高分子材料是一类兼具高分子特性及导电体特征的高分子材料。
按结构和制备方法不同,可将导电高分子材料(CPs)分为复合型与本征(结构)型两大类。
结构性导电高分子本身具有“固有”的导电性,由聚合物结构提供导电载流子(包括电子、离子或空穴)。
这类聚合物经掺杂后,电导率可大幅度提高,其中有些甚至可达到金属的导电水平。
复合型导电高分子是在本身不具备导电性的高分子材料中掺混入大量导电物质,如炭黑、金属粉、箔等,通过分散复合、层积复合、表面复合等方法构成的复合材料。
根据电荷载流子的种类,导电聚合物被分为电子导电聚合物和离子导电聚合物:以自由电子或空穴为载流子的导电聚合物称为电子导电聚合物,电子导电型聚合物的共同特征是分子内含有大的线性共轭π电子体系。
以正、负离子为载流子的导电聚合物被称为离子导电聚合物。
离子导电聚合物的分子具有亲水性、柔性好,允许体积较大的正、负离子在电场作用下在聚合物中迁移的特性。
1.本征型导电高分子材料的导电机理本征型导电高分子材料是由具有共轭π键的聚合物,经化学或电化学“掺杂”后形成导电,导电性显示强烈的各向异性,通过大分子π键电子云交叠形成导带,共轭分子键的方向就是导电方向。
从导电载流子的种类来看,又被分为电子型和离子型两类。
电子型导电高分子材料指的是以共轭π键大分子为主体的导电高分子材料,导电的载流子是电子(空穴)或孤子。
离子型导电高分子材料通常又叫高分子固体电解质,其导电时的载流子主要是离子。
所谓导电高聚物是π-共轭体系高聚物经化学或电化学掺杂,使其由绝缘体转变为导体的高聚物的统称。
聚合物的普遍结构式可为:p一型掺杂[(P+)1-y(A-1)y]nn一型掺杂[(P-)1-y(A+1)y]nP+和P-分别为带正电(p-型掺杂)和带负电(n一型掺杂)的高聚物链;A-和A+为一价对阴离子(p一型掺杂)和一价对阳离子(n一型掺杂); y为掺杂度,n为聚合度。
导电高聚物是由π-共轭高聚物链和一价对离子(counterions)构成,而且对阴离子和对阳离子与高聚物链无化学键合,仅是正负电荷平衡。
高分子聚合物导电必须具备两个条件:(1)要能产生足够数量的载流子(电子、空穴或离子、孤子等);(2)大分子链内和链间要能够形成载流子导体通道。
W.P.Su. J.R. Schrieffer和A.J.Heeger于1979年提出孤子理论。
根据这一理论,孤子、极化子和双极子化被视为导电高分子的导电载流子。
实验证实,“掺杂”是氧化还原过程,其实质是电荷转移;其次,导电高分子的“掺杂”量很大,可高达50%;再次,导电高分子有“脱掺杂”过程,而且“掺杂-脱掺杂”过程完全可逆。
“掺杂”所用方法包括化学方法、电化学方法以及无离子引入的暂态掺杂法。
但是无论在掺杂实质、掺杂量、掺杂后形成的载流子性质、掺杂/脱掺杂可逆等方面与无机半导体的“掺杂”概念有本质的差异。
1.1电子导电高分子材料的导电机理电子导电聚合物的载流子是电子和空穴,这些电子应具有离域或移动的能力,因此,作为导电高分子的必要条件是分子内部具有跨键离域移动能力的电子或空穴,其结构应有大的共轭体系。
在有机共轭分子中,σ键是定域键,构成分子骨架;而垂直于分子平面的p轨道组合成离域π键,所有π电子在整个分子骨架内运动。
离域π键的形成,增大了π电子活动范围,使体系能级降低、能级间隔变小,增加物质的导电性能。
交替的单键、双键共轭结构是导电高分子材料的共同特征。
以聚乙炔结构为例,在聚乙炔线性共轭电子体系的链状结构中,每一结构单元(CH)中的碳原子外层有4个电子,其中3个电子分别位于3个SP2杂化轨道,分别与一个氢原子和两个相邻的碳原子形成σ键。
剩余的一个P电子轨道与这3个σ轨道构成的平面互相垂直。
相邻碳原子的P轨道互相平行,电子云相互重叠构成共轭π键,因而具有导电能力。
但是,由于每个CH自由基结构单元P电子轨适中只有一个电子,分子轨道理论认为,一个分子轨道中只有填充两个自旋方向相反的电子才能处于稳定状态,那么对于每个P电子占据一个π轨道而构成的上述线性π电子共轭体系则处于非稳定态,它趋向于组成电子对并占据一个分子轨道,而另一个形成空轨道。
空轨道与占有轨道的能级不同,即P电子形成的能级分裂成两个亚带:全充满能带和空带,空带的能量高于满带的能量,这种能级差阻碍P电子无约束离域运动,因此,仅有线性π电子共轭结构的聚合物的导电性不如金属导体。
上图所示的聚乙炔由长链的碳分子以SP2键链接而成,每一个碳原子有一个价电子未配对,且在垂直于SP2面上形成未配对键。
其电子云互相接触,会使得未配对电子很容易沿着长链移动,实现导电能力。
半导体到导体的转化是通过掺杂(doping)来实现的。
在共轭有机分子中σ电子是无法沿主链移动的,而π电子虽较易移动,但也相当定域化,因此必需移去主链上部分电子(氧化)或注入数个电子(还原),这些空穴或额外电子可以在分子链上移动,使此高分子成为导电体。
导电高分子材料的掺杂途径包括:氧化掺杂(p-doping): [CH]n + 3x/2I2——>[CH]n x ++ x I3 –还原掺杂(n-doping): [CH]n+ xNa ——> [CH]n x -+ x Na+添补后的聚合物形成盐类,产生电流的原因并不是碘离子或钠离子而是共轭双键上的电子移动.碘分子从聚乙炔抽取一个电子形成,聚乙炔分子形成带正电荷的自由基阳离子,在外加电场作用下双键上的电子可以非常容易地移动,结果使双键可以成功地沿着分子移动,实现其导电能力。
1.2离子导电高分子材料的导电机理离子导电过程是在外加电场的作用下,由离子载流子的定向移动来实现的。
与电子导电过程相比,离子导电的载流子,其离子体积比电子要大得多,因此离子导电过程的离子体积是影响导电能力的主要因素之一。
作为离子导体必须具备两个条件:具有可定向移动的离子和具有溶剂化能力。
显然离子导体高分子材料也应具备上述两个基本条件,即材料中含有离子并允许离子在其中进行“扩散运动”;聚合物对离子有一定的“溶剂化”作用。
关于离子导电聚合物的导电方式目前较为一致的观点是属于非晶区非晶区传输过程。
当聚合物含有小分子离子时,在电场力的作用下,该离子可以在聚合物内作一定程度的定向扩散运动,因此具有导电性,表现出电解质的性质。
随着温度的升高,聚合物的流变性质愈突出,离子导电能力也得到提高。
当聚合物处于玻璃化转变温度以上时,聚合物本身仅呈粘弹性,而不是液体的流动性,离子如何在聚合物中作扩散运动?根据自由体积理论:在一定温度下聚合物分子以一定的振幅振动,其振动能量可以抗衡来自周围的静压力,在分子周围建立一个小的空间以满足分子振动的需要。
每个聚合物分子热振动形成的小空间称为自由体积(Vf),Vf与时间有关。
当振动能量足够大,Vf可能会超过离子本身体积(V);此时,聚合物中的离子可能发生位置互换而发生移动。
二.导电高分子材料的分类及制备方法按结构和制备方法不同将导电高分子材料分为复合型与结构型两大类。
2.1复合型导电高聚物及其制备方法复合型导电高聚物是以高分子材料为基体, 加入一定数量的导电物质( 如碳黑、石墨、碳纤维、金属粉、金属纤维、金属氧化物等) 组合而成。
该类聚合物兼有高分子材料的加工特性和金属的导电性。
与金属相比较, 导电性复合材料具有加工性好、工艺简单、耐腐蚀、电阻率可调范围大、价格低等优点。
复合型导电高分子所采用的复合方法主要有两种: 一种是将亲水性聚合物或结构型导电高分子与基体高分子进行共混, 另一种则是将各种导电填料填充到基体高分子中。
日本Asahi 公司将丙烯腈- 丁二烯- 苯乙烯嵌段共聚物( ABS) 、高抗冲改性聚苯乙烯( HIPS) 与亲水性PA 共混制得两种高性能抗静电复合材料AdionA和AdionH, 尤其是后者在相对湿度较低的条件下也表现出较强的抗静电能力, 且不受水洗和擦拭等影响。
在相对湿度为50% 、温度为23 e 的环境中保存4 年后抗静电性能无变化, 机械性能不低于普通HIPS, 其他性能则与普通HIPS 相同。
将结构型导电高分子材料与基体高分子在一定条件下共混成型, 可获得具有多相结构特征的复合型导电高分子。
它的导电性能由导电高分子的/ 渗流途径0 决定, 当导电高分子质量分数为2% ~ 3% 时, 其体积电阻率为107 ~ 109 8 #cm , 可作抗静电材料使用。
研究表明, 对于聚丙烯腈( PAN) / 聚氯乙烯( PVC)或PAN/ PA 共混物, 当PAN 质量分数由5% 增加到15%时, 导电性突升, 此后随PAN 质量分数的继续增加, 导电性升幅变小。
炭黑是天然的半导体材料, 其体积电阻率约为0. 1~ 10108#cm。
它不仅原料易得, 导电性能持久稳定, 而且可以大幅度调整复合材料的电阻率( 1~108 8#cm) 。
由炭黑填充制成的复合型导电高分子是目前用途最广、用量最大的一种导电高分子材料。
炭黑填充型导电高分子材料中炭黑通常以粒子形式均匀分散于基体高分子中, 随着炭黑填充量的增加, 粒子间距缩小, 当接近或呈接触状态时,便形成大量导电网络通道, 导电性能大大提高, 继续增加炭黑用量则对导电性影响不明显。