高中物理-理想气体的状态方程练习

合集下载

理想气体状态方程练习及答案

理想气体状态方程练习及答案
气体练习
例1:如图所示,气缸A和容器B由一细管经阀门K相 连,A和B的壁都是透热的,A是放置在27℃、1atm 的空气中,B浸在127℃的恒温槽内.开始时,K是关 闭的,B内为真空,容积VB=10L,A内装有理想气体 ,体积VA=10L.假设气缸壁和活塞D之间无摩擦,细 管的容积可忽略不计,打开K,使气体由A流入B, 等到活塞D停止移动时,A内气体的体积将是多少? 答案:A内气体的体积将是2.5L
答案: ① p=1.43×105pa ,②fm=600N
例7:一个质量可不计的活塞将一定量的气体封闭在上端开口 的直圆柱形气缸内,活塞的面积为600cm3,活塞上堆放着铁砂, 如图所示。最初活塞搁置在气缸内壁的固定卡环上,气体柱的 高度为H0=20cm,温度为20℃,气体压强为1atm。 (不计活塞 与气缸之间的摩擦) ①现对气体缓缓加热,当气体温度升高到57℃时,活塞(及铁砂) 刚好开始离开卡环而上升,求铁砂的质量。 ②继续加热,当温度又升高多少时,气体柱高度H1长为30cm。 ③此后维持温度不变,逐渐取走铁砂,则直到铁砂全部取走 时,气柱长H2为多少?
答案: ①铁砂的质量为60kg。 ②温度为495K,又升高了165K。 ③H2为33cm。
例8: 、如图所示,气缸放置在水平平台上,活塞质量为 10kg,横截面积50cm2,厚度1cm,气缸全长21cm, 气缸质量20kg,大气压强为1×105Pa,当温度为7℃时, 活塞封闭的气柱长10cm,若将气缸倒过来放置时,活塞 下方的空气能通过平台上的缺口与大气相通 。g取10m/s2求: (1)气柱多长? (2)当温度多高时,活塞刚好接触平台? (3)当温度多高时,缸筒刚好对地面无压力。 (活塞摩擦不计)。
答案:(1)28cm(2)237℃
例5:如图所示,一个内径均匀的双U形曲管,用水银柱 将管的A部分封闭了一定质量的气体,当温度为T1 (K)时,空气柱A的长度为40 cm,右侧曲管的水银面 高度差为16 cm,当温度变为T2(K)时,量得曲管B处 的水银面比原来升高了10 cm,若外界大气压为76 cmHg,则T1: T2应为( ). A.2:1 B.3:1 C.4:1 D.3:2

高考物理《气体实验定律和理想气体状态方程》真题练习含答案

高考物理《气体实验定律和理想气体状态方程》真题练习含答案

高考物理《气体实验定律和理想气体状态方程》真题练习含答案1.[2024·新课标卷](多选)如图,一定量理想气体的循环由下面4个过程组成:1→2为绝热过程(过程中气体不与外界交换热量),2→3为等压过程,3→4为绝热过程,4→1为等容过程.上述四个过程是四冲程柴油机工作循环的主要过程.下列说法正确的是() A.1→2过程中,气体内能增加B.2→3过程中,气体向外放热C.3→4过程中,气体内能不变D.4→1过程中,气体向外放热答案:AD解析:1→2为绝热过程,Q=0,气体体积减小,外界对气体做功,W>0,由热力学第一定律ΔU=Q+W可知ΔU>0,气体内能增加,A正确;2→3为等压膨胀过程,W<0,由盖­吕萨克定律可知气体温度升高,内能增加,即ΔU>0,由热力学第一定律ΔU=Q+W可知Q>0,气体从外界吸热,B错误;3→4过程为绝热过程,Q=0,气体体积增大,W<0,由热力学第一定律ΔU=Q+W可知ΔU<0,气体内能减小,C错误;4→1过程中,气体做等容变化,W=0,又压强减小,则由查理定律可知气体温度降低,内能减少,即ΔU<0,由热力学第一定律ΔU=Q+W可知Q<0,气体对外放热,D正确.2.[2023·辽宁卷]“空气充电宝”是一种通过压缩空气实现储能的装置,可在用电低谷时储存能量、用电高峰时释放能量.“空气充电宝”某个工作过程中,一定质量理想气体的p­T图像如图所示.该过程对应的p­V图像可能是()答案:B解析:根据pVT =C可得p =CVT从a 到b ,气体压强不变,温度升高,则体积变大;从b 到c ,气体压强减小,温度降低,因c 点与原点连线的斜率小于b 点与原点连线的斜率,c 点的体积大于b 点体积.故选B .3.如图所示,一长度L =30 cm 气缸固定在水平地面上,通过活塞封闭有一定质量的理想气体,活塞与缸壁的摩擦可忽略不计,活塞的截面积S =50 cm 2.活塞与水平平台上的物块A 用水平轻杆连接,A 的质量为m =20 kg ,物块与平台间的动摩擦因数μ=0.75.开始时活塞距缸底L 1=10 cm ,缸内气体压强等于外界大气压强p 0=1×105 Pa ,温度t 1=27 ℃.现对气缸内的气体缓慢加热,g =10 m /s 2,则( )A .物块A 开始移动时,气缸内的温度为35.1 ℃B .物块A 开始移动时,气缸内的温度为390 ℃C .活塞从图示位置到达气缸口的过程中气体对外做功30 JD .活塞从图示位置到达气缸口的过程中气体对外做功130 J 答案:D解析:初态气体p 1=p 0=1×105 Pa ,温度T 1=300 K ,物块A 开始移动时,p 2=p 0+μmgS=1.3×105 Pa ,根据查理定律可知p 1T 1 =p 2T 2 ,解得T 2=390 K =117 ℃,A 、B 两项错误;活塞从图示位置到达气缸口的过程中气体对外做功W =p 2S(L -L 1)=130 J ,C 项错误,D 项正确.4.如图是由汽缸、活塞柱、弹簧和上下支座构成的汽车减震装置,该装置的质量、活塞柱与汽缸摩擦均可忽略不计,汽缸导热性和气密性良好.该装置未安装到汽车上时,弹簧处于原长状态,汽缸内的气体可视为理想气体,压强为1.0×105 Pa ,封闭气体和活塞柱长度均为0.20 m .活塞柱横截面积为1.0×10-2 m 2;该装置竖直安装到汽车上后,其承载的力为3.0×103 N 时,弹簧的压缩量为0.10 m .大气压强恒为1.0×105 Pa ,环境温度不变.则该装置中弹簧的劲度系数为( )A .2×104 N /mB .4×104 N /mC .6×104 N /mD .8×104 N /m 答案:A解析:设大气压为p 0,活塞柱横截面积为S ;设装置未安装在汽车上之前,汽缸内气体压强为p 1,气体长度为l ,汽缸内气体体积为V 1;装置竖直安装在汽车上后,平衡时弹簧压缩量为x ,汽缸内气体压强为p 2,汽缸内气体体积为V 2,则依题意有p 1=p 0,V 1=lS ,V 2=(l -x)S ,对封闭气体,安装前、后等温变化,有p 1V 1=p 2V 2,设弹簧劲度系数为k ,对上支座进行受力分析,设汽车对汽缸上支座的压力为F ,由平衡条件p 2S +kx =p 0S +F ,联立并代入相应的数据,解得k =2.0×104 N /m ,A 正确,B 、C 、D 错误.5.如图所示为一定质量的理想气体等温变化p ­V 图线,A 、C 是双曲线上的两点,E 1和E 2则分别为A 、C 两点对应的气体内能,△OAB 和△OCD 的面积分别为S 1和S 2,则( )A .S 1<S 2B .S 1=S 2C .E 1>E 2D .E 1<E 2 答案:B解析:由于图为理想气体等温变化曲线,由玻意耳定律可得p A V A =p C V C ,而S 1=12p A V A ,S 2=12 p C V C ,S 1=S 2,A 项错误,B 项正确;由于图为理想气体等温变化曲线,T A =T C ,则气体内能E 1=E 2,C 、D 两项错误.6.[2024·云南大理期中考试]如图所示,在温度为17 ℃的环境下,一根竖直的轻质弹簧支撑着一倒立汽缸的活塞,使汽缸悬空且静止,此时倒立汽缸的顶部离地面的高度为h =49 cm ,已知弹簧原长l =50 cm ,劲度系数k =100 N/m ,汽缸的质量M =2 kg ,活塞的质量m =1 kg ,活塞的横截面积S =20 cm 2,若大气压强p 0=1×105 Pa ,且不随温度变化.设活塞与缸壁间无摩擦,可以在缸内自由移动,缸壁导热性良好,使缸内气体的温度保持与外界大气温度相同.(弹簧始终在弹性限度内,且不计汽缸壁及活塞的厚度)(1)求弹簧的压缩量;(2)若环境温度缓慢上升到37 ℃,求此时倒立汽缸的顶部离地面的高度. 答案:(1)0.3 m (2)51 cm解析:(1)对汽缸和活塞整体受力分析有 (M +m )g =k Δx解得Δx =(M +m )gk=0.3 m(2)由于气缸与活塞整体受力平衡,则根据上述可知,活塞离地面的高度不发生变化,升温前汽缸顶部离地面为h =49 cm活塞离地面50 cm -30 cm =20 cm故初始时,内部气体的高度为l =49 cm -20 cm =29 cm 升温过程为等压变化V 1=lS ,T 1=290 K ,V 2=l ′S ,T 2=310 K 根据V 1T 1 =V 2T 2解得l ′=31 cm故此时倒立汽缸的顶部离地面的高度h ′=h +l ′-l =51 cm7.[2024·河北省邢台市期末考试]如图所示,上端开口的内壁光滑圆柱形汽缸固定在倾角为30°的斜面上,一上端固定的轻弹簧与横截面积为40 cm 2的活塞相连接,汽缸内封闭有一定质量的理想气体.在汽缸内距缸底70 cm 处有卡环,活塞只能向上滑动.开始时活塞搁在卡环上,且弹簧处于原长,缸内气体的压强等于大气压强p 0=1.0×105 Pa ,温度为300 K .现对汽缸内的气体缓慢加热,当温度增加60 K 时,活塞恰好离开卡环,当温度增加到480 K 时,活塞移动了10 cm.重力加速度取g =10 m/s 2,求:(1)活塞的质量; (2)弹簧的劲度系数k .答案:(1)16 kg (2)800 N/m解析:(1)根据题意可知,气体温度从300 K 增加到360 K 的过程中,经历等容变化,由查理定律得p 0T 0 =p 1T 1解得p 1=1.2×105 Pa此时,活塞恰好离开卡环,可得p 1=p 0+mg sin θS解得m =16 kg(2)气体温度从360 K 增加到480 K 的过程中,由理想气体状态方程有 p 1V 1T 1 =p 2V 2T 2解得p 2=1.4×105 Pa对活塞进行受力分析可得p 0S +mg sin θ+k Δx =p 2S 解得k =800 N/m8.[2024·湖南省湘东九校联考]如图所示,活塞将左侧导热汽缸分成容积均为V 的A 、B 两部分,汽缸A 部分通过带有阀门的细管与容积为V4 、导热性良好的汽缸C 相连.开始时阀门关闭,A 、B 两部分气体的压强分别为p 0和1.5p 0.现将阀门打开,当活塞稳定时,B 的体积变为V2 ,然后再将阀门关闭.已知A 、B 、C 内为同种理想气体,细管及活塞的体积均可忽略,外界温度保持不变,活塞与汽缸之间的摩擦力不计.求:(1)阀门打开后活塞稳定时,A部分气体的压强p A;(2)活塞稳定后,C中剩余气体的质量M2与最初C中气体质量M0之比.答案:(1)2.5p0(2)527解析:(1)初始时对活塞有p0S+mg=1.5p0S得到mg=0.5p0S打开阀门后,活塞稳定时,对B气体有1.5p0·V=p B·V2对活塞有p A S+mg=p B S所以得到p A=2.5p0(2)设未打开阀门前,C气体的压强为pC0,对A、C两气体整体有p0·V+pC0·V4=p A·(3V2+V4)得到pC0=272p0所以,C中剩余气体的质量M2与最初C中气体质量M0之比M2M0=p ApC0=5 27。

理想气体的状态方程同步练习

理想气体的状态方程同步练习

8.3理想气体的状态方程同步试题 一、选择题1.下列说法正确的是( )A. 玻意耳定律对任何压强都适用B. 盖·吕萨克定律对任意温度都适用C. 常温、常压下的各种气体,可以当做理想气体D. 一定质量的气体,在压强不变的情况下,它的体积跟温度成正比2.对一定质量的理想气体,下列四种状态变化中,哪些是可能实现的( )A. 增大压强时,压强增大,体积减小B. 升高温度时,压强增大,体积减小C. 降低温度时,压强增大,体积不变D. 降低温度时,压强减小,体积增大3.向固定容器内充气,当气体压强为p ,温度为27℃时气体的密度为ρ,当温度为327℃,气体压强为1.5P 时,气体的密度为( )A. 0.25ρB. 0.5ρC. 0.75ρD. ρ4.对于理想气体方程pV/T=恒量,下列叙述正确的是( )A. 质量相同的不同种气体,恒量一定相同B. 质量不同的不同种气体,恒量一定不相同C. 摩尔数相同的任何气体,恒量一定相等D. 标准状态下的气体,恒量一定相同5.如图8.3—4所示,一导热性能良好的气缸吊在弹簧下,缸内被活塞封住一定质量的气体(不计活塞与缸壁摩擦),当温度升高到某一数值时,变化了的量有( )A. 活塞高度hB. 缸体高度HC. 气体压强pD. 弹簧长度L6.将一根质量可忽略的一端封闭的塑料管子插入液体中,在力F 作用下保持平衡,在图8.3—5中H 值的大小将与下列哪个量无关A. 管子的半径B. 大气压强C. 液体的密度D. 力F 7.如图8.3—6所示,开口向下的竖直玻璃管的末端有一段水银柱,当玻璃管从竖直位置转过45。

时,开口端的水银柱将A. 从管的开口端流出一部分B. 不发生变化C. 沿着管子向上移动一段距离D. 无法确定其变化8、 定质量的理想气体,由状态A (1,3)沿直线AB 变化到C (3,1),如图8.3—7所示,气体在A 、B 、C 三个状态中的温度之比是A.1:1:1B. 1:2:3C. 3:4:3D. 4:3:4图8.3— 4 图8.3— 5图8.3— 6 图8.3—7二、填空题9.一定质量的理想气体,其状态变化如图8.3—8中箭头所示顺序进行,则AB 段是______ 过程,遵守_________定律,BC 段是 __________过程,遵守 _______ 定律,若CA 段是以纵轴和横轴为渐近线的双曲线的一部分,则CA 段是 ________过程,遵守 __________ 定律。

理想气体的状态方程习题

理想气体的状态方程习题

理想气体状态方程习题1.如图所示,A、B两点代表一定质量理想气体的两个不同的状态,状态A的温度为T A,状态B的温度为T B。

由图可知A.T A =2T B B.T B =4T AC.T B =6T A D.T B =8T A2.一定质量理想气体A.先等压膨胀再等容降温,其温度必低于起始温度B.先等温膨胀再等压压缩,其体积必小于起始体积C.先等容升温再等压压缩,其温度有可能等于起始温度D.先等容加热再绝热压缩,其内能必大3.对于一定质量的理想气体,下述四个论述中正确的是A.当分子热运动变剧烈时,压强必变大B.当分子热运动变剧烈时,压强可以不变C.当分子间的平均距离变大时,压强必变小D.当分子间的平均距离变大时,压强必变大4.对一定质量的理想气体,下列状态变化中不可能的是A.使气体体积增大,同时温度降低、压强减小B.使气体温度升高,体积不变、压强减小C.使气体温度不变,而压强、体积同时增大D.使气体温度降低,压强减小、体积减小5.在下图中,不能反映理想气体经历了等温变化→等容变化→等压变化,又回到原来状态的图是6.如图所示,一定质量的理想气体,由状态A沿直线AB变化到B,在此过程中,气体分子的平均速率的变化情况是A.不断增大B.不断减小C.先减小后增大D.先增大后减小7.一定质量的某种气体自状态A经状态C变化到状态B,这一过程在V-T图上如图所示,则A.在过程AC中,气体的压强不断变大B.在过程CB中,气体的压强不断变小C.在状态A时,气体的压强最大D .在状态B 时,气体的压强最大8.如图所示,内壁光滑的气缸和活塞都是绝热的,缸内被封闭的理想气体原来体积为V ,压强为p ,若用力将活塞向右压,使封闭的气体体积变为V 2,缸内被封闭气体的 A .压强等于2p B .压强大于2p C .压强小于2p D .分子势能增大了9.甲、乙两个相同的密闭容器中分别装有等质量的同种气体,已知甲、乙容器中气体的压强分别为p 甲、p 乙,且p 甲<p 乙,则A .甲容器中气体的温度高于乙容器中气体的温度B .甲容器中气体的温度低于乙容器中气体的温度C .甲容器中气体分子的平均动能小于乙容器中气体分子的平均动能D .甲容器中气体分子的平均动能大于乙容器中气体分子的平均动能10.已知理想气体的内能与温度成正比.如图所示的实线为汽缸内一定质量的理想气体由状态1到状态2的变化曲线,则在整个过程中汽缸内气体的内能A .先增大后减小B .先减小后增大C .单调变化D .保持不变11.一定质量的气体做等压变化时,其V -t 图象如图所示,若保持气体质量不变,使气体的压强增大后,再让气体做等压变化,则其等压线与原来相比,下列可能正确的是A .等压线与t 轴之间夹角变大B .等压线与t 轴之间夹角不变C .等压线与t 轴交点的位置不变D .等压线与t 轴交点的位置一定改变12.如图所示为一定质量的理想气体沿着所示的方向发生状态变化的过程,则该气体压强变化是A .从状态c 到状态d ,压强减小B .从状态d 到状态a ,压强不变C .从状态a 到状态b ,压强增大D .从状态b 到状态c ,压强不变13.如图所示,一定质量的某种理想气体,由状态A 沿直线AB 变化到状态B ,A 、C 、B 三点所对应的热力学温度分别记为T A 、T C 、T B ,在此过程中,气体的温度之比T A ∶T B ∶T C 为A .1∶1∶1B .1∶2∶3C .3∶3∶4D .4∶4∶314.如图所示是一定质量的理想气体的p-V图线,若其状态由A→B→C→A,且A→B等容,B→C等压,C→A等温,则气体在ABC三个状态时A.单位体积内气体的分子数n a=n B=n CB.气体分子的平均速率v A>v B>v CC.气体分子在单位时间内对器壁的平均作用力F A>F B,F B=F CD.气体分子在单位时间内,对器壁单位面积碰撞的次数是N A>N B,N A>N C15.光滑绝热的活塞把密封的圆筒容器分成A、B两部分,这两部分充有温度相同的气体,平衡时V A∶V B=1∶2,现将A中气体加热到127 ℃,B中气体降低到27 ℃,待重新平衡后,这两部分气体体积的比V′A∶V′B为A.1∶1 B.2∶3 C.3∶4 D.2∶116.一个半径为0.1 cm的气泡,从18 m深的湖底上升.如果湖底水的温度是8 ℃,湖面的温度是24 ℃,湖面的大气压强是76 cmHg,那么气泡升至湖面时体积是多少?17.如图所示粗细均匀一端封闭一端开口的U形玻璃管,当t1=31℃,大气压强P0=76cmHg时,两管水银面相平,这时左管被封闭的气柱长L l= cm,则(1)当温度t2等于多少时,左管气柱长为9 cm?(2)当温度达到上问中的温度t2时,为使左管气柱长为8cm,应在右管中加人多长的水银柱?。

高中物理热学-- 理想气体状态方程 试题及答案 ()

高中物理热学-- 理想气体状态方程 试题及答案 ()

高中物理热学-- 理想气体状态方程 试题及答案一、单选题1.一定质量的理想气体,在某一平衡状态下的压强、体积和温度分别为p 1、V 1、T 1,在另一平衡状态下的压强、体积和温度分别为p 2、V 2、T 2,下列关系正确的是A .p 1 =p 2,V 1=2V 2,T 1= 21T 2 B .p 1 =p 2,V 1=21V 2,T 1= 2T 2C .p 1 =2p 2,V 1=2V 2,T 1= 2T 2D .p 1 =2p 2,V 1=V 2,T 1= 2T 22.已知理想气体的内能与温度成正比。

如图所示的实线为汽缸内一定 质量的理想气体由状态1到状态2的变化曲线,则在整个过程中汽缸内气体的内能A.先增大后减小B.先减小后增大C.单调变化D.保持不变3.地面附近有一正在上升的空气团,它与外界的热交热忽略不计.已知大气压强随高度增加而降低,则该气团在此上升过程中(不计气团内分子间的势能)A.体积减小,温度降低B.体积减小,温度不变C.体积增大,温度降低D.体积增大,温度不变4.下列说法正确的是A. 气体对器壁的压强就是大量气体分子作用在器壁单位面积上的平均作用力B. 气体对器壁的压强就是大量气体分子单位时间作用在器壁上的平均冲量C. 气体分子热运动的平均动能减少,气体的压强一定减小D. 单位面积的气体分子数增加,气体的压强一定增大5.气体内能是所有气体分子热运动动能和势能的总和,其大小与气体的状态有关,分子热运动的平均动能与分子间势能分别取决于气体的A .温度和体积B .体积和压强C .温度和压强D .压强和温度6.带有活塞的汽缸内封闭一定量的理想气体。

气体开始处于状态a ,然后经过过程ab 到达状态b 或进过过程ac 到状态c ,b 、c 状态温度相同,如V-T 图所示。

设气体在状态b 和状态c 的压强分别为Pb 、和PC ,在过程ab 和ac 中吸收的热量分别为Qab 和Qac ,则A. Pb >Pc ,Qab>QacB. Pb >Pc ,Qab<QacC. Pb <Pc ,Qab>QacD. Pb <Pc ,Qab<Qac7.下列说法中正确的是A.气体的温度升高时,分子的热运动变得剧烈,分子的平均动能增大,撞击器壁时对器壁的作用力增大,从而气体的压强一定增大B.气体的体积变小时,单位体积的分子数增多,单位时间内打到器壁单位面积上的分子数增多,从而气体的压强一定增大C.压缩一定量的气体,气体的内能一定增加D.分子a从远处趋近固定不动的分子b,当a到达受b的作用力为零处时,a的动能一定最大8.对一定量的气体,若用N表示单位时间内与器壁单位面积碰撞的分子数,则A 当体积减小时,V必定增加B 当温度升高时,N必定增加C 当压强不变而体积和温度变化时,N必定变化D 当压强不变而体积和温度变化时,N可能不变二、双选题9.一位质量为60 kg的同学为了表演“轻功”,他用打气筒给4只相同的气球充以相等质量的空气(可视为理想气体),然后将这4只气球以相同的方式放在水平放置的木板上,在气球的上方放置一轻质塑料板,如图所示。

气体定律的练习题

气体定律的练习题

气体定律的练习题一、理想气体状态方程理想气体状态方程可表示为PV = nRT,其中P为气体的压力,V为气体的体积,n为气体的物质的量,R为气体常数,T为气体的绝对温度。

1. 一个容器中有2mol的氧气,该容器的体积为10L,温度为20°C。

计算氧气的压力。

解析:首先将温度转换为绝对温度,即20°C + 273.15 = 293.15 K。

代入理想气体状态方程中,得到P * 10 = 2 * 8.314 * 293.15,解得P ≈ 38.85 Pa。

2. 一瓶氮气的体积为5L,温度为25°C,物质的量为0.5mol。

求氮气的压力。

解析:将温度转换为绝对温度,即25°C + 273.15 = 298.15 K。

代入理想气体状态方程中,得到P * 5 = 0.5 * 8.314 * 298.15,解得P ≈ 81.86 Pa。

二、玻意耳-马略特定律根据玻意耳-马略特定律,当气体的物质的量和温度不变时,气体的压力与体积成反比。

3. 一气缸中的气体初始压力为2 atmos,体积为10L。

如果将气体的体积减小为5L,求气体的最终压力。

解析:根据玻意耳-马略特定律,初始压力P1 * 初始体积V1 = 终端压力P2 * 终端体积V2,代入已知条件,得到2 * 10 = P2 * 5,解得P2 = 4 atmos。

4. 一容器中的氧气体积为10L,压力为2 atm。

如果将氧气体积增大到20L,求氧气的最终压力。

解析:根据玻意耳-马略特定律,初始压力P1 * 初始体积V1 = 终端压力P2 * 终端体积V2,代入已知条件,得到2 * 10 = P2 * 20,解得P2 = 1 atm。

三、查理定律根据查理定律,当气体的压力和温度不变时,气体的体积与物质的量成正比。

5. 一个容器中含有3mol的气体,体积为12L。

如果将气体的物质的量增加到6mol,求气体的最终体积。

解析:根据查理定律,初始物质的量n1 / 初始体积V1 = 终端物质的量n2 / 终端体积V2,代入已知条件,得到3 / 12 = 6 / V2,解得V2 = 24L。

专题---理想气体状态方程计算题带答案

专题---理想气体状态方程计算题带答案

Word 资料理想气体状态方程计算题 1、如图所示,竖直放置的粗细均匀的 U 形管,右端封闭有一段空气柱,两管内水 银面高度差为h = 19 cm ,封闭端空气柱长度为 L i = 40 cm.为了使左、右两管中的 水银面相平,(设外界大气压强 p o = 76 cmHg ,空气柱温度保持不 变)试问: ①需从左管的开口端再缓慢注入高度多少的水银柱?此时封 闭端空气柱的长度是多少?②注入水银过程中,外界对封闭空气做 ________ (填“正功” “负功” 或“不做功”),气体将 _____ (填“吸热”或“放热”). 始温度为T °= 200 K ,外界大气压恒定不变为 p 0= 76 cmHg 。

现将玻璃管开口圭寸闭, 将系统温度升至 T = 400 K ,结果发现管中水银柱上升了 2 cm ,若空气可以看作理想气体,试求:①升温后玻璃管内封闭的上下两部分空气的压强分别为多少cmHg?②玻璃管总长为多少?5、如图所示为一简易火灾报警装置。

其原理是:竖直放置的试管中装有水银,当 温度升高时,水银柱上升,使电路导通,蜂鸣器发出报警的响声。

27 C 时,空气柱长度L i 为20cm ,水银上表面与导线下端的距离 L ?为10cm ,管内水银柱的高度 h 为8cm ,大气压强为75cm 水银柱高。

2、如图所示,U 形管右管横截面积为左管横截面积的 2倍,在左管内用水银封闭 一段长为26 cm 、温度为280 K 的空气柱,左、右两管水银面高度 差为36 cm ,外界大气压为76 cmHg 。

若给左管的封闭气体加热, 使管内气柱长度变为 30 cm ,则此时左管内气体的温度为多少?r26 r rn36 cdJdt-Jr —— (1 )当温度达到多少C 时,报警器会报警?(2)如果要使该装置在 87 C 时报警,则应该再往玻璃管 内注入多少cm 高的水银柱? ( 3)如果大气压增大,则该报警器的报警温度会受到怎样的影响?3、如图所示为一可以测量较高温度的装置,左、右两壁等长的 U 形管内盛有温度为0 C 的水银,左管上端开口,水银恰到管口,在封闭的右管上方有空气, 空气柱高h = 24 cm ,现在给空气柱加热,空气膨胀,挤出部分水银,当空气又 冷却到0 C 时,左边开口管内水银面下降了 H =5 空气被加热到的最高温度。

高中物理选修3-3理想气体状态方程练习题

高中物理选修3-3理想气体状态方程练习题

理想气体状态方程一、填空题1.左端封闭右端开口粗细均匀的倒置U形管,用水银封住两部分气体,静止时如图所示,若让管保持竖直状态做自由落体运动,则气体柱Ⅰ长度将________,气体柱Ⅰ长度将________。

(选填:“增大”、“减小”或“不变”)2.如图1所示,在斯特林循环的p–V图象中,一定质量理想气体从状态A依次经过状态B、C和D后再回到状态A,整个过程由两个等温和两个等容过程组成.B→C的过程中,单位体积中的气体分子数目(选填“增大”、“减小”或“不变”).状态A和状态D的气体分子热运动速率的统计分布图象如图2所示,则状态A对应的是(选填“Ⅰ”或“Ⅰ”).二、解答题3.在两端封闭、粗细均匀的U形细玻璃管内有一股水银柱,水银柱的两端各封闭有一段空气.当U形管两端竖直朝上时,左、右两边空气柱的长度分别为l1=18.0 cm和l2=12.0 cm,左边气体的压强为12.0 cmHg.现将U形管缓慢平放在水平桌面上,没有气体从管的一边通过水银逸入另一边.求U形管平放时两边空气柱的长度.在整个过程中,气体温度不变.4.如图,一粗细均匀的U形管竖直放置,A侧上端封闭,B侧上侧与大气相通,下端开口处开关K关闭,A侧空气柱的长度为l=10.0cm,B侧水银面比A侧的高h=3.0cm,现将开关K打开,从U形管中放出部分水银,当两侧的高度差为h1=10.0cm时,将开关K关闭,已知大气压强p0=75.0cmHg.(1)求放出部分水银后A侧空气柱的长度;(2)此后再向B侧注入水银,使A、B两侧的水银达到同一高度,求注入水银在管内的长度.5.U形管两臂粗细不同,开口向上,封闭的粗管横截面积是开口的细管的三倍,管中装入水银,大气压为76 cmHg.开口管中水银面到管口距离为11 cm,且水银面比封闭管内高4 cm,封闭管内空气柱长为11 cm,如图所示.现在开口端用小活塞封住,并缓慢推动活塞,使两管液面相平,推动过程中两管的气体温度始终不变,试求:Ⅰ1)粗管中气体的最终压强;Ⅰ2)活塞推动的距离.6.如图所示,竖直放置的U 形管左端封闭,右端开口,左、右两管的横截面积均为2cm 2,在左管内用水银封闭一段长为20cm 、温度为27℃的空气柱(可看成理想气体),左右两管水银面高度差为15cm ,外界大气压为75cmHgⅠ①若向右管中缓慢注入水银,直至两管水银面相平,求在右管中注入水银的体积V(以cm 3为单位)Ⅰ②在两管水银面相平后,缓慢升高气体的温度,直至封闭空气柱的长度为开始时的长度,求此时空气柱的温度TⅠ7.一内壁光滑、粗细均匀的U 形玻璃管竖直放置,左端开口,右端封闭,左端上部有一轻活塞.初始时,管内水银柱及空气柱长度如图所示.已知大气压强075p cmHg ,环境温度不变.(1)求右侧封闭气体的压强p 右Ⅰ(2)现用力向下缓慢推活塞,直至管内两边水银柱高度相等并达到稳定.求此时右侧封闭气体的压强'p 右Ⅰ(3)求第(2)问中活塞下移的距离x Ⅰ8.如图所示,一个内壁光滑、导热性能良好的汽缸竖直吊在天花板上,开口向下.质量与厚度均不计、导热性能良好的活塞横截面积为S=2×10-3 m2,与汽缸底部之间封闭了一定质量的理想气体,此时活塞与汽缸底部之间的距离h=24 cm,活塞距汽缸口10 cm.汽缸所处环境的温度为300 K,大气压强p0=1.0×105 Pa,取g=10 m/s2.现将质量为m=4 kg的物块挂在活塞中央位置上.(1)活塞挂上重物后,活塞下移,求稳定后活塞与汽缸底部之间的距离.(2)若再对汽缸缓慢加热使活塞继续下移,活塞刚好不脱离汽缸,加热时温度不能超过多少?此过程中封闭气体对外做功多少?9.如图所示,一竖直放置的足够长汽缸内有两个活塞用一根轻质硬杆相连,上面小活塞面积S1=2 cm2,下面大活塞面积S2=8 cm2,两活塞的总质量为M=0.3 kg;汽缸内封闭温度T1=300K的理想气体,粗细两部分长度相等且L=5 cm;大气压强为P o=1.01×l05PoⅠg=10mⅠs2,整个系统处于平衡,活塞与缸壁间无摩擦且不漏气.求:(1)初状态封闭气体的压强PiⅠ(2)若封闭气体的温度缓慢升高到T2 =336 K,气体的体积V2是多少;(3)上述过程中封闭气体对外界做功WⅠ10.如图所示,面积2100S cm =的轻活塞A 将一定质量的气体封闭在导热性能良好的汽缸B 内,汽缸开口向上竖直放置,高度足够大.在活塞上放一重物,质量为20m kg =,静止时活塞到缸底的距离为120L cm =,摩擦不计,大气压强为50 1.010P Pa =⨯,温度为27℃,g 取210/m s .()1若保持温度不变,将重物去掉,求活塞A 移动的距离;()2若加热汽缸B ,使封闭气体温度升高到177℃,求活塞A 移动的距离.12.粗细均匀的U 型玻璃管竖直放置,左侧上端封闭,右侧上端开口且足够长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理-理想气体的状态方程练习基础夯实一、选择题(1~3题为单选题,4、5题为多选题)1.关于理想气体,下列说法正确的是( C )A.理想气体也不能严格地遵守气体实验定律B.实际气体在温度不太高、压强不太小的情况下,可看成理想气体C.实际气体在温度不太低、压强不太大的情况下,可看成理想气体D.所有的实际气体在任何情况下,都可以看成理想气体解析:理想气体是遵守气体实验定律的气体,A项错误;它是实际气体在温度不太低、压强不太大的情况下的抽象,故C正确,B、D是错误的。

2.为了控制温室效应,各国科学家提出了不少方法和设想。

有人根据液态CO2密度大于海水密度的事实,设想将CO2液化后,送入深海海底,以减小大气中的CO2的浓度。

为使CO2液化,最有效的措施是( D )A.减压、升温B.增压、升温C.减压、降温D.增压、降温解析:要将CO2液化需减小体积,根据pVT=C,知D选项正确。

3.(江苏省兴化一中高二下学期检测)一定质量的理想气体,由状态A(1,3)沿直线AB变化到C(3,1),如图所示,气体在A、B、C三个状态中的温度之比是( C )A.1∶1∶1 B.1∶2∶3C.3∶4∶3 D.4∶3∶4解析:由pVT=C知,温度之比等于pV乘积之比,故气体在A、B、C三种状态时的热力学温度之比是3×1∶2×2∶1×3=3∶4∶3,故选C。

4.关于理想气体的状态变化,下列说法中正确的是( CD )A.一定质量的理想气体,当压强不变而温度由100℃上升到200℃时,其体积增大为原来的2倍B.气体由状态1变化到状态2时,一定满足方程p1V1T1=p2V2T2C.一定质量的理想气体体积增大到原来的4倍,可能是压强减半,热力学温度加倍D.一定质量的理想气体压强增大到原来的2倍,可能是体积不变,热力学温度加倍解析:一定质量的理想气体压强不变,体积与热力学温度成正比。

温度由100℃上升到200℃时,体积增大为原来的1.27倍,故A错误;理想气体状态方程成立的条件为质量不变,B项缺条件,故错误。

由理想气体状态方程pVT=恒量可知,C、D正确。

5.(河北保定市高二下学期检测)如图所示,两端开口的弯管,左管插入水银槽中,右管有一段高为h的水银柱,中间封有一段空气,则( AD )A.弯管左管内外水银面的高度差为hB.若把弯管向上移动少许,则管内气体体积增大C.若把弯管向下移动少许,则管内气体体积减小D.若环境温度升高,则右管内的水银柱沿管壁上升解析:设被封闭气体的压强为p,选取右管中水银柱为研究对象,可得p=p+p h,选取左管中水银柱为研究对象,可得p=p0+p h1,故左管内外水银面的高度差为h1=h,A正确;气体的压强不变,温度不变,故体积不变,B、C均错;气体压强不变,温度升高,体积增大,右管中水银柱沿管壁上升,D正确。

二、非选择题6.我国“蛟龙”号深海探测船载人下潜超过七千米,再创载人深潜新纪录。

在某次深潜实验中,“蛟龙”号探测到990m深处的海水温度为280K。

某同学利用该数据来研究气体状态随海水深度的变化,如图所示,导热良好的汽缸内封闭一定质量的气体,不计活塞的质量和摩擦,汽缸所处海平面的温度T0=300K,压强p0=1atm,封闭气体的体积V0=3m3。

如果将该汽缸下潜至990m深处,此过程中封闭气体可视为理想气体。

求990m深处封闭气体的体积(1atm相当于10m深的海水产生的压强)。

答案:2.8×10-2m 3解析:汽缸内的理想气体在深度为990m 的海水中的压强为p 1=99010p 0+p 0=100atm此处理想气体温度为T 1=280K ,根据理想气体状态方程可知:p 0V 0T 0=p 1VT 1联立代入数值可得:V =2.8×10-2m 37.(安徽省安庆一中,安徽师大附中,湖南长沙一中等四省五校高三上学期期末联考)两个相同的上端开口的柱状容器用带有活栓的细管(细管中容积不计)相连,开始时活栓是关闭的,如图所示,容器1中在质量为m 的活塞下方封闭有一定质量的理想气体,气体体积为V 02;容器2中质量为m2的活塞位于容器底且没有气体,每个容器内都能保持与外界环境温度相同。

现保持环境温度不变,打开活栓,使两容器中气体达到稳定状态。

已知环境温度为T 0,容器的容积都为V 0,活塞横截面积S 满足关系:mg =p 0S 2(p 0为外界大气压强)。

不计活塞与容器间摩擦,活塞与容器间密封性能良好。

求:(1)稳定后容器1内和容器2内气体的体积各为多少?(2)稳定后固定容器2中活塞的位置,再缓慢升高环境温度使容器1中的活塞回到最初的位置,求此时的环境温度。

答案:(1)V 1=0;V 2=0.6V 0 (2) T =2.2T 0 解析:(1)打开活栓后,左侧容器中活塞到底。

由等温变化知(p 02+p 0)V 02=(p 04+p 0)V 2得V 2=0.6V 0(2)容器1中活塞回到初位置则气体压强变为3P 02,由理想气体状态方程得(5p04×3V05)/T0=3p02(3V05+V2)/T得T=2.2T0能力提升一、选择题(1、2题为单选题,3题为多选题)1.(无锡市天一中学高二下学期期中)如图所示,一根上细下粗、粗端与细端都粗细均匀的玻璃管上端开口、下端封闭,上端足够长,下端(粗端)中间有一段水银封闭了一定质量的理想气体。

现对气体缓慢加热,气体温度不断升高,水银柱上升,则被封闭气体体积和热力学温度的关系最接近哪个图象( A )解析:当水银柱未进入细管时,封闭气体压强不变,发生等压变化,根据盖·吕萨克定律,体积与热力学温度成正比,VT=C,V-T图象是过原点的倾斜的直线。

当水银柱进入细管时,封闭气体的压强逐渐增大,由题可知,T增大,V增大,由理想气体状态方程PVT=C,得VT=CP,图线上的点与原点连线的斜率K=VP,当P增大时,K减小。

当水银柱完全进入细管时,封闭气体压强不变,发生等压变化,根据盖·吕萨克定律,体积与热力学温度成正比,VT=C′,V-T图象也是过原点的倾斜的直线,因为P1<P2则这段直线斜率减小,故选A。

2.已知湖水深度为20m,湖底水温为4℃,水面温度为17℃,大气压强为1.0×105Pa。

当一气泡从湖底缓慢升到水面时,其体积约为原来的(取g=10m/s2,ρ水=1.0×103kg/m3)( C )A.12.8倍B.8.5倍C.3.1倍D.2.1倍解析:湖底压强大约为p0+ρ水gh,即3个大气压,由气体状态方程,3p0V14+273=p 0 V217+273,当一气泡从湖底缓慢升到水面时,其体积约为原来的3.1倍,选项C正确。

3.(无锡天一中学高二下学期期中)一定质量的某实际气体,处在某一状态,经下列哪个过程后会回到原来的温度( AD )A.先保持压强不变而使它的体积膨胀,接着保持体积不变而减小压强B.先保持压强不变而使它的体积减小,接着保持体积不变而减小压强C.先保持体积不变而增大压强,接着保持压强不变而使它的体积膨胀D.先保持体积不变而减小压强,接着保持压强不变而使它的体积膨胀解析:由于此题要经过一系列状态变化后回到初始温度,所以先在p-V坐标中画出等温变化图线,然后在图线上任选中间一点代表初始状态,根据各个选项中的过程画出图线,如图所示。

从图线的趋势来看,有可能与原来的等温线相交说明经过变化后能够回到原来的温度。

选项A、D正确。

二、非选择题4.(安徽省芜湖市高三上学期期末)一均匀薄壁U形管,左管上端封闭,右管上端开口且足够长,管的横截面积为S,内装有密度为ρ的液体。

右管内有一质量为m的活塞放置在固定卡口上,卡口与左管顶端等高,活塞与管壁间无摩擦且不漏气,如图所示,温度为T时,左、右管内液面等高,两管内空气柱(可视为理想气体)长度均为L,压强为大气压强,重力加速度为g。

现使左、右两管温度同时缓慢升高,在活塞离开卡口上升前,左右两管液面保持不动。

求:(1)右管活塞开始离开卡口上升时,气体的温度T1;(2)两管液面的高度差为L时,气体的温度T2。

答案:(1)T1=T0(1+mgpS)(2)T2=3T02p0(p0+mgS+ρgL)解析:(1)活塞刚离开卡口时,对活塞:mg+p0S=p1S得:p1=p0+mgS两侧气体体积不变,对右管气体,由等容变化得:p 0 T 0=p1T1,解得:T1=T0(1+mgpS)(2)活塞开始运动后,右管气体做等压变化。

对左管气体:V2=3L2S p2=p0+mgS+ρgL由理想气体状态方程:pVT=p2V2T2解得:T2=3T02p0(p0+mgS+ρgL)5.教室的容积是100m3,在温度是7℃,大气压强为1.0×105Pa时,室内空气的质量是130kg,当温度升高到27℃时大气压强为1.2×105Pa时,教室内空气质量是多少?答案:145.6kg解析:初态:p1=1.0×105Pa,V1=100m3,T1=(273+7)K=280K。

末态:p2=1.2×105Pa,V2=?,T2=300K。

根据理想气体状态方程:p1V1T1=p2V2T2得V 2=p1T2p2T1V1=1.0×105×300×1001.2×105×280m3=89.3m3,V 2<V1,有气体流入房间。

m2=V1V2m1=145.6kg。

6.(南京市燕子矶中学高二下学期检测)如图所示,开口向上的汽缸C静置于水平桌面上,用一横截面积S=50cm2的轻质活塞封闭了一定质量的理想气体,一轻绳一端系在活塞上,另一端跨过两个定滑轮连着一劲度系数k=2800N/m的竖直轻弹簧A,A下端系有一质量m=14kg的物块B。

开始时,缸内气体的温度t1=27℃,活塞到缸底的距离L1=120cm,弹簧恰好处于原长状态。

已知外界大气压强恒为p0=1.0×105Pa,取重力加速度g=10m/s2,不计一切摩擦。

现使缸内气体缓慢冷却,求:(1)当B刚要离开桌面时汽缸内封闭气体的温度;(2)气体的温度冷却到-93℃时B离桌面的高度H。

(结果保留两位有效数字)答案:(1)207K(或-66℃)(2)15cm解析:(1)B刚要离开桌面时弹簧拉力为kx1=mg,由活塞受力平衡得p2S=p0S-kx1,根据理想气体状态方程有pL1ST1=p2L1-x1ST2.代入数据解得T2=207K,当B刚要离开桌面时缸内气体的温度t2=-66℃(2)由(1)得x1=5cm,当温度降至-66℃之后,若继续降温,则缸内气体的压强不变,根据盖—吕萨克定律,有,L1-x1ST2=L1-x1-H ST3代入数据解得H=15cm。

相关文档
最新文档