半导体的特性
半导体的特性

半导体的特性
半导体主要有以下特性。
1、半导体:导电能力随着掺入杂质、输入电压(电流)、温度和光照条件的不同而发生很大变化,人们把这一类物质称为半导体。
2、载流子:半导体中存在的两种携带电荷参与导电的“粒子”。
自由电子:带负电荷。
空穴:带正电荷。
特性:在外电场的作用下,两种载流子都可以做定向移动,形成电流。
3、电子技术的核心是半导体半导体之所以得到广泛的应用,是因为人们发现半导体有一下的三个特性。
(1)掺杂性:在纯净的半导体中掺入及其微量的杂质元素,则它的导电能力将大大增强。
(2)热敏性:温度升高,将使半导体的导电能力打发增强。
(3)光敏性:对半导体施加光线照射时,光照越强,导电能力越强。
3.P型半导体和N型半导体(重点)N型半导体:主要靠电子导电的半导体。
即:电子是多数载流子,空穴是少数载流子。
P型半导体:主要靠空穴导电的半导体。
即:空穴是多数载流子,电子是少数载流子。
PN结:经过特殊的工艺加工,将P型半导体和N型半导体紧密地结合在一起,则在两种半导体的交界面就会出现一
个特殊的接触面,称为PN 结。
半导体的特性

半导体的特性
半导体是一种具有介于导体和绝缘体之间的电导性能的材料。
其特
性包括:
1. 导电性:半导体具有介于导体和绝缘体之间的导电性能。
在绝缘
体中,电子无法自由移动,而在导体中,电子可以自由移动。
半导体
的特点是在常温下,其导电性由掺杂与温度控制。
2. 能带结构:半导体的原子排列形成了能带结构,其中包含导带和
价带。
绝缘体的导带与价带之间的能隙非常大,而导体几乎没有能隙。
半导体的能隙介于导体和绝缘体之间,通常为1-3电子伏特。
3. 温度对导电性的影响:与导体不同,半导体的电导性能与温度密
切相关。
随着温度的升高,半导体的电导性能也会增加。
4. 掺杂:通过在半导体晶体中掺入少量的杂质,可以显著地改变其
导电性质。
杂质的掺杂可以分为N型和P型。
N型掺杂引入一个附加
的自由电子,而P型掺杂引入一个附加的空穴。
5. PN结:将N型和P型的半导体材料接触在一起形成PN结。
PN
结具有整流作用,即在正向偏置时,电流可以流动,而在反向偏置时,电流被阻塞。
6. 半导体器件:半导体的特性使其成为制造各种电子器件的理想材料,如二极管、晶体管、场效应管和集成电路等。
总的来说,半导体的特性使其成为现代电子技术的基础,广泛应用于计算机、通信、光电等领域。
半导体的基本特征

半导体的基本特征
半导体是一种介于导体和绝缘体之间的材料,具有一些独特的特征。
以下是半导体的基本特征:
1. 导电性能:半导体的导电性能介于导体和绝缘体之间。
在纯净的半
导体中,电子和空穴数量相等,因此电导率很低。
但是,通过掺杂或
施加电场等方法,可以增加半导体的导电性能。
2. 能带结构:半导体的能带结构是其特征之一。
半导体的能带结构由
价带和导带组成。
在纯净的半导体中,价带和导带之间存在能隙,电
子必须获得足够的能量才能跃迁到导带中。
3. 温度特性:半导体的电导率随温度的变化而变化。
在低温下,半导
体的电导率很低,但随着温度的升高,电导率会增加。
这是因为温度
升高会增加电子和空穴的数量,从而增加半导体的导电性能。
4. 光电特性:半导体具有光电效应,即当光照射到半导体上时,会产
生电子和空穴。
这种现象被广泛应用于太阳能电池和光电器件等领域。
5. PN结:PN结是半导体器件的基础。
PN结是由P型半导体和N型半导体组成的结构,具有整流和放大等功能。
6. 控制特性:半导体的电性能受到外部电场的控制。
通过施加电场,可以控制半导体中电子和空穴的数量和移动方向,从而实现对半导体器件的控制。
总之,半导体具有介于导体和绝缘体之间的导电性能,能带结构、温度特性、光电特性、PN结、控制特性等特征。
这些特征使得半导体在电子器件、光电器件、太阳能电池等领域得到广泛应用。
半导体器件基础

自由电子 带负电荷 电子流
载流子
空穴 带正电荷 空穴流 +总电流
6
N型半导体和P型半导体
多余电子
N型半导体
硅原子
【Negative电子】
+4
+4 +4
在锗或硅晶体内
掺入少量五价元素
杂质,如磷;这样
+4
在晶体中就有了多 磷原子 余的自由电子。
+4
+5 +4 +4 +4
多数载流子——自由电子
少数载流子——空穴
不失真——就是一个微 弱的电信号通过放大器 后,输出电压或电流的 幅度得到了放大,但它 随时间变化的规律不能 变。
放大电路是模拟电路中最主要的电路,三极管是 组成放大电路的核心元件。
具有放大特性的电子设备:收音机、电视机、
手机、扩音器等等。
36
利用三极管组成的放大电路,最常用的接法是:基 极作为信号的输入端,集电极作为输出端,发射极 作为输入回路、输出回路的共同端(共发射极接法)
38
饱和工作状态
调节偏流电阻RP的阻值, 使基极电流充分大时,集电 极电流也随之变得非常大, 三极管的两个PN结则都处于 正向偏置。集电极与发射极 之间的电压很小,小到一定 程度会削弱集电极收集电子 的能力,这时Ib再增大, Ic也不能相应地增大了, 三极管处于饱和状态,集电 极和发射极之间电阻很小, 相当开关接通。
27
▪ 几种常见三极管的实物外形
大功率三极管
功率三极管
普通塑封三极管
28
▪ 三极管的分类
① 按频率分
高频管 低频管
硅管 ③ 按半导
体材料分 锗管
② 按功率分
半导体和超导体的特点

半导体和超导体的特点半导体和超导体是两种不同类型的材料,它们都在电子和能量传导方面具有很特殊的性质,下面详细介绍它们的特点。
一、半导体的特点1.导电特性:半导体能够在一定条件下表现出良好的导电性能,当半导体中的电子数目增加时,它的导电性能也会相应提升。
2.能带结构:半导体的能带结构独特,其中包含了价带和导带,两者之间有一个带隙。
在带隙范围内,半导体是难以导电的。
3.热激发:半导体可以通过热激发的方式将电子从价带中提取出来,然后进入导带中,使其导电。
4.杂质掺杂:通过掺杂一些杂质元素,可以使半导体导电性发生变化。
n型半导体是通过掺杂五价元素(如磷等)来实现,p型半导体是通过掺杂三价元素(如硼、铝等)来实现的。
5.少数载流子:与金属导电形式不同,半导体的导电是通过少数载流子来实现。
n型半导体电子是载流子,p型半导体空穴是载流子。
二、超导体的特点1.无电阻:超导体的最大特点就是展现出了无电阻状态,电流可以不受电阻和能量损失的限制自由流动。
2.零电阻带:当温度降到超导临界温度以下时,超导体可以形成一条零电阻带,这条带会对电磁波产生反射作用,并导致绕返波的出现。
3.鸣振波:超导体在过渡时通过鸣振波的形式来恢复电阻,当电流超管超过超导体的临界电流时,静态电场会引起振动,从而产生鸣振波。
4.磁场排斥作用:磁场对超导体具有排斥作用,在超导体中,磁场的介入会限制其超导性能。
5.临界温度:超导体的临界温度是它能够表现出超导性的最高温度。
对于高温超导体而言,它们的临界温度要高于-100°C,而对于低温超导体而言,它们的临界温度要低于-100°C。
总体而言,半导体和超导体都是一个致力于推动人类技术进步发挥重要作用的材料。
半导体广泛使用于半导体电子学、信息科技等领域,而超导体则在高速列车、轨道交通等领域有广泛的应用。
随着科技的不断进步,这些材料的应用前景也会更加广阔。
半导体及其特性

半导体及其特性
顾名思义,所谓半导体,就是介于导体与绝缘体之间的一种材料,它的导电能力比导体差得多,而又比绝缘体要好得多。
硅、锗、砷化镓等,都是常用的半导体。
开始,人们对半导体及其优越性没有足够的认识,半导体材料并没有表现出多大的用处。
近几十年来,随着人们发现半导体具有的特殊性能,半导体才逐渐引起全世界的重视,对它的研究和应用发展极快。
现在,从日常生活到现代通讯设备,电子计算机、空间技术等,都离不开半导体。
半导体材料具有如下几个特性:
1.热敏性。
我们知道,温度是影响导体电阻的条件之一,但只有温度变化很大时,才有讨论的实际意义。
半导体材料的电阻随温度的升高而明显变小,有些半导体的温度只要变化百分之几摄氏度,都能观察到它的电阻变化。
我们将半导体材料的电阻对温度变化的敏感性称为半导体的热敏性。
根据半导体的热敏性,我们可以制作热敏电阻,在精密温度的测量、热敏自动控制方面有广泛的应用。
2.光敏性。
用光照射半导体材料时,它的电阻会明显减小,照射光越强,电阻就越小。
我们将半导体材料的电阻对光照反应的敏感性称为光敏性。
光敏性主要被用在自动控制上。
例如,利用光敏电阻加上控制电路,可以做到入夜时路灯自动通电,而太阳一出来,路灯又自动关闭,既方便生活又节省用电。
3.压敏性。
半导体材料受到压力的时候,电阻也会明显减小。
半导体的这种特性称为压敏性,它被广泛用于科学实验的压力测量和自动控制。
半导体高中物理

半导体高中物理半导体是一种电子能带结构介于导体和绝缘体之间的材料,具有独特的导电性质。
在高中物理学中,半导体是一个重要的话题。
本文将探讨半导体的基本概念、性质和应用。
首先,我们来了解半导体的基本概念。
半导体是指在温度较高时表现为导体,而在温度较低时表现为绝缘体的物质。
它的导电性质是通过材料中的载流子(电子或空穴)传导电流来实现的。
在半导体中,电子和空穴是通过化学反应或热激发产生的。
半导体材料可以是单晶体(如硅、锗)或复合材料(如硅锗合金)。
半导体具有一些独特的性质。
首先是温度敏感性。
随着温度的升高,半导体的导电性会增强,因为更多的载流子会被激发出来。
这种特性使得半导体在温度传感器和温度控制器中得到广泛应用。
其次是光电性质。
半导体在受到光照时,会发生光生电效应,产生电子-空穴对。
这种特性使得半导体在光电器件(如太阳能电池、光电二极管)中有重要的应用。
半导体的导电性质可以通过掺杂来调节。
掺杂是指向半导体中引入杂质,改变其导电性质的过程。
掺杂分为施主掺杂和受主掺杂。
施主掺杂是向半导体中引入能够提供额外自由电子的杂质,如磷或砷。
这些自由电子可以增加半导体的导电性能,使其成为N型半导体。
受主掺杂是向半导体中引入能够提供额外空穴的杂质,如硼或铟。
这些空穴可以增加半导体的导电性能,使其成为P型半导体。
N型半导体和P型半导体的结合形成PN结。
PN结是半导体器件中最基本的结构之一。
当N型半导体和P型半导体相接触时,N型半导体中的自由电子会向P型半导体中的空穴扩散,形成电子-空穴对结合区域。
在这个结合区域中,自由电子和空穴会重新组合,形成电子空穴复合。
这种电子空穴复合过程会导致PN结的区域失去自由电荷,形成一个电势差,称为内建电势。
内建电势使得PN结形成一个单向导电的区域,即正向偏置和反向偏置。
PN结具有一些重要的应用。
其中之一是二极管。
二极管是一种电子器件,可以在电流只能从P端流向N端的情况下导电。
二极管广泛应用于电源电路、整流电路和信号调制电路中。
半导体知识点总结

半导体知识点总结半导体是一种介于导体和绝缘体之间的材料,它具有一些特殊的电子性质,因此在现代电子技术中具有重要的应用。
本文将对半导体的基本概念、特性、原理以及应用进行详细的介绍和总结。
一、半导体的基本概念1、半导体材料半导体材料是一类电阻率介于导体和绝缘体之间的材料,它具有一些特殊的电子能带结构。
常见的半导体材料包括硅(Si)、锗(Ge)、GaAs等。
2、半导体的掺杂半导体材料经过掺杂后,可以改变其电子结构和导电性质。
常见的掺杂有N型和P型两种类型,分别通过掺入杂质原子,引入额外的自由电子或空穴来改变半导体的导电性质。
3、半导体的结构半导体晶体结构通常是由大量的晶格排列组成,具有一定的晶格参数和对称性。
在半导体器件中,常见的晶体结构有晶体管、二极管、MOS器件等。
二、半导体的特性1、能带结构半导体的能带结构是其特有的性质,它决定了半导体的导电性质。
半导体的能带结构通常包括价带和导带,其中价带中填充电子的能级较低,而导带中电子的能级较高,两者之间的能隙称为禁带宽度。
2、电子迁移和载流子在外加电场的作用下,半导体中的自由电子和空穴可以在晶体内迁移,并形成电流。
这些移动的载流子是半导体器件工作的基础。
3、半导体的导电性半导体的导电性是由自由电子和空穴共同贡献的,通过掺杂和外加电场的调制,可以改变半导体的导电性。
三、半导体的原理1、P-N结P-N结是半导体器件中最基本的结构之一,它由P型半导体和N型半导体组成。
P-N结具有整流、放大、开关等功能,是二极管、光电二极管等器件的基础。
2、场效应器件场效应器件是一类利用外加电场控制半导体导电性质的器件,包括MOS场效应管、JFET场效应管等。
场效应器件具有高输入电阻、低功耗等优点,在数字电路和模拟电路中得到广泛应用。
3、半导体光电器件半导体光电器件是一类利用光电效应将光能转化为电能的器件,包括光电二极管、光电导电器件等。
光电器件在光通信、光探测、光伏等领域有着重要的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.半导体的特性:光敏特性、热敏特性、掺杂特性。
2.杂质半导体分为N型半导体和P型半导体,N型半导体的元素是4价硅P型半导体元素是3价硼。
3.N型半导体多子是电子P型半导体多子是空穴。
4.PN结的单向导电性:正向导通,反向截止。
5.三极管按结构分可分为:PNP、PNP型;三极管由集电极c、基极b、发射极e组成。
6.三极管的工作区域:截止区(集电结反偏,发射结反偏)、放大区(发射结正偏、集电结反偏)、饱和区(集电结正偏、发射结正偏)
7.电压关系:NPN:U C>U B>U E;PNP:U C<U B<U E;电流关系:I E=I C+I B;I C=βI B;β=ΔIC/ΔIB
8.共集电极放大电路的放大倍数为:1
9.多级放大电路的耦合方式分为阻容耦合和直接耦合
10.多级放大电路的输入电阻就是其第一级的输入电阻输出电阻就是其最后一级的输出电阻放大倍数Au=Au1Au2……Aun
11.|1+AF|是衡量反馈程度的量用D表示;满足|1+AF|>>1条件的负反馈称为深度负反馈
12.电路的电压增益接近于1且相位相同,故称为电压跟随器
13.集成运放由输入级、中间级、输出级、偏置电路四部分组成
14.功率放大器可分为甲类、甲乙类、乙类;乙类放大器的效率通常为78.5%导通角为θ=180°
15.直流稳压电源的组成由变压器、整流电路、滤波电路、稳压电路四部分组成。
16.直流通路
围边等效电路
根据直流通路对放大电路的静态进行计算
b CC R V R V V I ≈-=b BE CC B ;B C I βI =;
c C CC CE R I V V -=
交流负载线
1.从B 点通过输出特性曲线上的Q 点做一条直线, 其斜率为-1/R'L 。
2.R'L= RL ∥Rc ,是交流负载电阻。
3.E bb'be
/ mV 26I r r += 4.L c L //= 'R R R 5.be L V r R A '-=∙β be be b r r R R ≈=//i C o R R =。