高中数学必修一221对数与对数运算精品PPT课件

合集下载

人教版高中数学必修一对数与对数运算对数及对数的性质课件PPT

人教版高中数学必修一对数与对数运算对数及对数的性质课件PPT
x = 5 x=-2 x =
讲授新课
1.对数的定义: 一般地,如果ax=N ( a > 0 , 且a ≠ 1 )
那么数x叫做以a为底N的对数,记作: 其中a叫做对数的底数, N叫做真数.
注意:限制条件是a > 0 , 且a ≠ 1
填写学案,题1
讲授新课
练习1:将下列指数式写成对数式:
① 52 = 25
(2)log
1 a
=
0
即:1的.对数是0
(3)log
a a
=
1
即:底数的对数是1
(4)对数恒等式:aloga N = N
(5)对数恒等式:loga an = n
巩固练习
1、指数式b2 = a(b 0,且b 1)相应的对数式是(D)
A log2a = b B log2 b = a
C logab=2
解:(1)64
-
2 3
=
(43
)
-
2 3
= 4-2 =
1
(4) ln e2 = -x
16
1
1
1
e-x = e2
(2)x6 = 8所以x = 86 = (23 )6 = 22 = 2 - x = 2
(3)10 x = 100所以x = 2
x = -2
讲授新课 4.对数的性质 探究活动 1、试求下列各式的值:

简记作
。如 loge 9 简记为 ln 9.
填写学案,题4
例题分析
例1.将下列指数式写成对数式:
(1) 54 = 625
(2)
e-6
=
1
b
(3) 10 a = 27 (4) ( 1 )m = 5.73

高中数学课件:2.2.1对数与对数运算

高中数学课件:2.2.1对数与对数运算
例9.若a,b是方程2(lgx)2 -4lgx+1=0的两个实根, 求lg(ab)(logab+logba)的值.
专题三 坚持科教 兴国 推进自主创

热点一 科教兴国 时事❶ 第三届深圳国际智能装备产业博览会
第三届深圳国际智能装备产业博览会暨第六届深圳国 际电子装备产业博览会于2017年7月27日至29日在深圳会 展中心举办。本届博览会以“智能改变未来,产业促进发 展”为主题,定位于创新型、专业性和国际化,展会将突
1.我国科技取得成就的原因有哪些? ①我国经济实力不断增强,为科技创新提供了坚实的 物质基础。 ②我国实施科教兴国战略和人才强国战略,为科技创 新提供了强有力的政策支持。 ③我国大力弘扬创新精神,尊重劳动、尊重知识、尊 重人才、尊重创造。
④社会主义制度具有集中力量办大事的优越性。 ⑤广大科研工作者发扬了艰苦奋斗、开拓创新、团结 协作的精神等。
2.我国为什么要实施创新驱动发展战略,坚持走中国特 色自主创新道路? ①我国正处在社会主义初级阶段,教育科学技术水平比 较落后,科技水平和民族创新能力不足。 ②创新是一个民族进步的灵魂,是一个国家兴旺发达的 不竭动力。 ③我国是一个发展中国家,要想真正地缩小与发达国家 之间的差距,关键靠创新。
④只有把科技进步的基点放在增强自主创新能力和持续创 新能力上,才能实现我国科学技术的跨越式发展,真正掌 握发展的主动权。 ⑤没有创新,就要受制于人,没有创新,就不可能赶超发 达国家。 ⑥科学技术是第一生产力,科技创新能力已越来越成为综 合国力竞争的决定性因素。 ⑦增强自主创新能力,有利于全面建成小康社会、实现中 华民族的伟大复兴。
出智能自动化设备、机器人、3D打印、可穿戴产业的展览 主题,瞄准打造全球智能装备领域第一展会平台的目标, 展示深圳智能装备产业的发展成就。

对数与对数运算第一课时(公开课精品课件).

对数与对数运算第一课时(公开课精品课件).

(1) lg36
1.5562
81 (2)lg 32
0.4034
例6
解法一:
7 计算 :lg14 2 lg lg 7 lg18 3
解法二:
7 lg 14 2 lg lg 7 lg 18 3 7 lg(2 7) 2 lg 3 lg 7 lg(2 32 )
1.计算下列各式的值.
1 32 4 1 —— (1). lg lg 8 lg 245 2 2 49 3 2 2 2 (2).lg 5 lg 8 lg 5. lg 20 lg 2 3 3 lg 2 lg 3 lg 10 1 —— (3). 2 lg1.8
1.对数的概念、表示.
• 3、数学思想小结 • 从特殊到一般——归纳法;
普通高中课程标准实验教科书数学必修一 2.2.1 对数
• 4、重点难点小结;
重点 :(1)对数的概念; (2)对数式与指数式的相 互转化。 难点 :对数概念的理解。
普通高中课程标准实验教科书数学必修一 2.2.1 对数
(一)必做 1、复习本节课的内容(明天提问) ; 2、课本 P74 习题 2.2 A 组 第 1、 2 题 (写在作业本上明天上交) ; 3、 《创新方案》 53 页变式之作 3, 《创新方案》 54 页课堂强化。
7 lg 14 2 lg lg 7 lg 18 3 7 2 lg14 lg( ) lg 7 lg18 3 14 7 lg 7 2 ( ) 18 3 lg1 0
lg 2 lg 7 2(lg 7 lg 3) lg 7 (lg 2 2 lg 3)
loga 1 0 “1”的对数等于零,即
等价
a 1
0

人教A版数学必修一2.2.1对数与对数运算1.ppt

人教A版数学必修一2.2.1对数与对数运算1.ppt

=-2,所以x=-2.
(4)由x= (
2 3
)2
可94得,所以=3lo2g,23即94 2-x=25,解得x=-5.
log1 32.
(1 )x 2
2
【补偿训练】求下列各式中的x.
(1)x=log48.(2)logx8=6.
(3)log64x=-
.(4)-lne3=x.
2
【解析】(1)由3 x=log48可得4x=8,即22x=23,解得x= .
2
(2)因为4x=5×3x,所以 =5,即( )x=5,
解得x=log 5.
4x
4
3x
3
4 3
【方法技巧】利用指数与对数的互化求变量值的策略 (1)已知底数与指数,用指数式求幂. (2)已知指数与幂,用指数式求底数. (3)已知底数与幂,利用对数式表示指数.
【变式训练】求下列各式中的x的值.
(1)lg0.01=x.
【解析】(1)由 6log65=x13 6得,5x+1=36,解得x=7.
x 1 2x 3, (2)由log(x+1)(2x-3)=1可得 2x 3 0解, 得x=4.
x 1 0, (3)由log3(log4(log5x))=0可得x l1og14. (log5x)=1,故log5x=4,
(2)log7(x+2)=2.
(3)
9
(4)xlo=g 2
3
4
x.
【解题指log南1 3】2.利用指数式与对数式的关系,以及幂的有关运算求解.
2
【解析】(1)因为lg0.01=x,所以10x=0.01=10-2,
所以x=-2.
(2)因为log7(x+2)=2,所以x+2=72,解得x=47.

数学:2.2.1《对数与对数运算》课件(新人教a版必修1)

数学:2.2.1《对数与对数运算》课件(新人教a版必修1)

( 3).10
log 5 1125
例2 求下列各式中x的值:
2 1log 64 x ; 2log x 8 6; 3lg100 x; 4 ln e 2 x. 3
练习5.填空
1.设 loga 2 m, oga 3 n, 则a
2 m 3n
108
1 log3 2
n
例6、计算下列各式
(1) log2 6 log2 3 1 (2) log5 3 log5 3 2 log5 2 log5 3 (3) 1 1 log5 10 log5 0.36 log5 8 2 3
例7 用 (1)
loga x, loga y, loga z 表示下列各式:
4
( 2).2 64
6
log 2 64 6 1 1 1 1 3 log 27 ( 3).27 3 3 3 x (4).1.08 2 log 1.08 2 x
练习2.把下列对数式写成指数式:
1 3 1 (1). log2 3 2 8 8 3 ( 2). log5 125 3 5 125 3 ( 3). lg 0.001 3 10 0.001 (4). ln10 2.303 e 2.303 10
练习3.求下列各式的值:
(1) l og2 4; ( 2) l og3 27; ( 3) l og5 125; ( 4) l g1000 ; ( 5) l g 0.001.
2 3 3 3 3
练习4.计算下列各式的值:
(1).2
log 2 4 log 3 27 lg10 5
( 2).3 (4).5

对数及其运算(1,2课时)
1.对数的定义.

人教版高中数学必修1:2.2.1《对数》课件【精品课件】

人教版高中数学必修1:2.2.1《对数》课件【精品课件】

20
例2
求下列各式的值:
(1) log2(47×25);
(2) lg5
31log3 2
100

(3) log318 -log32 ;
(4)
3
1 log 3 2
.
21
例3 计算:
2 log 5 2 log 5 3 1 1 log 5 10 log 5 0.36 log 5 8 2 3
对数与对数运算
第二课时
对数的运算
13
问题提出
1.对数源于指数,对数与指数是怎样互 化的?
2.指数与对数都是一种运算,而且它们 互为逆运算,指数运算有一系列性质, 那么对数运算有那些性质呢?
14
15
知识探究(一):积与商的对数
思考1:求下列三个对数的值:log232, log24 , log28.你能发现这三个对数之 间有哪些内在联系? 思考2:将log232=log24十log28推广到一 般情形有什么结论?
48
思考3:点P(m,n)与点Q(n,m)有怎样的 位置关系?由此说明对数函数 y log a x x 的图象与指数函数 y a 的图象有怎样 的位置关系? y Q P o x
49
思考4:一般地,对数函数的图象可分为 几类?其大致形状如何? y 0 <a <1 y a >1
1 0 1 x 1 0 1
(5) lg0.01=-2;
化为指数式:
3
(6) ln10=2.303.
10
2
例2.求下列各式中x的值:
2 (1)log64x= ; (2) logx8=6 ; 3
(3)lg100=x;
(4)-lne2=x .

高一数学对数与对数运算PPT课件

高一数学对数与对数运算PPT课件
§22..22..11对对数数与与对对数数运运算算
广州市第十七中学 肖洁
第一课时
对数的创始人是苏格兰数学家纳皮尔 (Napier,1550年~1617年)。他发明了供天 文计算作参考的对数,并于1614年在爱丁堡 出版了《奇妙的对数定律说明书》,公布了 他的发明。恩格斯把对数的发明与解析几何 的创始,微积分的建立并称为17世纪数学的 三大成就。
引入:1999年我国人口约13亿,如果今后每年增 长率控制在1% ,那么哪一年的人口数要达到18 亿、20亿、30亿……?
设:x年后我国人口达到18亿,
根据题意得:13(1 + 1%)x = 18
即: 18 = 1.01x 13
如何来计算这里的x?
这是已知底数和幂的值,求指数的问题。即指数式ab=N 中,
已知a 和N求b的问题。(这里 a>0且a≠1)
二、新课
1.对数的定义: 一般地,如果a ( a > 0 , a ≠ 1 )的x次幂
等于N, 就是 ax = N
那么数b叫做以a为底N的对数,
记作: logaN = x
其中a叫做对数的底数, N叫做真数。
探究——对数式与指数式的互化 (1)对数与指数中的元素之间的关系 (2)借助指数性质探究对数性质 思考:① 为什么对数的定义中要求底数
① loga(MN=)logaM+logaN M
② loga N=logaM logaN ③ logaMn =nloagM(∈ n R)
判断下列式子是否正确
(1)log2[(-3)(-5)]= log2(-3)+ log2(-5) (2)lg[(-10)2]= 2lg(-10)
注意: 适用条件:真数〉0;底数〉0且≠1,

高中数学对数及对数的运算优秀课件

高中数学对数及对数的运算优秀课件

添加幻灯片小标题
[尝试解答] (1)∵3-2=19,∴log319=-2.
(2)∵14-2=16,∴log
1 4
16=-2.
(3)∵log
1 3
27=-3,∴13-3=27.
(4)∵log 64=-6,∴( x)-6=64. x
2
3.指数与对数的互化 添加幻灯片小标题
当 a>0,a≠1 时,ax=N⇔x=
. 如:
∵23=8,∴log28= ;∵25=32,∴log232= .
4.对数的性质
(1)loga1= ;
(2)logaa= ;
(3)
和 没有对数.
5.对数恒等式
alogaN=N(a>0,且 a≠1,N>0).
[典例精析]
添加幻灯片小标题
求下列各式中 x 的值.
(1)logx27=32; (3)x=log2719;
2.2对数函数
对数与对数的运算
01 对数的概念
03 对数的运算性质
CATALOG
02 对数的性质及应用 04 换底公式
1
添加幻灯片小标题
ax b 已知a, x,求b 幂运算 已知b, x,求a 开方运算 已知a,b,求x ??运算
添加幻灯片小标题
1.定义
一般的,如果 aa 0, a 1
3
添加幻灯片小标题
6 .
[典例精析]
添加幻灯片小标题
求下列各式的值:
(1)log2(47×25);
5
(2)lg
100;
(3)lg 14-2 lg 73+lg 7-lg 18;
(4)lg 52+23 lg 8+lg 5·lg 20+(lg 2)2.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
You Know, The More Powerful You Will Be
谢谢你的到来
学习并没有结束,希望大家继续努力
Learning Is Not Over. I Hope You Will Continue To Work Hard
演讲人:XXXXXX 时 间:XX年XX月XX日
(1) log3(x2 1)
(2) log(x1)(x 2) .
例题精讲
考点三 求值:
例 3. 求下列各式中 x 的值:
(1)
log64
x
2 3

(3) lg100 x
(2) logx 8 6 (4) ln e2 x .
精彩展示
变式 1.
1).求下列各式的值:
(1) log5 25

(2)
写成
讨论:
小组合作
在指数式
和对数式
中, ,x ,N各自的地位有什么不同?
,N取值范围是什么?
探究:
指数式
小组合作
Nx
指数的底数 幂 幂指数
对数式 对数的底数 真数 对数
真数:N 0
知识探究
指数式与对数式互化:
真数:N 0 负数和零没有对数
知识探究
对数运算的常用结论
(1) loga 1 _____ ax 1 (2) loga a _____ ax a (3) aloga N _____ ax N
(2) log(4x)(1 4x2) .
当堂检测
1.
计算:(1) log 8 _____ 2
;(2)
2log25 log3 1 ____.
2
2. 对数式 log(a2)(5 a) b 中,实数 a 的取值范围是______.
3. 求下列各式中 x 的值:
(1) log2 x 3 ; (2) logx 9 2 ; (3) logx2 (2 x) 1;
哪一年的人口数可达到18亿、20亿、30亿……
知识探究
对数的定义:
一般地,如果 a(a 0, 且a 1) 的 x次幂
等于N, 就是
,那么数 x 叫做以a为底
N的对数,记作
,a叫做对数的底
数,N 叫做真数。
知识探究
两种特殊的对数:
1.常用对数:以10作底
写成
2.自然对数:以无理数e = 2.71828…作底
§2.2.1对数与对数运算
目标解读
学习目标:
1.理解对数的概念,能说明对数与指数的 关系.
2.掌握指数式与对数式的互化.
思考:
实例引入
课本第57页例8:
经过 x年,人口数为 y 131.01x 我们可以算出任意一个年头 x的人口
总数. 反之,如果问“哪一年的人口数可 达到18亿、20亿、30亿……”,该如何 解决?
例题精讲
考点一 指数式与对数式互化:
例 1.将下列指数式化为对数式,对数式化为指数式.
(1) 54 625
(2) 26 1
64
(3)
1 3
m
5.73
(4) log1 16 4 (5) lg0.01 2 (6) ln10 2.303
2
例题精讲
考点二 求取值范围:
例 2.求使下列各式中有意义的 x 的取值范围.
课堂小结
1°对数的定义 2°对数式与指数式会互化
3 °对数运算的常用结论
布置作业
1、整理5号学案; 2、做5号训练案.
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
log2
1 16

(3) lg 1000;
(4) lg 0.001
2).求下列各式中x 的值:
(1) log 2 ( log 5 x) =0 ;(2) log3 (lg x) 1; (3) lnlog2(lg x) 0
变式 2. 下列各式中的 x 的范围.
(1) log(12x) (x 2) ;
相关文档
最新文档