上海高中物理——直线运动中的典型问题及解法

合集下载

高考物理直线运动解题技巧讲解及练习题(含答案)

高考物理直线运动解题技巧讲解及练习题(含答案)

高考物理直线运动解题技巧讲解及练习题(含答案)一、高中物理精讲专题测试直线运动1.倾角为θ的斜面与足够长的光滑水平面在D 处平滑连接,斜面上AB 的长度为3L ,BC 、CD 的长度均为3.5L ,BC 部分粗糙,其余部分光滑。

如图,4个“— ”形小滑块工件紧挨在一起排在斜面上,从下往上依次标为1、2、3、4,滑块上长为L 的轻杆与斜面平行并与上一个滑块接触但不粘连,滑块1恰好在A 处。

现将4个滑块一起由静止释放,设滑块经过D 处时无机械能损失,轻杆不会与斜面相碰。

已知每个滑块的质量为m 并可视为质点,滑块与粗糙面间的动摩擦因数为tan θ,重力加速度为g 。

求(1)滑块1刚进入BC 时,滑块1上的轻杆所受到的压力大小; (2)4个滑块全部滑上水平面后,相邻滑块之间的距离。

【答案】(1)3sin 4F mg θ=(2)43d L =【解析】 【详解】(1)以4个滑块为研究对象,设第一个滑块刚进BC 段时,4个滑块的加速度为a ,由牛顿第二定律:4sin cos 4mg mg ma θμθ-⋅=以滑块1为研究对象,设刚进入BC 段时,轻杆受到的压力为F ,由牛顿第二定律:sin cos F mg mg ma θμθ+-⋅=已知tan μθ= 联立可得:3sin 4F mg θ=(2)设4个滑块完全进入粗糙段时,也即第4个滑块刚进入BC 时,滑块的共同速度为v 这个过程, 4个滑块向下移动了6L 的距离,1、2、3滑块在粗糙段向下移动的距离分别为3L 、2L 、L ,由动能定理,有:214sin 6cos 32)4v 2mg L mg L L L m θμθ⋅-⋅⋅++=⋅( 可得:v 3sin gL θ=由于动摩擦因数为tan μθ=,则4个滑块都进入BC 段后,所受合外力为0,各滑块均以速度v 做匀速运动;第1个滑块离开BC 后做匀加速下滑,设到达D 处时速度为v 1,由动能定理:()22111sin 3.5v v 22mg L m m θ⋅=- 可得:1v 4sin gL θ=当第1个滑块到达BC 边缘刚要离开粗糙段时,第2个滑块正以v 的速度匀速向下运动,且运动L 距离后离开粗糙段,依次类推,直到第4个滑块离开粗糙段。

高考物理直线运动常见题型及答题技巧及练习题(含答案)

高考物理直线运动常见题型及答题技巧及练习题(含答案)

高考物理直线运动常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试直线运动1.如图所示,一木箱静止在长平板车上,某时刻平板车以a = 2.5m/s2的加速度由静止开始向前做匀加速直线运动,当速度达到v = 9m/s时改做匀速直线运动,己知木箱与平板车之间的动摩擦因数μ= 0.225,箱与平板车之间的最大静摩擦力与滑动静擦力相等(g取10m/s2)。

求:(1)车在加速过程中木箱运动的加速度的大小(2)木箱做加速运动的时间和位移的大小(3)要使木箱不从平板车上滑落,木箱开始时距平板车右端的最小距离。

【答案】(1)(2)4s;18m(3)1.8m【解析】试题分析:(1)设木箱的最大加速度为,根据牛顿第二定律解得则木箱与平板车存在相对运动,所以车在加速过程中木箱的加速度为(2)设木箱的加速时间为,加速位移为。

(3)设平板车做匀加速直线运动的时间为,则达共同速度平板车的位移为则要使木箱不从平板车上滑落,木箱距平板车末端的最小距离满足考点:牛顿第二定律的综合应用.2.某汽车在高速公路上行驶的速度为108km/h,司机发现前方有障碍物时,立即采取紧急刹车,其制动过程中的加速度大小为5m/s2,假设司机的反应时间为0.50s,汽车制动过程中做匀变速直线运动。

求:(1)汽车制动8s后的速度是多少(2)汽车至少要前行多远才能停下来?【答案】(1)0(2)105m【解析】 【详解】(1)选取初速度方向为正方向,有:v 0=108km/h=30m/s ,由v t =v 0+at 得汽车的制动时间为:003065t v v t s s a ---===,则汽车制动8s 后的速度是0; (2)在反应时间内汽车的位移:x 1=v 0t 0=15m ;汽车的制动距离为:0230069022t v v x t m m ++⨯=== . 则汽车至少要前行15m+90m=105m 才能停下来. 【点睛】解决本题的关键掌握匀变速直线运动的运动学公式和推论,并能灵活运用,注意汽车在反应时间内做匀速直线运动.3.2018年12月8日2时23分,嫦娥四号探测器成功发射,开启了人类登陆月球背面的探月新征程,距离2020年实现载人登月更近一步,若你通过努力学习、刻苦训练有幸成为中国登月第一人,而你为了测定月球表面附近的重力加速度进行了如下实验:在月球表面上空让一个小球由静止开始自由下落,测出下落高度20h m =时,下落的时间正好为5t s =,则:(1)月球表面的重力加速度g 月为多大?(2)小球下落过程中,最初2s 内和最后2s 内的位移之比为多大? 【答案】1.6 m/s 2 1:4 【解析】 【详解】(1)由h =12g 月t 2得:20=12g 月×52 解得:g 月=1.6m /s 2(2)小球下落过程中的5s 内,每1s 内的位移之比为1:3:5:7:9,则最初2s 内和最后2s 内的位移之比为:(1+3):(7+9)=1:4.4.如图所示,质量为M=8kg 的小车停放在光滑水平面上,在小车右端施加一水平恒力F ,当小车向右运动速度达 到时,在小车的右端轻轻放置一质量m=2kg 的小物块,经过t 1=2s 的时间,小物块与小车保持相对静止。

高考物理直线运动解题技巧讲解及练习题(含答案)及解析

高考物理直线运动解题技巧讲解及练习题(含答案)及解析

高考物理直线运动解题技巧讲解及练习题(含答案)及解析一、高中物理精讲专题测试直线运动1.A 、B 两列火车,在同一轨道上同向行驶, A 车在前,其速度v A =10m/s ,B 车在后,速度v B =30m/s .因大雾能见度很低,B 车在距A 车△s=75m 时才发现前方有A 车,这时B 车立即刹车,但B 车要经过180m 才能够停止.问: (1)B 车刹车后的加速度是多大?(2)若B 车刹车时A 车仍按原速前进,请判断两车是否相撞?若会相撞,将在B 车刹车后何时?若不会相撞,则两车最近距离是多少?(3)若B 车在刹车的同时发出信号,A 车司机经过△t=4s 收到信号后加速前进,则A 车的加速度至少多大才能避免相撞?【答案】(1)22.5m /s ,方向与运动方向相反.(2)6s 两车相撞(3)20.83/A a m s ≥【解析】试题分析:根据速度位移关系公式列式求解;当速度相同时,求解出各自的位移后结合空间距离分析;或者以前车为参考系分析;两车恰好不相撞的临界条件是两部车相遇时速度相同,根据运动学公式列式后联立求解即可.(1)B 车刹车至停下过程中,00,30/,180t B v v v m s S m ====由202BB v a s -=得222.5/2B B v a m s s=-=-故B 车刹车时加速度大小为22.5m /s ,方向与运动方向相反.(2)假设始终不相撞,设经时间t 两车速度相等,则有:A B B v v a t =+, 解得:103082.5A B B v v t s a --===- 此时B 车的位移:2211308 2.5816022B B B s v t a t m =+=⨯-⨯⨯= A 车的位移:10880A A s v t m ==⨯=因1(33333=-+= 设经过时间t 两车相撞,则有212A B B v t s v t a t +∆=+代入数据解得:126,10t s t s ==,故经过6s 两车相撞 (3)设A 车的加速度为A a 时两车不相撞 两车速度相等时:()A A B B v a t t v a t ''+-∆=+ 即:10()30 2.5A a t t t ''+-∆=- 此时B 车的位移:221,30 1.252B B B B s v t a t s t t =+=-''''即:A 车的位移:21()2A A A s v t a t t ''=+-∆要不相撞,两车位移关系要满足B A s s s ≤+∆解得20.83/A a m s ≥2.一位汽车旅游爱好者打算到某风景区去观光,出发地和目的地之间是一条近似于直线的公路,他原计划全程平均速度要达到40 km/h ,若这位旅游爱好者开出1/3路程之后发现他的平均速度仅有20 km/h ,那么他能否完成全程平均速度为40 km/h 的计划呢?若能完成,要求他在后的路程里开车的速度应达多少? 【答案】80km/h 【解析】本题考查匀变速直线运动的推论,利用平均速度等于位移除以时间,设总路程为s ,后路程上的平均速度为v ,总路程为s前里时用时 后里时用时所以全程的平均速度解得由结果可知,这位旅行者能完成他的计划,他在后2s/3的路程里,速度应达80 km/h3.某人驾驶一辆小型客车以v 0=10m/s 的速度在平直道路上行驶,发现前方s =15m 处有减速带,为了让客车平稳通过减速带,他立刻刹车匀减速前进,到达减速带时速度v =5.0 m/s .已知客车的总质量m =2.0×103 kg.求: (1)客车到达减速带时的动能E k ;(2)客车从开始刹车直至到达减速带过程所用的时间t ; (3)客车减速过程中受到的阻力大小f .【答案】(1)E k =2.5×104J (2)t =2s (3)f =5.0×103N 【解析】 【详解】(1) 客车到达减速带时的功能E k =12mv 2,解得E k =2.5×104 J (2) 客车减速运动的位移02v vs t +=,解得t =2s(3) 设客车减速运动的加速度大小为a ,则v =v 0-at ,f =ma 解得f =5.0×103 N4.某型号的舰载飞机在航空母舰的跑道上加速时,发动机产生的最大加速度为5m/s 2,所需的起飞速度为50m/s ,跑道长100m .通过计算判断,飞机能否靠自身的发动机从舰上起飞?为了使飞机在开始滑行时就有一定的初速度,航空母舰装有弹射装置.对于该型号的舰载飞机,弹射系统必须使它具有多大的初速度? 【答案】不能靠自身发动机起飞 39/m s 【解析】试题分析:根据速度位移公式求出达到起飞速度的位移,从而判断飞机能否靠自身发动机从舰上起飞.根据速度位移公式求出弹射系统使飞机具有的初速度. 解:当飞机达到起飞速度经历的位移x=,可知飞机不能靠自身发动机从舰上起飞. 根据得,=.答:飞机不能靠自身发动机从舰上起飞,对于该型号的舰载飞机,弹射系统必须使它具有40m/s 的初速度.【点评】解决本题的关键掌握匀变速直线运动的速度位移公式,并能灵活运用,基础题.5.如图所示,物体A 的质量1kg A m =,静止在光滑水平面上的平板车B ,质量为0.5kg B m =,长为1m L =.某时刻A 以04m/s v =向右的初速度滑上木板B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力F ,忽略物体A 的大小,已知A 与B 之间的动摩擦因素0.2μ=,取重力加速度210m/s g =.求: (1)若5N F =,物体A 在小车上运动时相对小车滑行的最大距离. (2)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件.【答案】(1)0.5m (2)1N≤F≤3N【解析】(1)物体A 滑上木板B 以后,作匀减速运动,有μmg=ma A 得a A =μg=2m/s 2木板B 作加速运动,有F+μmg=Ma B , 代入数据解得:a B =14m/s 2 两者速度相同时,有v 0-a A t=a B t , 代入数据解得:t=0.25sA 滑行距离:S A =v 0t-12a A t 2=4×0.25−12×2×116=1516m , B 滑行距离:S B =12a B t 2=12×14×116m=716m . 最大距离:△s=S A -S B =1516−716=0.5m (2)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则:22201122A Bv v v L a a -=+ 又:011A Bv v v a a -= 代入数据可得:a B =6(m/s 2)由F=m 2a B -μm 1g=1N若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N .当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落. 即有:F=(m+m )a ,μm 1g=m 1a 所以:F=3N若F 大于3N ,A 就会相对B 向左滑下. 综上:力F 应满足的条件是:1N≤F≤3N点睛:牛顿定律和运动公式结合是解决力学问题的基本方法,这类问题的基础是分析物体的受力情况和运动情况,难点在于分析临界状态,挖掘隐含的临界条件.6.如图,AB 是固定在竖直平面内半径R =1.25m 的1/4光滑圆弧轨道,OA 为其水平半径,圆弧轨道的最低处B 无缝对接足够长的水平轨道,将可视为质点的小球从轨道内表面最高点A 由静止释放.已知小球进入水平轨道后所受阻力为其重力的0.2倍,g 取10m/s 2.求:(1)小球经过B 点时的速率;(2)小球刚要到B 点时加速度的大小和方向; (3)小球过B 点后到停止的时间和位移大小.【答案】 (1)5 m/s (2)20m/s 2加速度方向沿B 点半径指向圆心(3)25s 6.25m 【解析】(1)小球从A 点释放滑至B 点,只有重力做功,机械能守恒:mgR=12mv B 2 解得v B =5m/s(2)小环刚要到B 点时,处于圆周运动过程中,222215/20/1.25B v a m s m s R ===加速度方向沿B 点半径指向圆心(3)小环过B 点后继续滑动到停止,可看做匀减速直线运动:0.2mg=ma 2, 解得a 2=2m/s 2222.5Bv t s a == 221 6.252s a t m ==7.如图甲所示,长为4m 的水平轨道AB 与半径为R=0.6m 的竖直半圆弧轨道BC 在B 处相连接,有一质量为1kg 的滑块(大小不计),从A 处由静止开始受水平向右的力F 作用,F 的大小随位移变化关系如图乙所示,滑块与AB 间动摩擦因数为0.25,与BC 间的动摩擦因数未知,取g =l0m/s 2.求:(1)滑块到达B 处时的速度大小;(2)滑块在水平轨道AB 上运动前2m 过程中所需的时间;(3)若滑块到达B 点时撤去力F ,滑块沿半圆弧轨道内侧上滑,并恰好能达到最高点C ,则滑块在半圆轨道上克服摩擦力所做的功是多少. 【答案】(1)210/m s (2835s (3)5J 【解析】试题分析: (1)对滑块从A 到B 的过程,由动能定理得F 1x 1-F 3x 3-μmgx =12mv B 2得v B =10m/s . (2)在前2 m 内,由牛顿第二定律得F 1-μmg =ma 且x 1=12at 12解得t 1. (3)当滑块恰好能到达最高点C 时,有mg =m 2Cv R对滑块从B 到C 的过程,由动能定理得W -mg×2R =12mv C 2-12mv B 2 代入数值得W =-5 J即克服摩擦力做的功为5 J .考点:动能定理;牛顿第二定律8.近年来隧道交通事故成为道路交通事故的热点之一.某日,一轿车A 因故障恰停在某隧道内离隧道入口50m 的位置.此时另一轿车B 正以v 0=90km/h 的速度匀速向隧道口驶来,轿车B 到达隧道口时驾驶员才发现停在前方的轿车A 并立即采取制动措施.假设该驾驶员的反应时间t 1=0.57s ,轿车制动系统响应时间(开始踏下制动踏板到实际制动)t 2=0.03s ,轿车制动时加速度大小a=7.5m/s 2.问: (1)轿车B 是否会与停在前方的轿车A 相撞?(2)若会相撞,撞前轿车B 的速度大小为多少?若不会相撞,停止时轿车B 与轿车A 的距离是多少?【答案】(1)轿车B 会与停在前方的轿车A 相撞;(2)10m/s 【解析】试题分析:轿车的刹车位移由其反应时间内的匀速运动位移和制动后匀减速运动位移两部分构成,由此可得刹车位移,与初始距离比较可判定是否相撞;依据(1)的结果,由运动可判定相撞前B 的速度.(1)轿车B 在实际制动前做匀速直线运动,设其发生的位移为s 1,由题意可知:s 1=v 0(t 1+t 2)=15 m ,实际制动后,轿车B 做匀减速运动,位移为s 2, 由2022v as =代入数据得:s 2=41.7 m ,轿车A 离隧道口的距离为d =50 m ,因s 1+s 2>d ,故轿车B 会与停在前方的轿车A 相撞(2)设撞前轿车B 的速度为v ,由运动学公式得22002v v ax -=,代入数据解得:v =10m/s .点睛:本题主要考查相遇问题,关键要掌握刹车位移的判定:反应时间内的匀速运动位移;制动后匀减速运动位移.9.两辆玩具小车在同一水平轨道上运动,在t =0时刻,甲车在乙车前面S 0=4m 的地方以速度v 0=2m /s 匀速行驶,此时乙车立即从静止开始做加速度a =1m /s 2匀加速直线运动去追甲车,但乙车达到速度v m =3m /s 后开始匀速运动.求:(1)从开始经过多长时间乙车落后甲车最远,这个距离是多少?(2)从开始经过多长时间乙车追上甲车,此时乙车通过位移的大小是多少?【答案】(1)6m (2)21m 【解析】 【分析】(1)匀加速追匀速,二者同速时间距最大;(2)先判断乙车达到最大速度时两车的间距,再判断匀速追及阶段的时间即可.匀加速追及匀速运动物体时,二者同速时有最小间距. 【详解】(1)当两车速度相等时相距最远,即v 0=at 0,故t 0=2s ; 此时两车距离x =S 0+v 0t 0-12at 02 解得x =6m ;(2)先研究乙车从开始到速度达到v m 时与甲车的距离. 对乙车:v m =at 1,2ax 乙=v m 2 , 对甲车:x 甲=v 0t 1解得x 甲=6m ,x 乙=4.5m t 1=3sx 甲+S 0>x 乙,故乙车达到最大速度时未追上乙车,此时间距为△s =x 甲+S 0-x 乙=5.5m , 乙车还需要时间20 5.55.532m s t s s v v ∆===--, 故甲追上乙的时间t =t 1+t 2=3+5.5s =8.5s , 此时乙车的位移为X 总=x 乙+v m t 2=4.5+3×5.5m =21m ;10.比萨斜塔是世界建筑史上的一大奇迹.如图所示,已知斜塔第一层离地面的高度h 1=6.8m ,为了测量塔的总高度,在塔顶无初速度释放一个小球,小球经过第一层到达地面的时间t 1=0.2s ,重力加速度g 取10m/s 2,不计空气阻力. (1)求斜塔离地面的总高度h ;(2)求小球从塔顶落到地面过程中的平均速度.【答案】(1)求斜塔离地面的总高度h 为61.25m ; (2)小球从塔顶落到地面过程中的平均速度为17.5m/s . 【解析】试题分析:(1)设小球到达第一层时的速度为v1,则有h1= v1t1+代入数据得v1= 33m/s,塔顶离第一层的高度h2==54.45m所以塔的总高度h= h1+ h2= 61.25m(2)小球从塔顶落到地面的总时间t==3.5s,平均速度==17.5m/s 考点:自由落体运动规律。

高中物理直线运动解题技巧及练习题含解析

高中物理直线运动解题技巧及练习题含解析

高中物理直线运动解题技巧及练习题含解析一、高中物理精讲专题测试直线运动1.某次足球比赛中,攻方使用“边路突破,下底传中”的战术.如图,足球场长90m 、宽60m.前锋甲在中线处将足球沿边线向前踢出,足球的运动可视为在地面上做匀减速直线运动,其初速度v 0=12m/s ,加速度大小a 0=2m/s 2.(1)甲踢出足球的同时沿边线向前追赶足球,设他做初速为零、加速度a 1=2m/s 2的匀加速直线运动,能达到的最大速度v m =8m/s.求他追上足球的最短时间.(2)若甲追上足球的瞬间将足球以某速度v 沿边线向前踢出,足球仍以a 0在地面上做匀减速直线运动;同时,甲的速度瞬间变为v 1=6 m/s ,紧接着他做匀速直线运动向前追赶足球,恰能在底线处追上足球传中,求v 的大小.【答案】(1)t =6.5s (2)v =7.5m/s【解析】【分析】(1)根据速度时间公式求出运动员达到最大速度的时间和位移,然后运动员做匀速直线运动,结合位移关系求出追及的时间.(2)结合运动员和足球的位移关系,运用运动学公式求出前锋队员在底线追上足球时的速度.【详解】(1)已知甲的加速度为22s 2m/a =,最大速度为28m/s v =,甲做匀加速运动达到最大速度的时间和位移分别为:2228s 4s 2v t a === 22284m 16m 22v x t ==⨯= 之后甲做匀速直线运动,到足球停止运动时,其位移x 2=v m (t 1-t 0)=8×2m =16m 由于x 1+x 2 < x 0,故足球停止运动时,甲没有追上足球甲继续以最大速度匀速运动追赶足球,则x 0-(x 1+x 2)=v m t 2联立得:t 2=0.5s甲追上足球的时间t =t 0+t 2=6.5s(2)足球距底线的距离x 2=45-x 0=9m设甲运动到底线的时间为t 3,则x 2=v 1t 3足球在t 3时间内发生的位移2230312x vt a t =-联立解得:v =7.5m/s【点睛】解决本题的关键理清足球和运动员的位移关系,结合运动学公式灵活求解.2.为确保行车安全,高速公路不同路段限速不同,若有一段直行连接弯道的路段,如图所示,直行路段AB限速120km/h,弯道处限速60km/h.(1)一小车以120km/h的速度在直行道行驶,要在弯道B处减速至60km/h,已知该车制动的最大加速度为2.5m/s2,求减速过程需要的最短时间;(2)设驾驶员的操作反应时间与车辆的制动反应时间之和为2s(此时间内车辆匀速运动),驾驶员能辨认限速指示牌的距离为x0=100m,求限速指示牌P离弯道B的最小距离.【答案】(1)3.3s(2)125.6m【解析】【详解】(1)120 120km/h m/s3.6v==,6060km/h m/s3.6v==根据速度公式v=v0-at,加速度大小最大为2.5m/s2解得:t=3.3s;(2)反应期间做匀速直线运动,x1=v0t1=66.6m;匀减速的位移:2202v v ax-=解得:x=159m则x'=159+66.6-100m=125.6m.应该在弯道前125.6m距离处设置限速指示牌.3.某型号的舰载飞机在航空母舰的跑道上加速时,发动机产生的最大加速度为5m/s2,所需的起飞速度为50m/s,跑道长100m.通过计算判断,飞机能否靠自身的发动机从舰上起飞?为了使飞机在开始滑行时就有一定的初速度,航空母舰装有弹射装置.对于该型号的舰载飞机,弹射系统必须使它具有多大的初速度?【答案】不能靠自身发动机起飞39/m s【解析】试题分析:根据速度位移公式求出达到起飞速度的位移,从而判断飞机能否靠自身发动机从舰上起飞.根据速度位移公式求出弹射系统使飞机具有的初速度.解:当飞机达到起飞速度经历的位移x=,可知飞机不能靠自身发动机从舰上起飞. 根据得,=. 答:飞机不能靠自身发动机从舰上起飞,对于该型号的舰载飞机,弹射系统必须使它具有40m/s 的初速度.【点评】解决本题的关键掌握匀变速直线运动的速度位移公式,并能灵活运用,基础题.4.如图,AB 是固定在竖直平面内半径R =1.25m 的1/4光滑圆弧轨道,OA 为其水平半径,圆弧轨道的最低处B 无缝对接足够长的水平轨道,将可视为质点的小球从轨道内表面最高点A 由静止释放.已知小球进入水平轨道后所受阻力为其重力的0.2倍,g 取10m/s 2.求:(1)小球经过B 点时的速率;(2)小球刚要到B 点时加速度的大小和方向;(3)小球过B 点后到停止的时间和位移大小.【答案】 (1)5 m/s (2)20m/s 2加速度方向沿B 点半径指向圆心(3)25s 6.25m【解析】(1)小球从A 点释放滑至B 点,只有重力做功,机械能守恒:mgR=12mv B 2 解得v B =5m/s(2)小环刚要到B 点时,处于圆周运动过程中,222215/20/1.25B v a m s m s R === 加速度方向沿B 点半径指向圆心(3)小环过B 点后继续滑动到停止,可看做匀减速直线运动:0.2mg=ma 2,解得a 2=2m/s 2 222.5B v t s a == 221 6.252s a t m ==5.2018年12月8日2时23分,嫦娥四号探测器成功发射,开启了人类登陆月球背面的探月新征程,距离2020年实现载人登月更近一步,若你通过努力学习、刻苦训练有幸成为中国登月第一人,而你为了测定月球表面附近的重力加速度进行了如下实验:在月球表面上空让一个小球由静止开始自由下落,测出下落高度20h m =时,下落的时间正好为5t s =,则:(1)月球表面的重力加速度g 月为多大?(2)小球下落过程中,最初2s 内和最后2s 内的位移之比为多大?【答案】1.6 m/s 2 1:4【解析】【详解】(1)由h =12g 月t 2得:20=12g 月×52 解得:g 月=1.6m /s 2 (2)小球下落过程中的5s 内,每1s 内的位移之比为1:3:5:7:9,则最初2s 内和最后2s 内的位移之比为:(1+3):(7+9)=1:4.6.光滑水平桌面上有一个静止的物体,其质量为7kg ,在14N 的水平恒力作用下向右做匀加速直线运动,求:5s 末物体的速度的大小?5s 内通过的位移是多少?【答案】x=25m【解析】【分析】根据牛顿第二定律求出物体的加速度,根据速度时间公式和位移时间公式求出5s 末的速度和5s 内的位移.【详解】(1)根据牛顿第二定律得,物体的加速度为:2214/2/7F a m s m s m ===; 5s 末的速度为:v=at=2×5m/s=10m/s.(2)5s 内的位移为:x=12at 2= 12×2×52m =25m . 【点睛】本题考查了牛顿第二定律和运动学公式的综合,知道加速度是联系力学和运动学的桥梁.7.杭黄高铁是连接杭州市和黄山市的高速铁路。

高考物理直线运动解题技巧讲解及练习题(含答案)

高考物理直线运动解题技巧讲解及练习题(含答案)

高考物理直线运动解题技巧讲解及练习题(含答案)一、高中物理精讲专题测试直线运动1.研究表明,一般人的刹车反应时间(即图甲中“反应过程”所用时间)t 0=0.4s ,但饮酒会导致反应时间延长.在某次试验中,志愿者少量饮酒后驾车以v 0=72km/h 的速度在试验场的水平路面上匀速行驶,从发现情况到汽车停止,行驶距离L=39m .减速过程中汽车位移s 与速度v 的关系曲线如图乙所示,此过程可视为匀变速直线运动.取重力加速度的大小g=10m/s 2.求:(1)减速过程汽车加速度的大小及所用时间; (2)饮酒使志愿者的反应时间比一般人增加了多少;(3)减速过程汽车对志愿者作用力的大小与志愿者重力大小的比值. 【答案】(1)28/m s ,2.5s ;(2)0.3s ;(3)0415F mg =【解析】 【分析】 【详解】(1)设减速过程中,汽车加速度的大小为a ,运动时间为t ,由题可知初速度020/v m s =,末速度0t v =,位移2()211f x x =-≤由运动学公式得:202v as =①2.5v t s a==② 由①②式代入数据得28/a m s =③2.5t s =④(2)设志愿者饮酒后反应时间的增加量为t ∆,由运动学公式得0L v t s ='+⑤ 0t t t ∆='-⑥联立⑤⑥式代入数据得0.3t s ∆=⑦(3)设志愿者力所受合外力的大小为F ,汽车对志愿者作用力的大小为0F ,志愿者的质量为m ,由牛顿第二定律得F ma =⑧由平行四边形定则得2220()F F mg =+⑨联立③⑧⑨式,代入数据得0415F mg =⑩2.如图所示,一根有一定电阻的直导体棒质量为、长为L ,其两端放在位于水平面内间距也为L 的光滑平行导轨上,并与之接触良好;棒左侧两导轨之间连接一可控电阻;导轨置于匀强磁场中,磁场的磁感应强度大小为B ,方向垂直于导轨所在平面,时刻,给导体棒一个平行与导轨的初速度,此时可控电阻的阻值为,在棒运动过程中,通过可控电阻的变化使棒中的电流强度保持恒定,不计导轨电阻,导体棒一直在磁场中。

高考物理直线运动解题技巧讲解及练习题(含答案)及解析

高考物理直线运动解题技巧讲解及练习题(含答案)及解析

高考物理直线运动解题技巧讲解及练习题(含答案)及解析一、高中物理精讲专题测试直线运动1.研究表明,一般人的刹车反应时间(即图甲中“反应过程”所用时间)t 0=0.4s ,但饮酒会导致反应时间延长.在某次试验中,志愿者少量饮酒后驾车以v 0=72km/h 的速度在试验场的水平路面上匀速行驶,从发现情况到汽车停止,行驶距离L=39m .减速过程中汽车位移s 与速度v 的关系曲线如图乙所示,此过程可视为匀变速直线运动.取重力加速度的大小g=10m/s 2.求:(1)减速过程汽车加速度的大小及所用时间; (2)饮酒使志愿者的反应时间比一般人增加了多少;(3)减速过程汽车对志愿者作用力的大小与志愿者重力大小的比值. 【答案】(1)28/m s ,2.5s ;(2)0.3s ;(3)0415F mg =【解析】 【分析】 【详解】(1)设减速过程中,汽车加速度的大小为a ,运动时间为t ,由题可知初速度020/v m s =,末速度0t v =,位移2()211f x x =-≤由运动学公式得:202v as =①2.5v t s a==② 由①②式代入数据得28/a m s =③2.5t s =④(2)设志愿者饮酒后反应时间的增加量为t ∆,由运动学公式得0L v t s ='+⑤ 0t t t ∆='-⑥联立⑤⑥式代入数据得0.3t s ∆=⑦(3)设志愿者力所受合外力的大小为F ,汽车对志愿者作用力的大小为0F ,志愿者的质量为m ,由牛顿第二定律得F ma =⑧由平行四边形定则得2220()F F mg =+⑨联立③⑧⑨式,代入数据得0415F mg =⑩2.如图所示,一木箱静止在长平板车上,某时刻平板车以a = 2.5m/s 2的加速度由静止开始向前做匀加速直线运动,当速度达到v = 9m/s 时改做匀速直线运动,己知木箱与平板车之间的动摩擦因数μ= 0.225,箱与平板车之间的最大静摩擦力与滑动静擦力相等(g 取10m/s 2)。

高考物理直线运动解题技巧讲解及练习题(含答案)及解析

高考物理直线运动解题技巧讲解及练习题(含答案)及解析

高考物理直线运动解题技巧讲解及练习题(含答案)及解析一、高中物理精讲专题测试直线运动1.重力加速度是物理学中的一个十分重要的物理量,准确地确定它的量值,无论从理论上、还是科研上、生产上以及军事上都有极其重大的意义。

(1)如图所示是一种较精确测重力加速度g值的方法:将下端装有弹射装置的真空玻璃直管竖直放置,玻璃管足够长,小球竖直向上被弹出,在O点与弹簧分离,然后返回。

在O 点正上方选取一点P,利用仪器精确测得OP间的距离为H,从O点出发至返回O点的时间间隔为T1,小球两次经过P点的时间间隔为T2。

(i)求重力加速度g;(ii)若O点距玻璃管底部的距离为L0,求玻璃管最小长度。

(2)在用单摆测量重力加速度g时,由于操作失误,致使摆球不在同一竖直平面内运动,而是在一个水平面内做圆周运动,如图所示.这时如果测出摆球做这种运动的周期,仍用单摆的周期公式求出重力加速度,问这样求出的重力加速度与重力加速度的实际值相比,哪个大?试定量比较。

(3)精确的实验发现,在地球上不同的地方,g的大小是不同的,下表列出了一些地点的重力加速度。

请用你学过的知识解释,重力加速度为什么随纬度的增加而增大?【答案】(1)22128H gT T =-, 2102212T HL T T +-;(2)求出的重力加速度比实际值大;(3)解析见详解。

【解析】 【详解】(1)(i )小球从O 点上升到最大高度过程中:211122T h g ⎛⎫= ⎪⎝⎭小球从P 点上升的最大高度:222122T h g ⎛⎫= ⎪⎝⎭依据题意:12h h H -= 联立解得:22128Hg T T =-(ii )真空管至少的长度:01L L h =+故2102212T HL L T T =+- (2)以l 表示摆长,θ表示摆线与竖直方向的夹角,m 表示摆球的质量,F 表示摆线对摆球的拉力,T 表示摆球作题图所示运动的周期,小球受力分析如图:则有 F sin θ=mL sin θ(2Tπ)2, F cos θ=mg由以上式子得:T =2πLcos gθ,而单摆的周期公式为 T ′=2πLg ,即使在单摆实验中,摆角很小,θ<5°,但cos θ<l ,这表示对于同样的摆长L ,摆球在水平面内作圆周运动的周期T 小于单摆运动的周期T ′,所以把较小的周期通过求出的重力加速度的数值将大于g 的实际值。

高考物理直线运动解题技巧(超强)及练习题(含答案)

高考物理直线运动解题技巧(超强)及练习题(含答案)

高考物理直线运动解题技巧(超强)及练习题(含答案)一、高中物理精讲专题测试直线运动1.质量为2kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的图象如图所示取m/s2,求:(1)物体与水平面间的动摩擦因数;(2)水平推力F的大小;(3)s内物体运动位移的大小.【答案】(1)0.2;(2)5.6N;(3)56m。

【解析】【分析】【详解】(1)由题意可知,由v-t图像可知,物体在4~6s内加速度:物体在4~6s内受力如图所示根据牛顿第二定律有:联立解得:μ=0.2(2)由v-t图像可知:物体在0~4s内加速度:又由题意可知:物体在0~4s内受力如图所示根据牛顿第二定律有:代入数据得:F=5.6N(3)物体在0~14s内的位移大小在数值上为图像和时间轴包围的面积,则有:【点睛】在一个题目之中,可能某个过程是根据受力情况求运动情况,另一个过程是根据运动情况分析受力情况;或者同一个过程运动情况和受力情况同时分析,因此在解题过程中要灵活处理.在这类问题时,加速度是联系运动和力的纽带、桥梁.2.撑杆跳高是奥运会是一个重要的比赛项目.撑杆跳高整个过程可以简化为三个阶段:助跑、上升、下落;而运动员可以简化成质点来处理.某著名运动员,在助跑过程中,从静止开始以加速度2 m/s 2做匀加速直线运动,速度达到10 m/s 时撑杆起跳;达到最高点后,下落过程可以认为是自由落体运动,重心下落高度为6.05 m ;然后落在软垫上软垫到速度为零用时0.8 s .运动员质量m =75 kg ,g 取10 m/s 2.求: (1)运动员起跳前的助跑距离;(2)自由落体运动下落时间,以及运动员与软垫接触时的速度;(3)假设运动员从接触软垫到速度为零做匀减速直线运动,求运动员在这个过程中,软垫受到的压力.【答案】(1)运动员起跳前的助跑距离为25m ;(2)自由落体运动下落时间为1.1S ,以及运动员与软垫接触时的速度为11m/s ;(3)运动员在这个过程中,软垫受到的压力为1.8×103N . 【解析】 【详解】(1)根据速度位移公式得,助跑距离:x=22v a =21022⨯=25m (2)设自由落体时间为t 1,自由落体运动的位移为h :h=212gt 代入数据得:t =1.1s 刚要接触垫的速度v ′,则:v′2=2gh ,得v =11m/s(3)设软垫对人的力为F ,由动量定理得:(mg-F )t =0-mv ′ 代入数据得:F =1.8×103N由牛顿第三定律得对软垫的力为1.8×103N3.如图所示,物体A 的质量1kg A m =,静止在光滑水平面上的平板车B ,质量为0.5kg B m =,长为1m L =.某时刻A 以04m/s v =向右的初速度滑上木板B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力F ,忽略物体A 的大小,已知A 与B 之间的动摩擦因素0.2μ=,取重力加速度210m/s g =.求: (1)若5N F =,物体A 在小车上运动时相对小车滑行的最大距离. (2)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件.【答案】(1)0.5m (2)1N≤F≤3N【解析】(1)物体A 滑上木板B 以后,作匀减速运动,有μmg=ma A 得a A =μg=2m/s 2木板B 作加速运动,有F+μmg=Ma B , 代入数据解得:a B =14m/s 2 两者速度相同时,有v 0-a A t=a B t , 代入数据解得:t=0.25s A 滑行距离:S A =v 0t-12a A t 2=4×0.25−12×2×116=1516m , B 滑行距离:S B =12a B t 2=12×14×116m=716m . 最大距离:△s=S A -S B =1516−716=0.5m (2)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则:22201122A Bv v v L a a -=+ 又:011A Bv v v a a -= 代入数据可得:a B =6(m/s 2)由F=m 2a B -μm 1g=1N若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N .当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落. 即有:F=(m+m )a ,μm 1g=m 1a 所以:F=3N若F 大于3N ,A 就会相对B 向左滑下. 综上:力F 应满足的条件是:1N≤F≤3N点睛:牛顿定律和运动公式结合是解决力学问题的基本方法,这类问题的基础是分析物体的受力情况和运动情况,难点在于分析临界状态,挖掘隐含的临界条件.4.一质点做匀加速直线运动,初速度v 0=2 m/s ,4 s 内位移为20 m ,求: (1)质点的加速度大小; (2)质点4 s 末的速度大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

/jy-s400/ 托福
上海高中物理——直线运动中的典型问题及解法
直线运动部分的概念多、公式多、规律多,实际问题的情境千变万化,但若能透过现象看本质,将会发现在众多的“变幻”中,无非是四类典型问题在变换、重组,掌握这四类典型问题的处理策略后自然能以不变应万变。

一、初速度为0的匀加速直线运动问题
此类问题的基本解题策略是:在不能利用比值规律处理的情况下,应设法将中间位置或中间小过程与起点相联系,这样可以让绝大多数运动规律形式得到简化。

例:物体从光滑的斜面顶端由静止开始匀加速下滑,在最后1s内通过了全部路程的一半,则下滑的总时间为多少?
分析:物体运动的典型特征为,最后1s刚好是一段中间过程。

解:如图所示,有

由于
/jy-s400/ 托福解得:
说明:末速度为0的匀减速直线运动在变换成反方向的初速度为0的匀加速直线运动后可以采用同样的方法处理。

二、不同性质的直线运动过程相连接的问题
指匀速、匀加速、匀减速直线运动中的两个或三个组合在一起。

此类问题的解题策略是:紧扣转折点速度。

因为它既是前一运动阶段的末速度,又是后一运动阶段的初速度,找到它可以最大程度增加已知信息,对解题极为有利。

例:质点由A点出发沿直线AB运动,行程的第一部分是加速度大小为a1的匀加速运动,接着做加速度大小为a2的匀减速运动,到达B点时恰好速度减为零。

若AB间总长度为S,试求质点从A到B所用的时间t。

分析:整个运动过程由匀加速、匀减速两个阶段组成。

基本解题思路是先找到转折点速度,再利用平均速度关系式或速度公式求时间。

解:设第一阶段的末速度为V
则由题意可知:
解得:而
所以
说明:只要涉及不同性质的直线运动,不管题中待求量是什么,解题的首要任务都应该是求出转折点速度。

/jy-s400/ 托福
三、运动性质多变或周期性变化的问题
此类问题牵涉的运动阶段较多,传统的分析方法过于繁琐,而且容易导致思维混乱。

若能首先描绘出物体的图像,那么就可以从全局上把握住运动的特点,原本复杂的运动过程也变得形象、具体。

例:一个物体原来静止在光滑的水平地面上,从开始运动,在第1、3、5……奇数秒内,给物体施加方向向北的水平推力,使物体获得大小为的加速度,在第2、4、6……偶数秒内,撤去水平推力,向经过多长时间,物体位移的大小为?
分析:物体运动性质周期性变化,因此先描绘出运动物体的图像。

如图所示,从图线下方所围图形的面积关系可以看出,每一秒内物体运动的位移大小构成等差数列,所以可以结合等差数列的求和公式进行求解。

解:物体在第1S内的位移为
由等差数列的求和公式得n(n为正整数)秒内物体的总位移
解得:8<n<9,表明该位移不能在整数秒内完成,实际运动时间应该在之间。

而物体在前8S内的位移为,且
/jy-s400/ 托福设物体在剩余内所用时间为
由于,解得:
所以物体完成40.25m的位移总共所用的时间为
说明:运动性质周期性变化的问题借助图像处理,方便快捷。

其他运动性质非周期性变化的问题(包括不同性质的直线运动过程相连接的问题)借助图像处理,优点同样明显。

四、追及和相遇问题
此类问题由于涉及的运动物体不止一个,运动性质也往往不同,处理起来有一定的难度,但只要掌握正确的方法,还是可以化难为易,顺利解决的。

该类问题解题的一般策略是:
(一)若两个物体在同一直线上运动
1.明确每个物体的运动性质,画出运动过程示意图;
2.利用两者的位移关系列方程;
3.结合时间关系、速度关系解方程。

其中两者速度相等是两物体能否相遇或距离取极值的重要临界条件。

例:火车以速度匀速行驶,司机发现前方同轨道上相距处有另一火车沿同方向以速度(对地、且)做匀速运动。

司机立即以加速度紧急刹车.要使两车不相撞,应满足什么条件?
分析:两辆火车恰好不相撞的条件是:后车追上前车瞬间两者速度刚好相等。

(务必注意不是后车追上前车瞬间后车速度为零,这一点可通过分析最后一段时间内的位移大小关系搞清。


解:两车恰好不相撞的临界条件是:后车追上前车瞬间两者速度刚好相等。

/jy-s400/ 托福
如图有即
又解得:
所以要使两车不相撞,应满足
说明:在正确画示意图的基础上发现两物体位移之间的关系是解决此类问题的关键。

此外,还要注意一些特殊情况,例如,匀加速追匀速时,可能在追上前后者已经达到最大速度;匀速(或匀加速)追赶匀减速时,可能在追上前前者已经停止运动等。

例:汽车A在红绿灯前停下,绿灯亮时A车开动,以的加速度做匀加速直线运动,经
后以该时刻的速度做匀速直线运动,在绿灯亮的同时,汽车B以的速度从A车旁边驶过,之后B车一直以相等的速度做匀速运动,问:从绿灯亮时开始,经多长时间后两车再次相遇?
解:在绿灯亮后的30s内
A车发生的位移为:
B车发生的位移为:
因,可知A必须再匀速运动一段时间才能追上B。

/jy-s400/ 托福
设共需t时间汽车A才能追上汽车B
两者位移关系为
如图,即
其中
解得:
说明:通过简单的运算先明确A车的实际运动情况,而借助图像分析可以避免复杂的运算。

(二)若两个物体不在同一直线上运动,则应利用两者运动时间的关系列方程,这也是求解两类相遇问题的最大区别。

例:在某铁路与公路交叉的道口外安装的自动栏木装置如图所示,当高速列车到达A点时,道口公路上应显示红灯,警告未越过停车线的汽车迅速制动,而超过停车线的汽车能在列车到达道口前安全通过道口。

已知高速列车的速度V1=120km/h,汽车过道口的速度V2=5km/h,汽车驶至停车线时立即制动后滑行的距离是S0=5m,道口宽度s=26m,汽车长l=15m。

若栏木关闭时间t l=16s,为保障安全需多加时间t2=20s。

问:列车从A点到道口的距离L应为多少才能确保行车安全?
/jy-s400/ 托福
分析:此题涉及直线运动知识在实际问题中应用,与相遇问题有关,明确各个过程时间之间的关系是本题的关键。

解:由题意可知,从列车到达A点到列车抵达道口,共经历三个阶段,超过停车线的汽车安全通过道口阶段、栏木关闭阶段、保障安全额外增加的时间阶段。

所以A点离道口的距离应为:
其中
所以
说明:不同一直线上运动的物体发生相遇,这类问题相对比较简单,只要能正确找出物体运动时间之间的关系,一般就能顺利解决。

变式练习:
1.从静止开始以加速度a=10m/s2做匀加速直线运动的物体,在哪一秒内的位移是第一秒内位移的3倍?
2.一根链条自由下垂悬挂在墙上,放开后让链条作自由落体运动。

已知链条通过悬点下3.2m处的一点历时0.5s,问链条的长度为多少?
3.跳伞运动员做低空跳伞表演,当直升飞机悬停在离地面高时,运动员离开飞机作自由落体运动。

运动一段时间后,打开降落伞,展伞后运动员以的加速度匀减速下降。

为了运动员的安全,
/jy-s400/ 托福
要求运动员落地速度最大不得超过。

求:
(1)运动员展伞时,离地面的高度至少为多少?着地时相当于从多高处自由落下?
(2)运动员在空中的最短时间为多少?(取)
4.有一架电梯,启动时匀加速上升,加速度为,制动时匀减速上升,加速度为,楼高.问:(1)若上升的最大速度为,电梯升到楼顶的最短时间是多少?(2)如果电梯先加速上升,再匀速上升,最后减速上升,全程共用时间为,上升的最大速度是多少?
5.摩托车以速度沿平直公路行驶,突然驾驶员发现正前方离摩托车处,有一辆汽车正以的速度开始减速,且,汽车的加速度大小为。

为了避免发生碰撞,摩托车也同时减速,问其加速度
至少需要多大?
变式练习答案:
1.第2s内
2.2.75m
3.(1)280m,0.8m;(2)20.5s
4.(1);(2)
5.。

相关文档
最新文档