2019届高三联合模拟考试理科数学试题
陕西省2019届高三第一次模拟联考理科数学试卷附答案解析

陕西省2019届高三第一次模拟联考理科数学试题一、选择题(本大题共12小题,共60.0分)1.已知集合A={x|-1≤x<2},B={x|0≤x≤3},则A∩B=()A. B. C. D.【答案】B【解析】【分析】利用集合的交集的定义,直接运算,即可求解.【详解】由题意,集合A={x|-1≤x<2},B={x|0≤x≤3},∴A∩B={x|0≤x<2}.故选:B.【点睛】本题主要考查了集合的交集运算,其中解答中熟记集合的交集定义和准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.2.复数的模是()A. B. C. D.【答案】D【解析】【分析】先将复数化成形式,再求模。
【详解】所以模是故选D.【点睛】本题考查复数的计算,解题的关键是将复数化成形式,属于简单题。
3.若抛物线y2=2px的焦点坐标为(2,0),则准线方程为()A. B. C. D.【答案】A【解析】【分析】抛物线y2=2px的焦点坐标为(2,0),求得的值,即可求解其准线方程.【详解】由题意,抛物线y2=2px的焦点坐标为(2,0),∴,解得p=4,则准线方程为:x=-2.故选:A.【点睛】本题主要考查了抛物线的标准方程及其性质,其中解答中熟记抛物线的标准方程,及其简单的几何性质,合理计算是解答的关键,着重考查了运算与求解能力,属于基础题.4.一个空间几何体的三视图如图所示,则该几何体的表面积为()A. 64B.C. 80D.【答案】B【解析】【分析】根据三视图画出几何体的直观图,判断几何体的形状以及对应数据,代入公式计算即可.【详解】几何体的直观图是:是放倒的三棱柱,底面是等腰三角形,底面长为4,高为4的三角形,棱柱的高为4,所求表面积:.故选:B.【点睛】本题主要考查了几何体的三视图,以及几何体的体积计算,其中解答中判断几何体的形状与对应数据是解题的关键,着重考查了推理与计算能力,属于基础题。
5.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为()(参考数据:sin15°=0.2588,sin7.5°=0.1305)A. 12B. 24C. 48D. 96【答案】B【解析】【分析】列出循环过程中S与n的数值,满足判断框的条件,即可结束循环,得到答案.【详解】模拟执行程序,可得:n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故选:B.【点睛】本题主要考查了循环框图的应用,其中解答中根据给定的程序框图,逐次循环,注意判断框的条件的应用是解答的关键,着重考查了运算与求解能力,属于基础题。
哈师大附中2019年高三第三次联合模拟考试数学(理科)

哈师大附中2019年高三第三次联合模拟考试数学答案(理科)一.选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)B C A B C B C A D D B C二.填空题(本大题共4小题,每小题5分,共20分)13.83 14. 58 15. 25616. ①②③ 三.解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.解:在AMP Rt ∆中,30oAPM ∠=,100=AM 3100=∴PM ……… 3分连结QM ,在PQM ∆中,60oQPM ∠=,又PQ =PQM ∴∆为等边三角形QM ∴= ……… 6分在AMQ Rt ∆中,由222AQ AM QM =+得200AQ =又在Rt BNQ ∆中,tan 2θ=,200BN =,BQ ∴=……… 9分在BQA ∆中,22222cos BA BQ AQ BQ AQ θ=+-⋅=( BA ∴=答:,A B 两塔顶间的直线距离是. ……… 12分 18.解:(1)任取一块冰是由甲工作采出的冰块的概率为14依题意0,1,2,3ξ=,且1(3,)4B ξ………1分3313()(0,1,2,3)44k kkP k C k ξ-⎛⎫⎛⎫==⨯⨯= ⎪ ⎪⎝⎭⎝⎭27(0)64P ξ==27(1)64P ξ== 9(2)64P ξ==1(3)64P ξ==ξ∴的分布列为……… 5分13344E ξ∴=⨯= ……… 6分 (2)用1A 表示事件“冰块是由甲工作队采出的”;2A 表示事件“冰块是由乙工作队采出的”;3A 表示事件“冰块是由丙工作队采出的”,用B 表示事件“采出的冰块能被利用”, ……… 8分则()10.25P A =, ()20.35P A =,()30.40P A =,()10.8P B A =,()20.6P B A =,()30.75P B A = ……… 10分123()()()()P B P BA P BA P BA =++112233()()()()()()P A P B A P A P B A P A P B A =++0.250.80.350.60.40.75=⨯+⨯+⨯0.71=答:采出的冰块能被利用的概率是0.71. ……… 12分19. 解:(解法一)(1)字母如图所示.……… 2分∵梯形A ADD ''、A ABB ''、A B C D ''''、ABCD 均为直角梯形,且182A B DC AB ''===,2D C A B DC ''''== 连结B C '、PQ ,则PQ ∥B C ',又∵//A B DC '',且A B DC ''=,∴A B CD ''为矩形 ∴//B C A D '',∴//PQ A D '又PQ ⊄平面A ADD '',A D '⊂平面A ADD ''∴PQ ∥平面A ADD ''. ……… 6分 (2)延长,,DD AA BB '''交于一点G ,∵B A ''⊥面ADG ,作A H '⊥D D '于H ,连结HB ',则HB DD ''⊥则∠B HA ''为二面角B DD A '--的平面角. ……… 9分 在Rt △D A G ''中,易得12,5A G A D '''==∴1151222A H D G ''⨯⨯=⨯⨯,即6013A H '= ∴26tan 15A B B HA A H ''''∠=='.即二面角B DD A '--的正切值为2615. ……… 12分 另解:由三视图得:BA ⊥面A ADD '',作AH DD '⊥,垂足为H ,连BH∵,,DD AH DD AB ABAH H ''⊥⊥=∴DD '⊥面BAH ,∴DD BH '⊥∴BHA ∠为二面角B DD A '--的平面角D12sin 13D DA '∠=,∴12120sin 101313AH AD D DA '=⋅∠=⨯= ∴1326tan 1612015AB BHA AH ∠==⨯=……… 12分 (解法二)(1)(0,16,0),(0,8,12),B B '(10,8,0)C ,∴(0,12,6),(5,12,0)P Q (5,0,6)=-,又平面AA D D ''的法向量1n (0,1,0)=,则PQ ⋅1n 0=,∴PQ ⊥1n 又PQ ⊄平面AA D D '',∴//PQ 平面AA D D '' ……… 6分 (2)(10,0,0),(5,0,12)D D ',∴(10,16,0),(5,16,12)BD BD '=-=- 设平面BDD '的法向量2n (,,)x y z =则10160516120BD x y BD x y z ⎧⋅=-=⎪⎨'⋅=-+=⎪⎩,所以一个法向量2n 10(8,5,)3=∴<1n ,2n >的大小是二面角B DD A '--的平面角的大小,设为θ ∴cos cos θ=<1n ,2n >==,即sin θ== ∴26tan 5θ=, 即二面角B DD A '--的正切值为2615. ……… 12分20. 解:(1)(解法一)椭圆上顶点A ',A F k '=l 的斜率2tan 3k π==∴A '与A 重合.ACF AOF CFE AOEC S S S S =--梯形()111222OA CE OE OA OF FE CE =+⋅-⋅-⋅= ……4分(解法二)直线AF :1)y x =-,2AF =点C 到直线AF 的距离d ==12ACFSAF d =⋅=………4分 A 'z 2n2n(解法三)设准线与x 轴交于点E ,过点A 向准线引垂线,垂足为,,AF e AD =cos 3AD EF AF π=+,1cos 3e EF AF e π∴=-13,,22EF e AF ==∴= …2分36,tan CE EF CF CFE CFE ==∴=∠==3AFC π∴∠=162sin 23CAF S π∆∴=⨯⨯⨯=(2) ①若直线为0y =时,经验证,AC BC k k +=②若直线不为0y =时,设直线l 方程为1x my =+,设1122(,),(,)A x y B x y22134120x my x y =+⎧⎨+-=⎩ 整理得:22(34)690m y my ++-= ,223636(34)0m m ∆=++>恒成立 设1122(,),(,)A x y B x y12122269,3434m y y y y m m ∴+=-=-++ ………6分 1113AC k ===同理,2BC k = ………8分 1212AC BC k k ∴+==………10分 2222269(3)()2()34346993()()3434m m m m m m m m m --++++=---+++== ∴直线AC 与直线BC 的斜率之和为定值………12分21.解:(1)21()ln (0)f x x x x a=+>,则2212()x a f x x a x ax +'=+= ………1分①当0a >时,()0f x '>对(0,)x ∈+∞恒成立,()f x 在(0,)+∞上递增②当0a <时,令()0f x '=,则2x =, ………2分 (0,2x ∈时,()0f x '>,()f x 为增函数;)2x ∈+∞时,()0f x '<,()f x 为减函数综上,0a >时,()f x 增区间为(0,)+∞;0a <时,()f x 增区间为,减区间为)+∞. ………4分 (2)由(1)知0a >时,()f x 在(0,)+∞递增,且1x =时,1(1)0,f a =>则11(1),()22f f x >-∴<-不恒成立,故0a < ………5分又()f x 的极大值即()f x 最大值21ln 222f a =+ 1()2f x <-恒成立,只须[]max 1()2f x <-∴ln02<,即012<< ∴20a -<< ………6分 (3)当1a =时,2()ln f x x x =+,1()2f x x x'=+令()()g x f x '=,则21()2g x x'=-………8分 当[1,)x ∈+∞时,()0g x '> ∴1()2f x x x'=+在[1,)+∞上是增函数当*n N ∈时,1()2f n n n'=+>∴()f x '在[1,()]f n '上是增函数 ………10分当1n =时,(1)3f '=∴当[1,(1)],1,2,3,,i a f i k '∈=时,19()((1))(3)3i f a f f f ''''≤==则为使得k 最小,需19(),1,2,3,,3i f a i k '==,则1920103k ≥,又*k N ∈,所以min 318k =当1n >时,()(1)f n f ''>,∴当[1,()],1,2,3,,i a f n i k '∈=时,1()(())(2)i f a f f n f n n ''''≤=+则为使得k 最小,需1()(2),1,2,3,,i f a f n i k n''=+=,则1(2)2010f n k n '+⨯≥,又119(2)(3)3f n f n ''+>=又*k N ∈,所以min 318k <当318k <时,对1n =时,不存在k 个正数,使得1()2010kii f a ='≥∑所以,min 318k = ………12分 22. 证明:(1)圆O 与边AB 相切于点E ,∴90AEG ∠=又90ACG ∠=∴180AEG ACG ∠+∠=∴A 、E 、G 、C 四点共圆. ………5分(2) A 、E 、G 、C 四点共圆,∴AEC AGC ∠=∠又AB 是圆O 的切线,∴AEC EDC ∠=∠ ∴ EDC AGC ∠=∠∴//AG ED ………10分23. 解:(1)12()11412x t x y y t πα⎧=+⎪⎪=∴∴-=+⎨⎪=-+⎪⎩为参数 ∴ 曲线2C 的普通方程是2y x =- ………2分它表示过(1,1)-,倾斜角为4π的直线 ………3分 (2)解法一:曲线1C 的普通方程为224x y += …5分 设(1,1)G -,过G 作MN OG ⊥,以下证明此时MN 最小过G 作直线M N '',M N ''与MN 不重合M N ''=MN =在Rt OG G '∆中,OG OG '>MN M N ''∴< ………8分此时,MN ==………10分 另解:曲线1C 的普通方程为224x y += ………5分 将1cos 1sin x t y t αα=+⎧⎨=-+⎩代入224x y +=中,得22(1cos )(1sin )4t t αα++-+= ………7分22(cos sin )20t t αα∴+--=12MN t t =-==………9分4MN MN πα∴==当时,最小 ………10分24.解:由已知得0>x ,∴原不等式化为x x x x 33log log +<+ ………2分 (1)当3log 0x ≥时,33log log x x x x +<+不成立 ………4分 (2)当0log 3<x 时,x x x x 33log log -<+此不等式等价于⎩⎨⎧->+-<+x x x x x x x x 3333log log log log 即⎩⎨⎧><<010x x 10<<∴x ………8分 故原不等式的解集为{}01x x << ………10分 另解:由绝对值不等式性质333log log log 001x x x x x x x +<+⇔<⇔<< ∴原不等式的解集为{}01x x << ………10分。
2019高考理科数学模拟试题10套及答案解析

理科数学 2019年高考模拟试卷理科数学考试时间____分钟题型单项选择题填空题简答题总分得分单项选择题本大题共8小题每题____分共____分。
1.已知会集A={x||x|<2}B={–2012}则AB=A. {01}B. {–101}C. {–2012}D. {–1012}2.在复平面内复数的共轭复数对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.执行以下列图的程序框图输出的s值为A.B.C.D.4.“十二平均律”是通用的音律系统明朝朱载堉最早用数学方法计算出半音比率为这个理论的发展做出了重要贡献十二平均律将一个纯八度音程分成十二份依次获取十三个单音从第二个单音起每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为f则第八个单音的频率为A.B.C.D. 5.某四棱锥的三视图以下列图在此四棱锥的侧面中直角三角形的个数为A. 1B. 2C. 3D. 46.设a b均为单位向量则“”是“a⊥b”的A. 充分而不用要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不用要条件7.在平面直角坐标系中记d为点P cosθsinθ到直线的距离当θm变化时d的最大值为A. 1B. 2C. 3D. 48.设会集则A. 对任意实数aB. 对任意实数a21C. 当且仅当a<0时21D. 当且仅当时21填空题本大题共6小题每题____分共____分。
9.设是等差数列且a1=3a2+a5=36则的通项公式为__________10.在极坐标系中直线与圆相切则a=__________11.设函数f x=若对任意的实数x都建立则ω的最小值为__________12.若x y满足x+1≤y≤2x则2y−x的最小值是__________13.能说明“若f x>f0对任意的x∈02都建立则f x在02上是增函数”为假命题的一个函数是__________14.已知椭圆双曲线若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的极点则椭圆M的离心率为__________双曲线N的离心率为__________简答题综合题本大题共6小题每题____分共____分。
2019高三联考理科数学试题(含答案)

是 的等差中项.设 是整数,若
存在 N ,使得等式
U
o
S 成立,则 的最大值是________.
14.某同学手中有 4 张不同的“感动中国十大人物”照片,现要将其投放到 A、B、C 三个不同 号的箱子里,则每个箱子都不空的概率为_________.
15.设集合 M 1, 2, 3, 4, 5, 6, S1, S 2, S3,,S k 都是 M 的含有两个元素的子集,且满足:
A. ,
2 2
B. ( 2, 0)
C. (0, 2)
D.
2 2
,
9.如图, h
h 是棱长为 的正方体, h 是棱长为 的正四面体,底面
h ,h 在同一个平面内, h䂖䂖h ,则正方体中过 且与平面 h 平行的截面面积
是
A. t
B.
C.
D. t
上存在点 M (x0 , y0 )
,使得:①
x0
x1
x2 2
;②曲线 C
在点 M
处
的切线平行于直线 AB ,则称函数 F (x) 存在“中值相依切线”.试问:函数 f (x) 是否存
在“中值相依切线”,请说明理由.
19.(本小题满分 12 分)
数学联考试题 第 4页 共 6 页
如图,平面 ABCD⊥平面 ABE,四边形 ABCD 是边长为 2 的正方形,AE=1,F 为 CE 上的 点,且 BF⊥平面 ACE.
D
评卷说明:对于本大题,评分时只有满分档和零分档两档,评分误差为零分,与答案不同不得分。
第Ⅱ卷(非选择题 共 90 分)
三、填空题:本大题共 4 小题,每小题 5 分,共 20 分.请将答案直接填写在答题卡的相应位置上。
2019届东北三省三校高三第一次联合模拟考试理科数学试题及答案

东北三省三校高三第一次联合模拟考试理科数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、已知集合{}21x x A =-<<,{}220x x x B =-≤,则AB =( )A .{}01x x <<B .{}01x x ≤<C .{}11x x -<≤D .{}21x x -<≤ 2、复数212ii+=-( ) A .()22i+ B .1i + C .iD .i -3、点()1,1M 到抛物线2y ax =准线的距离为2,则a 的值为( ) A .14 B .112-C .14或112-D .14-或1124、设n S 是公差不为零的等差数列{}n a 的前n 项和,且10a >,若59S S =,则当n S 最大时,n =( )A .6B .7C .10D .95、执行如图所示的程序框图,要使输出的S 值小于1,则输入的t 值不能是下面的( )A .2012B .2013C .2014D .2015 6、下列命题中正确命题的个数是( ) ①对于命题:p R x ∃∈,使得210x x +-<,则:p ⌝R x ∀∈,均有210x x +->②p 是q 的必要不充分条件,则p ⌝是q ⌝的充分不必要条件 ③命题“若x y =,则sin sin x y =”的逆否命题为真命题④“1m =-”是“直线1:l ()2110mx m y +-+=与直线2:l 330x my ++=垂直”的充要条件A .1个B .2个C .3个D .4个7、如图,网格纸上小正方形的边长为1,若粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B .8C .10D .128、设双曲线的一个焦点为F ,虚轴的一个端点为B ,焦点F 到一条渐近线的距离为d ,若F 3dB ≥,则双曲线离心率的取值范围是( ) A .(1,2⎤⎦B .)2,⎡+∞⎣C .(]1,3D .)3,⎡+∞⎣9、不等式组2204x y -≤≤⎧⎨≤≤⎩表示的点集记为A ,不等式组220x y y x-+≥⎧⎨≥⎩表示的点集记为B ,在A 中任取一点P ,则P∈B 的概率为( )A .932 B .732 C .916D .71610、设二项式12nx ⎛⎫- ⎪⎝⎭(n *∈N )展开式的二项式系数和与各项系数和分别为n a ,n b ,则1212n na a ab b b ++⋅⋅⋅+=++⋅⋅⋅+( )A .123n -+B .()1221n -+C .12n +D .111、已知数列{}n a 满足3215334n a n n m =-++,若数列的最小项为1,则m的值为( )A .14B .13C .14-D .13-12、已知函数())()()0ln 10x f x x x ≥=⎪--<⎩,若函数()()F x f x kx =-有且只有两个零点,则k 的取值范围为( )A .()0,1B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫⎪⎝⎭D .()1,+∞二、填空题(本大题共4小题,每小题5分,共20分.) 13、向量a ,b 满足1a =,2b =,()()2a b a b+⊥-,则向量a 与b 的夹角为 .14、三棱柱111C C AB -A B 各顶点都在一个球面上,侧棱与底面垂直,C 120∠A B =,C C A =B =,14AA =,则这个球的表面积为 .15、某校高一开设4门选修课,有4名同学,每人只选一门,恰有2门课程没有同学选修,共有 种不同选课方案(用数字作答).16、已知函数()()sin 2cos y x x πϕπϕ=+-+(0ϕπ<<)的图象关于直线1x =对称,则sin 2ϕ= .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17、(本小题满分12分)已知C ∆AB 的面积为2,且满足0C 4<AB⋅A ≤,设AB 和C A 的夹角为θ. ()1求θ的取值范围;()2求函数()22sin 3cos 24f πθθθ⎛⎫=+-⎪⎝⎭的取值范围.18、(本小题满分12分)为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽样100名市民,按年龄情况进行统计的频率分布表1和频率分布直方图2.()1频率分布表中的①②位置应填什么数?并补全频率分布直方图,再根据频率分布直方图估计这500名市民的平均年龄;()2在抽出的100名市民中,按分层抽样法抽取20人参加宣传活动,从这20人中选取2名市民担任主要发言人,设这2名市民中“年龄低于30岁”的人数为X ,求X 的分布列及数学期望. 19、(本小题满分12分)如图,四棱锥CD P -AB 的底面是边长为1的正方形,PA ⊥底面CD AB ,E 、F 分别为AB 、C P 的中点.()I 求证:F//E 平面D PA ;()II 若2PA =,试问在线段F E 上是否存在点Q ,使得二面角Q D -AP -的余弦值为55?若存在,确定点Q 的位置;若不存在,请说明理由.20、(本小题满分12分)已知椭圆22221x y a b+=(0a b >>)的左、右焦点为1F 、2F ,点()2,2A 在椭圆上,且2F A 与x 轴垂直.()1求椭圆的方程;()2过A 作直线与椭圆交于另外一点B ,求∆AOB 面积的最大值. 21、(本小题满分12分)已知a 是实常数,函数()2ln f x x x ax =+. ()1若曲线()y f x =在1x =处的切线过点()0,2A -,求实数a 的值;()2若()f x 有两个极值点1x ,2x (12x x <), ()I 求证:102a -<<; ()II 求证:()()2112f x f x >>-.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分. 22、(本小题满分10分)选修4-1:几何证明选讲如图,在C ∆AB 中,C 90∠AB =,以AB 为直径的圆O 交C A 于点E ,点D 是C B 边的中点,连接D O 交圆O 于点M . ()I 求证:D E 是圆O 的切线;()II 求证:D C D C D E⋅B =M⋅A +M⋅AB .23、(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C 的极坐标方程是2cos ρθ=,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是212x t m y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数). ()I 求曲线C 的直角坐标方程与直线l 的普通方程;()II 设点(),0m P ,若直线l 与曲线C 交于A ,B 两点,且1PA ⋅PB =,求实数m 的值. 24、(本小题满分10分)选修4-5:不等式选讲 设函数()212f x x x =--+. ()I 解不等式()0f x >;()II 若0R x ∃∈,使得()2024f x m m +<,求实数m 的取值范围.东北三省三校三校第一次联合模拟考试理科数学试题参考答案一.选择题:1.B2.C3.C4.B5.A6.B7.C8.A9.A 10.C 11.B 12.C 二.填空题:13. 9014. 64π 15. 84 16. 54-三.解答题:17.解:(Ⅰ)设ABC △中角A B C ,,的对边分别为a b c ,,,则由已知:2sin 21=θbc ,4cos 0≤<θbc , 4 分可得1tan ≥θ,所以:)2,4[ππθ∈. 6 分(Ⅱ)2π()2sin 24f θθθ⎛⎫=+-⎪⎝⎭π1cos 222θθ⎡⎤⎛⎫=-+- ⎪⎢⎥⎝⎭⎣⎦(1sin 2)2θθ=+-πsin 2212sin 213θθθ⎛⎫=+=-+ ⎪⎝⎭. 8 分)2,4[ππθ∈ ,∴)32,6[32πππθ∈-,π22sin 2133θ⎛⎫-+ ⎪⎝⎭∴≤≤.即当5π12θ=时,max ()3f θ=;当π4θ=时,min ()2f θ=.所以:函数)(θf 的取值范围是]3,2[12 分18.解:(1)由表知:①,②分别填300.0,35.补全频率分布直方3 分年龄(岁)平均年龄估值为:5.33)1.0853.07535.0652.05505.045(21=⨯+⨯+⨯+⨯+⨯(岁)6 分(2)由表知:抽取的20人中,年龄低于30岁的有5人,X 的可能取值为0,1,2 3821)0(222015===C C XP 3815)1(22011515===C C C X P 382)2(22025===C C X P 9 分X的分布列为X12P3821 3815 38210 分期望2138223815138210)(=⨯+⨯+⨯=X E (人)12 分19.证明: (Ⅰ)取PD 中点M , 连接MA MF ,, 在△CPD 中, F 为PC 的中点, DC MF 21//∴,正方形ABCD 中E 为AB 中点,DC AE 21//∴,MF AE //∴ 故:EFMA为平行四边形 AM EF //∴2 分又⊄EF 平面PAD,⊂AM 平面PAD∴//EF 平面PAD4 分(Ⅱ) 如图:以点A 为坐标原点建立空间直角坐标系:yz111(0,0,2),(0,1,0),(1,1,0),(0,,0),(,,1)222P B C E F由题易知平面PAD 的法向量为)0,1,0(=n , 6 分 假设存在Q 满足条件:设11,(,0,1),(,,)222EQ EF EF Q λλλ== ,]1,0[∈λ1(0,0,2),(,,),22AP AQ λλ==设平面PAQ 的法向量为(,,)m x y z =,10(1,,0)220x y z m z λλλ⎧++=⎪⇒=-⎨⎪=⎩10 分∴21,cos λλ+-< 由已知:5512=+λλ解得:21=λ 所以:满足条件的Q存在,是EF中点。
海南省2019届高三第二次联合考试数学(理)试卷(含答案)

2019届海南省高三年级第二次联合考试数学(理科)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|}A x y x ==-,{|lg }B y y x ==,则AB =( )A .(0,)+∞B .[0,)+∞C .RD .(,0]-∞2.已知复数(3)(1)z m m i =-+-在复平面内对应的点在第二象限,则整数m 的取值为( ) A .0 B .1 C .2 D .33.设向量(,4)a x =-,(1,)b x =-,若向量a 与b 同向,则x =( ) A .2 B .-2 C .2± D .04.等差数列{}n a 的前n 项和为n S ,23a =,且936S S =,则{}n a 的公差d =( ) A .1 B .2 C .3 D .45.某几何体的三视图如图所示,其中圆的半径均为1,则该几何体的体积为( )A .42083π+B .42163π+C .322083π+D .322163π+ 6.设x ,y 满足约束条件36060360x y x y x y -+≥⎧⎪+-≤⎨⎪+-≥⎩,则z x y =-的最小值是( )A .0B .-1C .-2D .-37.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:“一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯多少?”现有类似问题:一座5层塔共挂了242盏灯,且相邻两层中的下一层灯数是上一层灯数的3倍,则塔的底层共有灯( )A .81盏B .112盏C .114盏D .162盏 8.执行如图所示的程序框图,则输出的S =( )A .17B .33C .65D .129 9.将曲线sin(2)()2y x πϕϕ=+<向右平移6π个单位长度后得到曲线()y f x =,若函数()f x 的图象关于y 轴对称,则ϕ=( ) A .3π B .6πC .3π-D .6π-10.在平面直角坐标系xOy 中,双曲线C :22221(0,0)y x a b a b -=>>的一条渐近线与圆22(2)(1)1x y -+-=相切,则C 的离心率为( )A .43 B .54 C .169 D .251611.在侦破某一起案件时,警方要从甲、乙、丙、丁四名可疑人员中查出真正的嫌疑人,现有四条明确信息:(1)此案是两人共同作案;(2)若甲参与此案,则丙一定没参与;(3)若乙参与此案,则丁一定参与;(4)若丙没参与此案,则丁也一定没参与.据此可以判断参与此案的两名嫌疑人是( ) A .甲、乙 B .乙、丙 C .甲、丁 D .丙、丁12.在四面体ABCD 中,AD ⊥底面ABC ,10AB AC ==,2BC =,点G 为ABC ∆的重心,若四面体ABCD 的外接球的表面积为2449π,则tan AGD ∠=( ) A .12B .2C .22D .2第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卡中的横线上.13.若1x =是函数3()af x x x=+的一个极值点,则实数a = . 14.如图,小林从位于街道A 处的家里出发,先到B 处的二表哥家拜年,再和二表哥一起到位于C 处的大表哥家拜年,则小林到大表哥家可以选择的最短路径的条数为 .15.某超市经营的某种包装优质东北大米的质量X (单位:kg )服从正态分布(25,0.04)N ,任意选取一袋这种大米,质量在24.825.4kg 的概率为 .(附:若2(,)Z N μσ,则()0.6826P Z μσ-<=,(2)0.9544P Z μσ-<=,(3)0.9974P Z μσ-<=)16.已知F 是抛物线C :212x y =的焦点,P 是C 上一点,直线FP 交直线3y =-于点Q .若2PQ FQ =,则PQ = .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c .已知2sin sin cos B C B +2cos()0B C ++=,且sin 1B ≠. (1)求角C ;(2)若5sin 3sin B A =,且ABC ∆的面积为1534,求ABC ∆的周长. 18.从某小区抽取50户居民进行月用电量调查,发现其用电量都在50到350度之间,将用电量的数据绘制成频率分布直方图如下图所示.(1)求频率分布直方图中x 的值并估计这50户用户的平均用电量;(2)若将用电量在区间[50,150)内的用户记为A 类用户,标记为低用电家庭,用电量在区间[250,350)内的用户记为B 类用户,标记为高用电家庭,现对这两类用户进行问卷调查,让其对供电服务进行打分,并将打分数据绘制成茎叶图如下图所示:①从B 类用户中任意抽取3户,求恰好有2户打分超过85分的概率;②若打分超过85分视为满意,没超过85分视为不满意,请填写下面列联表,并根据列联表判断是否有95%的把握认为“满意与否与用电量高低有关”?满意 不满意 合计 A 类用户B 类用户合计附表及公式:20()P K k ≥0.050 0.010 0.001 0k3.8416.63510.82822()()()()()n ad bc K a b c d a c b d -=++++,n a b c d =+++.19.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,2AB AD =,3BD AD =,且PD ⊥底面ABCD .(1)证明:平面PBD ⊥平面PBC ;(2)若Q 为PC 的中点,且1AP BQ ⋅=,求二面角Q BD C --的大小.20.在平面直角坐标系xOy 中,设动点M 到坐标原点的距离与到x 轴的距离分别为1d ,2d ,且221234d d +=,记动点M 的轨迹为Ω.(1)求Ω的方程;(2)设过点(0,2)-的直线l 与Ω相交于A ,B 两点,当AOB ∆的面积最大时,求AB . 21.已知函数()ln(1)ln(1)f x x x =+--. (1)证明:直线2y x =与曲线()y f x =相切;(2)若3()(3)f x k x x >-对(0,1)x ∈恒成立,求k 的取值范围.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B 铅笔将所选题目对应的题号右侧方框涂黑,并且在解答过程中写清每问的小题号.22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,曲线C :2260x y x +-=,直线1l :0x -=,直线2l 0y -=,以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系. (1)写出曲线C 的参数方程以及直线1l ,2l 的极坐标方程;(2)若直线1l 与曲线C 分别交于O ,A 两点,直线2l 与曲线C 分别交于O ,B 两点,求AOB ∆的面积.23.[选修4-5:不等式选讲] 设函数()2f x x a a =++.(1)若不等式()1f x ≤的解集为{|24}x x -≤≤,求a 的值;(2)在(1)的条件下,若不等式2()4f x k k ≥--恒成立,求k 的取值范围.2019年高考调研测试 数学试题参考答案(理科)一、选择题1-5: BCAAA 6-10: CDCDB 11、12:DB二、填空题13. 3 14. 9 15. 0.8185 16. 8三、解答题17.解:(1)由2sin sin cos B C B +2cos()0B C ++=,得2cos cos cos B C B -=. ∵sin 1B ≠,∴cos 0B ≠, ∴1cos 2C =-,∴23C π=. (2)∵5sin 3sin B A =,∴53b a =, 又ABC ∆的面积为4,∴1sin 244ab C ab ==,∴15ab =,∴5a =,3b =.由余弦定理得2222cos 49c a b ab C =+-=,∴7c =. 故ABC ∆的周长为53715++=. 18.解:(1)1(0.0060.00360.002450x =-++20.0012)0.0044⨯+=, 按用电量从低到高的六组用户数分别为6,9,15,11,6,3, 所以估计平均用电量为675912515175112256275332550⨯+⨯+⨯+⨯+⨯+⨯186=度.(2)①B 类用户共9人,打分超过85分的有6人,所以从B 类用户中任意抽取3户,恰好有2户打分超过85分的概率为2163391528C C C =. ②因为2K 的观测值224(6963)1212915k ⨯⨯-⨯=⨯⨯⨯ 1.6 3.841=<,所以没有95%的把握认为“满意与否与用电量高低有关”. 19.(1)证明:∵222AD BD AB +=,∴AD BD ⊥, ∴//AD BC ,∴BC BD ⊥.又∵PD ⊥底面ABCD ,∴PD BC ⊥. ∵PDBD D =,∴BC ⊥平面PBD .而BC ⊂平面PBC ,∴平面PBC ⊥平面PBD . (2)解:由(1)知,BC ⊥平面PBD ,分别以DA ,DB ,DP 为x 轴,y 轴,z 轴建立空间直角坐标系D xyz -,如图所示,设BD =,则1AD =,令PD t =,则(1,0,0)A,B,(C -,(0,0,)P t,1(,)222t Q -, ∴(1,0,)AP t =-,1(,)22t BQ =-. ∴2112t AP BQ +⋅==,∴1t =.故11()22DQ =-,11(,)22BQ =-. 设平面QBD 的法向量为(,,)n x y z =,则00n DQ n BQ ⎧⋅=⎪⎨⋅=⎪⎩,即1102211022x y z x y z ⎧-+=⎪⎪⎨⎪-+=⎪⎩, 令1x =,得(1,0,1)n =.易知平面BDC 的一个法向量为(0,0,1)m =,则cos ,2m n <>==,∴二面角Q BD C --的大小为4π. 20.解:(1)设(,)M x y,则1d =2d y =,则222212344d d x y +=+=,故Ω的方程为2214x y +=(或2244x y +=). (2)依题意当l x ⊥轴不合题意,故设直线l :2y kx =-,设11(,)A x y ,22(,)B x y ,将2y kx =-代入2214x y +=,得22(14)16120k x kx +-+=, 当216(43)0k ∆=->,即234k >时,1221614k x x k +=+,1221214x x k =+,从而AB =214k=+, 又点O 到直线AB的距离d =所以AOB ∆的面积12S d AB ==,t =,则0t >,244144t S t t t==≤++, 当且仅当2t =,即274k =(满足0∆>)时等号成立, 所以当AOB ∆的面积最大时,274k =,2AB ==. 21.(1)证明:11'()11f x x x =++-,∴由'()2f x =得2221x =-,解得0x =,又(0)0f =,∴直线2y x =与曲线()y f x =相切.(2)解:设3()()(3)g x f x k x x =--,则22223(1)'()1k x g x x +-=-,当(0,1)x ∈时,22(1)(0,1)x -∈,若k ≥22)0x >,则'()0g x >,∴()g x 在(0,1)上递增,从而()(0)0g x g >=.此时,(f 在(0,1)上恒成立.若23k <-,令'()0g x x =⇒(0,1)=,当x ∈时,'()0g x <;当x ∈时,'()0g x >.∴min ()g x g =(0)0g <=, 则23k <-不合题意. 故k 的取值范围为2[,)3-+∞.22.解:(1)依题意,曲线C :22(3)9x y -+=,故曲线C 的参数方程是33cos 3sin x y αα=+⎧⎨=⎩(α为参数),因为直线1l :0x -=,直线2l 0y -=,故1l ,2l 的极坐标方程为1l :()6R πθρ=∈,2l :()3R πθρ=∈.(2)易知曲线C 的极坐标方程为6cos ρθ=,把6πθ=代入6cos ρθ=,得1ρ=)6A π,把3πθ=代入6cos ρθ=,得23ρ=,所以(3,)3B π,所以121sin 2AOB S AOB ρρ∆=∠13sin()3364ππ=⨯-=. 23.解:(1)因为21x a a ++≤,所以12x a a +≤-, 所以2112a x a a -≤+≤-,所以113a x a -≤≤-. 因为不等式()1f x ≤的解集为{|24}x x -≤≤,所以12134a a -=-⎧⎨-=⎩,解得1a =-.(2)由(1)得()12f x x =--.不等式2()4f x k k ≥--恒成立,只需2min ()4f x k k ≥--,所以224k k -≥--,即220k k --≤,海南省2019届高三第二次联合考试数学(理)试卷(含答案).所以k的取值范围是[1,2]。
2019届陕西省高三第一次模拟联考数学(理)试题(解析版)

2019届陕西省高三第一次模拟联考数学(理)试题一、单选题1.已知集合A={x|-1≤x<2},B={x|0≤x≤3},则A∩B=()A.B.C.D.【答案】B【解析】利用集合的交集的定义,直接运算,即可求解.【详解】由题意,集合A={x|-1≤x<2},B={x|0≤x≤3},∴A∩B={x|0≤x<2}.故选:B.【点睛】本题主要考查了集合的交集运算,其中解答中熟记集合的交集定义和准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.2.复数的模是()A.B.C.D.【答案】D【解析】先将复数化成形式,再求模。
【详解】所以模是故选D.【点睛】本题考查复数的计算,解题的关键是将复数化成形式,属于简单题。
3.若抛物线y2=2px的焦点坐标为(2,0),则准线方程为()A.B.C.D.【答案】A【解析】抛物线y2=2px的焦点坐标为(2,0),求得的值,即可求解其准线方程.【详解】由题意,抛物线y2=2px的焦点坐标为(2,0),∴,解得p=4,则准线方程为:x=-2.故选:A.【点睛】本题主要考查了抛物线的标准方程及其性质,其中解答中熟记抛物线的标准方程,及其简单的几何性质,合理计算是解答的关键,着重考查了运算与求解能力,属于基础题. 4.一个空间几何体的三视图如图所示,则该几何体的表面积为()A.64 B.C.80 D.【答案】B【解析】根据三视图画出几何体的直观图,判断几何体的形状以及对应数据,代入公式计算即可.【详解】几何体的直观图是:是放倒的三棱柱,底面是等腰三角形,底面长为4,高为4的三角形,棱柱的高为4,所求表面积:.故选:B.【点睛】本题主要考查了几何体的三视图,以及几何体的体积计算,其中解答中判断几何体的形状与对应数据是解题的关键,着重考查了推理与计算能力,属于基础题。
5.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为()(参考数据:sin15°=0.2588,sin7.5°=0.1305)A.12 B.24 C.48 D.96【答案】B【解析】列出循环过程中S与n的数值,满足判断框的条件,即可结束循环,得到答案.【详解】模拟执行程序,可得:n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故选:B.【点睛】本题主要考查了循环框图的应用,其中解答中根据给定的程序框图,逐次循环,注意判断框的条件的应用是解答的关键,着重考查了运算与求解能力,属于基础题。
江西省九校2019届高三联合考试数学(理)试卷(含答案)

2019年江西省高三联合考试数学试卷(理科)注意事项:1本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间为120分钟. 2本试卷分试题卷和答题卷,第Ⅰ卷(选择题)的答案应填在答题卷卷首相应的空格内,做在第Ⅰ卷的无效.3答题前,考生务必将自己的姓名、准考证号填涂在答题卡相应的位置。
第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求。
1.已知集合}01|{≥-=xxx A ,)}12lg(|{-==x y x B ,则=B A I ( ) A.]1,0( B .]1,0[ C .]1,21( D .),21(+∞2.已知复数ii i z +-=1)31(,则复数z 的虚部为( )A .1 B.1- C.i D.i -3.抛物线2ax y =的焦点是直线01=-+y x 与坐标轴交点,则抛物线准线方程是( )A.41-=xB.1-=xC.41-=y D.1-=y4.下列命题中正确的是( )A. 若q p ∨为真命题,则q p ∧为真命题.B. “0>ab ”是“2≥+baa b ”的充要条件. C. 命题“0232=+-x x ,则1=x 或2=x ”的逆否命题为“若1≠x 或2≠x ,则0232≠+-x x ”.D. 命题p :R x ∈∃,使得012<-+x x ,则p ⌝:R x ∈∀,使得012>-+x x .5.等差数列}{n a 前n 项和为n S ,543=+a a ,则=6S ( ) A.15 B.20 C.25 D.306.某程序框图如图所示,则该程序运行后输出的值是( )A.2019B.2018C.2017D.2016 7.设⎩⎨⎧<--≥+=0,10,1)(2x x x x x f ,5.07.0-=a ,7.0log 5.0=b ,5log 7.0=c ,则( )A.)()()(c f b f a f >>B.)()()(c f a f b f >>C.)()()(b f a f c f >>D.)()()(a f b f c f >> 8.函数)sin()(ϕω+=x x f (其中2||πϕ<)的图象如图所示,为了得到)(x f y =的图象,只需把x y ωsin =的图象上所有点( )A.向左平移6π个单位长度 B.向右平移12π个单位长度 C.向右平移6π个单位长度 D.向左平移12π个单位长度9.某几何体的三视图如右图所示,则该几何体外接球表面积为( ) A.π11 B.314πC.328πD.π16 10.已知双曲线)0,0(12222>>=-b a b y a x ,过原点作一条倾斜角为3π直线分别交双曲线左、右两支P ,Q 两点,以线段PQ 为直径的圆过右焦点F ,则双曲线离心率为( )A.12+B.13+C.2D.511.已知三棱锥的6条棱代表6种不同的化工产品,有公共顶点的两条棱代表的化工产品放在同一仓库是安全的,没有公共顶点的两条棱代表的化工产品放在同一仓库是危险的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
东北师大附中重庆一中2019届高三联合模拟考试吉大附中长春十一高中理科数学试题吉林一中松原实验高中本试卷共23题,共150分,共6页。
时间120分钟。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{|3}A xx Z ≤,{|ln 1}B x x ,集合A 与B 关系的韦恩图如图所示,则阴影部分所表示的集合为A .{|0}x x e B .{123},,C .{012},,D .{12},2.i 为虚数单位,复数1i 2z在复平面内对应的点的坐标为A .)11(,B .)11(,C .)11(,D .)11(,3.等比数列{}n a 各项均为正数,若11a ,2128n n n a a a ,则{}n a 的前6项和为A .1365B .63C .3263D .102413654.如图,点A 为单位圆上一点,3xOA,点A 沿单位圆逆时针方向旋转角到点)5453(,B ,则cos A .10334B .10334C .10334D .103345.已知双曲线2222:1(00)x y C a b ab,的右焦点到渐近线的距离等于实轴长,则此双曲线的离心率为A .2B .3C .5D .526.已知1536a,433b,259c ,则A .c a bB .c b aC .b c aD .ba c 7.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如右图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n ,x 的值分别为5,2,则输出v 的值为A .64 B .68 C .72D .1338.如图所示是某三棱锥的三视图,其中网格纸中每个小正方形的边长为1,则该三棱锥的外接球的体积为A .4B .163C .16D .3239.为了丰富教职工的文化生活,某学校从高一年级、高二年级、高三年级、行政部门各挑选出4位教师组成合唱团,现要从这16人中选出3人领唱,要求这3人不能都是同一个部门的,且在行政部门至少选1人,则不同的选取方法的种数为A .336B .340C .352D .47210.在正方体1111ABCDA B C D 中,点E 是棱11B C 的中点,点F 是线段1CD 上的一个动点.有以下三个命题:①异面直线1AC 与1B F 所成的角是定值;②三棱锥1BA EF 的体积是定值;③直线1A F 与平面11B CD 所成的角是定值.其中真命题的个数是A .3B .2C .1D .011.2018年,国际权威机构IDC 发布的全球手机销售报告显示:华为突破2亿台出货量超越苹果的出货量,首次成为全球第二,华为无愧于中国最强的高科技企业。
华为业务CEO 余承东明确表示,华为的目标,就是在2021年前,成为全球最大的手机厂商.为了解华为手机和苹果手机使用的情况是否和消费者的性别有关,对100名华为手机使用者和苹果手机使用者进行统计,统计结果如下表:根据表格判断是否有95%的把握认为使用哪种品牌手机与性别有关系,则下列结论正确的是A .没有95%把握认为使用哪款手机与性别有关B .有95%把握认为使用哪款手机与性别有关C .有95%把握认为使用哪款手机与性别无关D .以上都不对附:12.已知抛物线2:8C xy 的焦点为F ,过点(02),作斜率为(0)k k的直线l 与抛物线C 交于A ,B 两点,直线AF BF ,分别交抛物线C 与M ,N 两点,若10AF BF MFNF,则kA .1B .26C .2D .3二、填空题:本题共4小题,每小题5分,共20分。
13.设x ,y 满足条件210xy xy y ≥0≥≥,则y x 32的最小值为.14.由曲线3x y (0)x ≥与它在1x 处切线以及x 轴所围成的图形的面积为.15.已知正方形ABCD 的边长为4,M 是AD 的中点,动点N 在正方形ABCD 的内部或其边界移动,并且满足0MNAN,则NB NC 的取值范围是.16.已知数列{}n a 的前n 项和为n S ,若1nS 是n a 和n S 的等比中项,设(1)(21)nnn b n a ,则数列{}n b 的前60项和为.三、解答题:解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
22、23为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为)cos (63C a cbb .(1)求A ;(2)若13bc ,,求)62cos(C的值.18.(12分)-2018年12月18日上午10时,在人民大会堂举行了庆祝改革开放40周年大会.40年众志成城,40年砥砺奋进,40年春风化雨,中国人民用双手书写了国家和民族发展的壮丽史诗.会后,央视媒体平台,收到了来自全国各地的纪念改革开放40年变化的老照片,并从众多照片中抽取了100张照片参加“改革开放40年图片展”,其作者年龄集中在[2585],之间,根据统计结果,做出频率分布直方图如下:(1)求这100位作者年龄的样本平均数x 和样本方差2s (同一组数据用该区间的中点值作代表);(2)由频率分布直方图可以认为,作者年龄X 服从正态分布2(,)N ,其中近似为样本平均数x ,2近似为样本方差2s .(i )利用该正态分布,求(6073.4)P X;(ii )央视媒体平台从年龄在[4555],和[6575],的作者中,按照分层抽样的方法,抽出了7人参加“纪念改革开放40年图片展”表彰大会,现要从中选出3人作为代表发言,设这3位发言者的年龄落在区间[4555],的人数是Y ,求变量Y 的分布列和数学期望.附:4.13180,若2~(,)X N ,则()0.683P X ,(22)0.954P X0.0050.020 25 35 45 55 6575 85频率/组距年龄0.015 0.025 0.030 0.035 0.010 ))()()(()(22d b c a d cb abc adn K19.(12分)如图,在四棱台1111ABCDA B C D 中,底面ABCD 是菱形,111112AA A B AB ,60ABC,1AA 平面ABCD .(1)若点M 是AD 的中点,求证:1C M //平面11AA B B ;(2)棱BC 上是否存在一点E ,使得二面角1EAD D 的余弦值为13?若存在,求线段CE的长;若不存在,请说明理由.20.(12分)已知平面直角坐标系内的动点P 到直线1:2l x的距离与到点(10)F ,的距离比为2.(1)求动点P 所在曲线E 的方程;(2)设点Q 为曲线E 与y 轴正半轴的交点,过坐标原点O 作直线l ,与曲线E 相交于异于点Q 的不同两点M N 、,点C 满足2OC OQ ,直线MQ 和NQ 分别与以C 为圆心,CQ 为半径的圆相交于点A 和点B ,求△QAC 与△QBC 的面积之比的取值范围.21.(12分)已知函数x a axxax x f )(21ln )(22.(1)若1a,证明:0)(x f ;(2)若)(x f 只有一个极值点,求a 的取值范围.(二)选考题:请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分。
22.[选修4—4:坐标系与参数方程](10分)已知曲线1C 的参数方程为2cos 3sinx y(为参数),以原点O 为极点,以x 轴的非负半轴为极轴建立极坐标系,曲线2C 的极坐标方程为sin()14.(1)求曲线1C 的极坐标方程和曲线2C 的直角坐标方程;(2)射线()2OM :与曲线1C 交于点M ,射线4ON :与曲线2C 交于点N ,求2211OMON的取值范围.23.[选修4—5:不等式选讲](10分)设函数3()22(0)f x xaxaa .(1)若()(0)g a f ,解不等式()5g a ≥;(2)求证:()23f x ≥.东北师大附中重庆一中2019届高三联合模拟考试吉大附中长春十一高中理科数学吉林一中松原实验高中参考答案及评分标准评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则。
2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分。
3.解答右端所注分数,表示考生正确做到这一步应得的累加分数。
4.只给整数分数,选择题和填空题不给中间分。
一、选择题:1.D 2.C 3.B 4.A 5. C 6.C 7.B8.D9.A10.B11.A12.D二、填空题13.2 14.12115.[1421716],16.6061三、解答题17.解(1)由题设得)cos (63sin 21C a cbb C ab …1分即Ca cb Ca cos sin 3…2分由正弦定理得C A CBCA cos sin sin sin sin sin 3,…3分因为C A B 所以CAC AC sin cos sin sin sin 3…4分由于0sinC 所以21)6sin(A …5分又∵A,故3A…6分(2)在△ABC 中,由余弦定理及13b c,,3A有2222cos 7a bcbc A ,故7a.…7分由)cos (63sin 21C a cbb Abc ,得721cosC…8分所以7233sin C ,因此1433cos sin 22sin CC C…10分213cos 22cos 114C C …11分所以13333143cos(2)cos2cossin 2sin6661421427CC C …12分18.解:(1)这100位作者年龄的样本平均数x 和样本方差2s 分别为300.05400.1500.15600.35700.2800.1560x …2分222222(30)0.05(20)0.1(10)0.1500.35100.2200.15180s…4分(2)(i )由(1)知,)18060(~,N X ,从而1(6073.4)(6013.46013.4)0.34152P XP X;…7分(ii )根据分层抽样的原理,可知这7人中年龄在[4555],内有3人,在[6575],内有4人,故Y 可能的取值为0,1,2,3 354)0(373403C C C YP ,3518)1(372413C C C YP ,3512)2(371423C C C Y P 351)3(370433C C C Y P 所以Y 的分布列为Y 01 2 3 P35435183512351…11分所以Y 的数学期望为4181219()0123353535357E Y …12分19.解:(1)证明:连接1B A 由已知得,11////B C BC AD ,且1112B C AMBC所以四边形11AB C M 是平行四边形,即11//C M B A …2分又1C M平面11AA B B ,1B A平面11AA B B ,所以1C M //平面11AA B B …4分(2)取BC 中点Q ,连接AQ 因为ABCD 是菱形,且60ABC ,所以ABC 是正三角形,所以AQBC 即AQ AD ,由于1AA 平面ABCD…6分所以,分别以AQ ,AD ,1AA 为x 轴,y 轴,z 轴,建立空间直角坐标系,如图(000)A ,,,1(001)A ,,,1(011)D ,,,(3,0,0)Q 假设点E 存在,设点E 的坐标为(30),,,11-≤≤(30)AE,,,1(011)AD ,,…7分设平面1AD E 的法向量()n x y z ,,则100n AE n AD 即30x yyz ,可取(,3,3)n…9分平面1ADD 的法向量为(300)AQ ,,…10分所以,23||1cos,336AQ n,解得:32…11分又由于二面角1EAD D 大小为锐角,由图可知,点E 在线段QC 上,所以32,即312CE…12分20.解:(1)设动点P 的坐标为()x y ,,由题意可得2222(1)x x y,整理,得:2222xy,即2212xy为所求曲线E 的方程…4分(2)(解法一)由已知得:(0,1)Q ,(0,2)C ,1CQ,即圆C 方程为22(2)1xy由题意可得直线MQ ,NQ 的斜率存在且不为0 …5分设直线MQ 的方程为11y k x ,与22(2)1xy联立得:2211(1)20k xk x所以,12121Ak x k 同理,设直线NQ 的方程为21yk x,与22(2)1xy 联立得:2222(1)20k xk x所以22221Bk x k…7分因此2122211(1)21(1)2A QAC A QBCBBQC x S x k k Sx k k QC x …8分由于直线l过坐标原点,所以点M 与点N 关于坐标原点对称设00(,)M x y ,00(,)N x y ,所以,2000122111y y yk k x x x 又00(,)M x y 在曲线E 上,所以22012x y ,即1212k k …10分故221212222111(1)4113(4)(1)2221k k k k k kk,由于210k,所以,122…12分(解法二)由已知得:(0,1)Q ,(0,2)C ,1CQ,即圆C 方程为22(2)1xy 由题意可得直线MQ ,NQ 的斜率存在且不为…5分设直线MQ 的方程为11yk x ,则点C 到MQ 的距离为12111d k 所以212122112122111k AQCQd kk 于是,112QACSAQ d 1211k k设直线NQ 的方程为21yk x ,同理可得:QBCS2221k k所以212221(1)(1)QAC QBCS k k S k k …8分由于直线l 过坐标原点,所以点M 与点N 关于坐标原点对称设00(,)M x y ,00(,)N x y ,所以,2000122111y y yk k x x x 又00(,)M x y 在曲线E 上,所以22012x y ,即1212k k …10分故221212222111(1)4113(4)(1)2221k k k k k k k,由于210k,所以,122…12分21.解:(1)当1a 时,0)(x f 等价于021ln 2xx x ,即0ln 2x x;…1分设函数x x x g ln 2)(,则xx xx g 221)(,…2分当)20(,x 时,0)(x g ;当)2(,x时,0)(x g .所以)(x g 在)20(,上单调递减,在)2(,单调递增.故2ln 22)2(g 为)(x g 的最小值,…3分而02ln 22,故0)(x g ,即0)(x f .…4分(2)2ln )(a x x a x f ,设函数)(x h 2ln a xxa ,则)0(1)(xxax xax h ;(i )当0a 时,0)(x h ,)(x h 在)0(,上单调递增,又0)(e ah ,取b 满足10b 且2a b,则0)(b h ,故)(x h 在)0(,上有唯一一个零点1x ,且当)0(1x x ,时,0)(x h ,)(1,x x 时,0)(x h ,由于)()(x h x f ,所以1x x是)(x f 的唯一极值点;…6分(ii )当0a 时,)0(21)(2xx x f 在)0(,上单调递增,无极值点;…7分(iii )当0a 时,若)0(a x,时,0)(x h ;若)(,a x时,0)(x h .所以)(x h 在)0(a ,上单调递减,在)(,a 单调递增.故]1)[ln()(a a a a h 为)(x h 的最小值,①若1a 时,由于0)(a h ,故)(x h 只有一个零点,所以a x时0)(x f ,因此)(x f 在)0(,上单调递增,故)(x f 不存在极值;②若)01(,a时,由于01)ln(a a ,即0)(a h ,所以0)(x f ,因此)(x f 在)0(,上单调递增,故)(x f 不存在极值;③若)1(,a 时,01)ln(a a ,即0)(a h .又0)(e ah ,且a a1e,而由(1)知x x ln 2,所以x xln ,取c 满足512ca ,则0)(2acca c h 故)(x h 在)0(a ,有唯一一个零点2x ,在)(,a 有唯一一个零点3x ;且当)0(2x x,时0)(x h ,当)(32x x x ,时,0)(x h ,当)(3,x x 时,0)(x h 由于)()(x h x f ,故)(x f 在2x x处取得极小值,在3x x 处取得极大值,即)(x f 在)0(,上有两个极值点.…11分综上,)(x f 只有一个极值点时,a 的取值范围是)0(,…12分22.解:(1)由曲线1C 的参数方程2cos 3sin x y(为参数)得:2222cossin123x y ,即曲线1C 的普通方程为22123xy…1分又cos ,sinxy,…2分曲线1C 的极坐标方程为22223cos2sin6,即222cos26…3分曲线2C 的极坐标方程可化为sin cos2,故曲线2C 的直角方程为2xy…5分(2)由已知,设点M 和点N 的极坐标分别为1(,),2(,)4,其中2…6分则22126cos 2OM,2222211cossin ()2ON…7分于是2222211cos27cos2cos66OMON …8分由2,得1cos 0故2211OMON的取值范围是13()32,…10分23.解:(1)因为0a,所以33()(0)225g a f a aaa≥,…1分即3,2a ≤或1a …3分故不等式()5g a ≥的解集为3,102a a a≤或≤…4分(2)由已知得:332,2333()222,223332,2xa x a a f x x a xx a a x aa axax aa …6分所以()f x 在32a,-上递减,在3,2a 递增…7分即min333()()22(2)()23222f x f aa a aa ≥所以()23f x ≥…10分。