半导体主要有以下几个方面的重要特性
半导体的特性

半导体的特性
半导体主要有以下特性。
1、半导体:导电能力随着掺入杂质、输入电压(电流)、温度和光照条件的不同而发生很大变化,人们把这一类物质称为半导体。
2、载流子:半导体中存在的两种携带电荷参与导电的“粒子”。
自由电子:带负电荷。
空穴:带正电荷。
特性:在外电场的作用下,两种载流子都可以做定向移动,形成电流。
3、电子技术的核心是半导体半导体之所以得到广泛的应用,是因为人们发现半导体有一下的三个特性。
(1)掺杂性:在纯净的半导体中掺入及其微量的杂质元素,则它的导电能力将大大增强。
(2)热敏性:温度升高,将使半导体的导电能力打发增强。
(3)光敏性:对半导体施加光线照射时,光照越强,导电能力越强。
3.P型半导体和N型半导体(重点)N型半导体:主要靠电子导电的半导体。
即:电子是多数载流子,空穴是少数载流子。
P型半导体:主要靠空穴导电的半导体。
即:空穴是多数载流子,电子是少数载流子。
PN结:经过特殊的工艺加工,将P型半导体和N型半导体紧密地结合在一起,则在两种半导体的交界面就会出现一
个特殊的接触面,称为PN 结。
半导体的特性

一、本征半导体的导电特性1.导体、绝缘体和半导体自然界中的物质从其电结构和导电性能上区分,可分为导体、绝缘体和半导体。
如金、银、铜、铝、铁等金属材料很容易导电,我们称它们为导休。
导体的电阻率小于10-6cm。
如陶瓷、云母、塑料、橡胶等物质很难导电,我们称它们为绝缘体。
绝缘体的电阻率大于108cm。
有一类物质,如硅、锗、硒、硼及其一部分化合物等,它们的导电能力介于导体和绝缘体之间,故称之为半导体。
半导体的电阻率在10-6~108之间。
众所周知,导体具有良好的导电性,绝缘体具有良好的绝缘性,它们都是很好的电工材料。
我们用导体制成电线,用绝缘体来防止电的浪费和保障安全。
而半导体却在很长时间被人们所不齿,因为它的导电性能不好,绝缘性能又差。
然而它的不公正待遇随着人们对它所产生的愈来愈浓厚的兴趣消失了,它终于登上了大雅之堂!这是为什么呢?这是因为它具有一些可以被人们所利用的奇妙特性。
半导体在不同情况下,导电能力会有很大差别,有时犹如导体。
在什么情况下呢?①掺杂:在纯净的半导体中适当地掺入极微量(百万分之一)的杂质,就可以引起其导电能力成百万倍的增加。
②温度:当温度稍有变化,半导体的导电能力就会有显著变化。
如温度稍有增高,半导体的电阻率就会显著减小。
同理光照也会影响半导体的导电能力。
2.本征半导体的原子结构本征半导体——非常纯净且原子排列整齐的半导体。
(纯度约为99.999999999%。
即杂质含量为10的9次方分之一。
)硅原子一14个带负电的电子围绕带正电的原子核运动,并按一定的规律分布在三层电子轨道上。
锗原子一32个带负电的电子围绕带正电的原子核运动,并按一定的规律分布在四层电子轨道上。
由于原子核带正电与电子电量相等,正常情况下原子呈中性。
由于内层电子受核的束缚较大,很少有离开运动轨道的可能。
所以它们和原子核一起组成惯性核。
外层电子受原子核的束缚较小。
叫做价电子。
硅、锗都有四个价电子,故都是四价元素,其简化图见电子课件。
半导体主要有以下几个方面的重要特性

半导体主要有以下几个方面的重要特性:
1.热敏特性
半导体的电阻率随温度变化会发生明显地改变。
例如纯锗,湿度每升高10度,它的电阻率就要减小到原来的1/2。
温度的细微变化,能从半导体电阻率的明显变化上反映出来。
利用半导体的热敏特性,可以制作感温元件——热敏电阻,用于温度测量和控制系统中。
值得注意的是,各种半导体器件都因存在着热敏特性,在环境温度变化时影响其工作的稳定性.
2.光敏特性
半导体的电阻率对光的变化十分敏感。
有光照时、电阻率很小;无光照时,电阻率很大。
例如,常用的硫化镉光敏电阻,在没有光照时,电阻高达几十兆欧姆,受到光照时.电阻一下子降到几十千欧姆,电阻值改变了上千倍。
利用半导体的光敏特性,制作出多种类型的光电器件,如光电二极管、光电三极管及硅光电池等.广泛应用在自动控制和无线电技术中。
3.掺杂特性
在纯净的半导体中,掺人极微量的杂质元素,就会使它的电阻率发生极大的变化。
例如.在纯硅中掺人.百万分之—的硼元素,其电阻率就会从214000Ω·cm一下于减小到0。
4Ω·cm.也就是硅的导电能为提高了50多万倍。
人们正是通过掺入某些特定的杂质元素,人为地精确地控制半导体的导电能力,制造成不同类型的半导体器件.可以毫不夸张地说,几乎所有的半导体器件,都是用掺有特定杂质的半导体材料制成的.。
半导体基本知识总结

半导体基本知识总结半导体是一种介于导体(如金属)和绝缘体(如橡胶)之间的材料。
它的电导率介于导体和绝缘体之间,可以在特定条件下导电或导热。
半导体材料通常由硅(Si)或锗(Ge)等元素组成。
半导体具有以下几个重要特性:1. 带隙: 半导体具有能带隙,在原子之间存在禁止带,使得半导体在低温状态下几乎没有自由电子或空穴存在。
当半导体受到外部能量或掺杂杂质的影响时,带隙可以被克服,进而产生导电或导热行为。
2. 导电性: 半导体的电导性取决于其材料内部的掺杂情况。
掺杂是指将杂质元素(如硼或磷)引入半导体材料中,以改变其电子特性。
N型半导体中的杂质元素会提供额外的自由电子,增加导电性;P型半导体中的杂质元素会提供额外的空穴,也可以增加导电性。
3. PN结: PN结是由P型半导体和N型半导体通过特定方式连接而成的结构。
PN结具有整流特性,只允许电流在特定方向上通过。
当正向偏置(即正端连接正极,负端连接负极)时,电流可以自由通过;而反向偏置时,几乎没有电流通过。
4. 半导体器件: 多种半导体器件被广泛使用,如二极管、晶体管和集成电路。
二极管是一种具有正向和反向导电特性的器件,可用于整流和电压稳定等应用。
晶体管是一种具有放大和开关功能的半导体器件。
集成电路是把多个晶体管、电阻和电容等器件集成在一起,成为一个小型电路单元,用于各种电子设备。
半导体的发现和发展极大地推动了现代电子技术的进步。
它不仅广泛应用于计算机、通信设备和电子产品,还在光电子学、太阳能电池和传感器等领域发挥着重要作用。
随着半导体技术的不断发展,人们对于半导体材料与器件的研究仍在进行,为电子技术的未来发展提供了无限可能性。
半导体的基本特性

半导体的基本特性自然界的物质依照导电程度的难易可大略分为三大类导体、半导体和绝缘体顾名思义半导体的导电性介於容易导电的金属导体和不易导电的绝缘体之间。
半导体的种类很多有属於单一元素的半导体如矽Si和锗Ge也有由两种以上元素结合而成的化合物半导体如砷化镓GaAs和砷磷化镓铟GaxIn1-xAsyP1-y等。
在室温条件下热能可将半导体物质内一小部分的原子与原子间的价键打断而释放出自由电子并同时产生一电洞。
因为电子和电洞是可以自由活动的电荷载子前者带负电后者带正电因此半导体具有一定程度的导电性。
电子在半导体内的能阶状况可用量子力学的方法加以分析见图一。
在高能量的导电带内Ec以上电子可以自由活动自由电子的能阶就是位於这一导电带内。
最低能区Ev以下称为「价带」被价键束缚而无法自由活动的价电子能阶就是位於这一价带内。
导电带和价带之间是一没有能阶存在的「禁止能带」或称能隙Eg在没有杂质介入的情况下电子是不能存在能隙里的。
在绝对温度的零度时一切热能活动完全停止原子间的价键完整无损所有电子都被价键牢牢绑住无法自由活动这时所有电子的能量都位於最低能区的价带价带完全被价电子占满而导电带则完全空著。
价电子欲脱离价键的束缚而成为自由电子必须克服能隙Eg提升自己的能阶进入导电带。
热能是提供这一能量的自然能源之一。
以矽半导体为例能隙Eg为1.1电子伏特在室温300 K下热能打断价键而产生电子和电洞的速率与电子和电洞的再结合速率达到帄衡时电子的密度约为1.5×1010cm-3。
因为矽的原子密度约为5×1022cm-3可知因室温热能而被打断的价键数在比例上是微乎其微的。
在电子被释放出来的同时必然留下一带正电荷的电洞在价带上见图一a。
温度越高被热能释放出来的电子和电洞的数量也越多。
因此纯半导体又称本质半导体的导电性遂因温度的升高而增大这与金属导体的电阻随温度的升高而变大的现象正好相反。
我们再以矽半导体为例来探讨杂质的掺入对於半导体导电性的影响。
1.1半导体基础知识

P、N两区杂质浓度相等——对称结 P、N两区杂质浓度不相等——不对称结 高掺杂浓度区域 用N+表示
离子密 度小
P
_ _ _ _ _ _
空间电荷 层较厚
+ + + + + +
N+
离子密 度大
空间电荷 层较薄
导电。
半导体--导电性能介于导体和绝缘体之间的物质。
大多数半导体器件所用的主要材料是硅(Si)和锗(Ge)。
半导体的几个重要特性: (1) 热敏特性
(2)光敏特性 (3)掺杂特性 半导体导电性能是由其原子结构决定的。
最常用的半导体材料
硅
锗
硅(Si)、锗(Ge),均为四价元素,它们原子的最外层电子
受原子核的束缚力介于导体与绝缘体之间。
二、 PN 结的单向导电性
PN结正向偏置—— 当外加直流电压使PN结P型半导体的一
端的电位高于N型半导体一端的电位时,称PN结正向偏置, 简称正偏。 PN结反向偏置—— 当外加直流电压使PN结N型半导体的一 端的电位高于P型半导体一端的电位时,称PN结反向偏置,
简称反偏。 正向偏置——PN结外加正向电压(P+,N-)
杂质半导体有两种 N (Negative)型半导体 P (Positive)型半导体
一、 N 型半导体
掺入五价杂质元素(如磷、砷)的杂质半导体
掺入少量五价杂质元素磷 +4 +4 +4
P
+4
+4
+4
+4
+4
+4
什么叫半导体材料的特性

什么叫半导体材料的特性?
半导体材料是一类具有特殊电学特性的材料,在现代电子学领域发挥着重要的作用。
半导体材料的特性主要表现在以下几个方面:
1. 晶体结构
半导体材料通常具有晶体结构,其中原子排列有序。
这种结构使得电子在材料中以禁带形式出现,能够在受激励时跃迁到导带中形成载流子。
2. 禁带宽度
半导体材料中的禁带宽度是指能带结构中导带和价带之间的能隙大小。
禁带宽度的大小直接影响了半导体材料的导电性能,如禁带宽度较小的半导体容易被激发产生导电行为。
3. 拓扑结构
半导体材料的电子结构和晶体结构决定了其拓扑性质,如在一维拓扑材料中,存在着边界态等特殊性质。
这些拓扑性质决定了半导体材料的一些特殊电学特性。
4. 光学性质
半导体材料通常具有良好的光学性质,如能够实现光电二极管、激光器等光电器件。
这些光学性质使得半导体材料在光电子领域有着广泛的应用。
5. 热电性质
部分半导体材料具有较好的热电性质,能够在温差作用下产生电能。
这种热电性质使得半导体材料在热电传感器、热电发电等领域具有应用前景。
总的来说,半导体材料具有晶体结构、禁带宽度、拓扑结构、光学性质和热电性质等多种特性,这些特性使得半导体材料在电子学、光电子学、热电领域有着广泛的应用和研究价值。
半导体材料有哪些重要特性

半导体材料的重要特性
半导体材料是一类在电学特性上介于导体和绝缘体之间的材料,具有许多独特的特性,使其在电子器件和光电器件中得到广泛应用。
下面将介绍几种半导体材料的重要特性。
1. 禁带宽度
禁带宽度是半导体材料的一个重要特性,它代表了在材料中带电子和空穴运动的能量范围。
禁带宽度的大小直接影响着半导体材料的导电性能和光电性能。
2. 基本电荷载流子
半导体材料中的基本电荷载流子包括电子和空穴。
电子带负电荷,空穴带正电荷,它们在半导体材料中进行载流子输运,是实现半导体器件功能的基础。
3. 能带结构
半导体材料的能带结构是指在半导体中,导带和价带之间的能级分布。
通过控制能带结构,可以实现半导体材料的导电性质调控。
4. 激子效应
激子是电子和空穴之间形成的一对电子振动态,具有不同于单独电子和空穴的性质。
激子效应在半导体光电器件中发挥重要作用。
5. 能带偏移
能带偏移是指在不同半导体材料接触界面或异质结构中,由于晶格不匹配等原因导致的带隙位置的偏移现象,影响半导体器件的性能。
结语
半导体材料具有多种重要特性,包括禁带宽度、基本电荷载流子、能带结构、激子效应和能带偏移等。
这些特性使得半导体材料在电子器件和光电器件中具有广泛的应用前景。
要深入了解半导体材料的性质和应用,需要进一步研究和实践。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半导体主要有以下几个方面的重要特性:
1.热敏特性
半导体的电阻率随温度变化会发生明显地改变。
例如纯锗,湿度每升高10度,它的电阻率就要减小到原来的1/2。
温度的细微变化,能从半导体电阻率的明显变化上反映出来。
利用半导体的热敏特性,可以制作感温元件——热敏电阻,用于温度测量和控制系统中。
值得注意的是,各种半导体器件都因存在着热敏特性,在环境温度变化时影响其工作的稳定性。
2.光敏特性
半导体的电阻率对光的变化十分敏感。
有光照时、电阻率很小;无光照时,电阻率很大。
例如,常用的硫化镉光敏电阻,在没有光照时,电阻高达几十兆欧姆,受到光照时.电阻一下子降到几十千欧姆,电阻值改变了上千倍。
利用半导体的光敏特性,制作出多种类型的光电器件,如光电二极管、光电三极管及硅光电池等.广泛应用在自动控制和无线电技术中。
3.掺杂特性
在纯净的半导体中,掺人极微量的杂质元素,就会使它的电阻率发生极大的变化。
例如.在纯硅中掺人.百万分之—的硼元素,其电阻率就会从214000Ω·cm一下于减小到0.4Ω·cm.也就是硅的导电能为提高了50多万倍。
人们正是通过掺入某些特定的杂质元素,人为地精确地控制半导体的导电能力,制造成不同类型的半导体器件。
可以毫不夸张地说,几乎所有的半导体器件,都是用掺有特定杂质的半导体材料制成的。