2020年中考数学 实际应用题----有关增长率及购物问题 复习练习

合集下载

2020中考数学 应用题专项训练(含答案)

2020中考数学 应用题专项训练(含答案)

2020中考数学应用题专项训练(含答案)例题1.(1)某超市销售某种玩具,进货价为20元.根据市场调查:在一段时间内,销售单价是30元时,销售量是400件,而销售单价每上涨1元,就会少售出10件玩具,超市要完成不少于300件的销售任务,又要获得最大利润,则销售单价应定为_______元,最大利润为______元.(2)根据统计经验,若某工厂以x千克/小时的效率生产某种产品(由于生产条件限制,110x≤≤),则每小时可获得的利润是310051xx⎛⎫+-⎪⎝⎭元.如果接到一笔900千克的订单,要使得此笔订单获得的利润最大,则应该以______________千克/小时的效率生产.(3)某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(0a>).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,a的取值范围应为______________.【答案】(1)40,6000;(2)6;(3)06a<<.例题2. 为推进节能减排,发展低碳经济,深化“宜居成都”的建设,我市某“用电大户”用480万元购得“变频调速技术”后,进一步投入资金1520万元购买配套设备,以提高用电效率达到节约用电的目的.已知该“用电大户”生产的产品“草甘磷”每件成本费为40元.经过市场调研发现:该产品的销售单价,需定在100元到300元之间较为合理.当销售单价定为100元时,年销售量为20万件;当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少0.8万件;当销售单价超过200元,但不超过300元时,每件产品的销售价格在200元的基础上每增加10元,年销售量将减少1万件.设销售单价为x元,年销售量为y万件,年获利为w万元.(年获利=年销售额-生产成本-节电投资)(1)直接写出y与x间的函数关系式;(2)求第一年的年获利w与x函数关系式,并说明投资的第一年,该“用电大户”是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?(3)若该“用电大户”把“草甘磷”的销售单价定在超过100元,但不超过200元的范围内,并希望到第二年底,除去第一年的最大盈利(或最小亏损)后,两年的总盈利为1842万元,请你确定此时销售单价.在此情况下,要使产品销售量最大,销售单价应定为多少元?【答案】(1)当100200x <≤,100200.810x y -=-⨯,∴22825y x =-+, 当200300x <≤,把200x =代入22825y x =-+,得:12y =,∴20012110x y -=-⨯,13210y x =-+;(2)当100200x <≤时,(40)(1520480)w x y =--+2(40)28200025x x ⎛⎫=--+- ⎪⎝⎭221563120255x x =-+-22(195)7825x =---当195x =,=78w -最大当200300x <≤时,(40)(1520480)w x y =--+1(40)32200010x x ⎛⎫=--+- ⎪⎝⎭2136328010x x =-+-21(180)4010x =---, ∵2025-<,∴当在200300x <≤时,y 随x 的增大而减小,∴80w <-,∴是亏损的,最少亏损为78万元. (3)依题意可知,当100200x <≤时,第二年w 与x 关系为2(40)287825w x x ⎛⎫=--+- ⎪⎝⎭当总利润刚好为1842万元时,依题意可得2(40)2878184225x x ⎛⎫--+-= ⎪⎝⎭整理,得2390380000x x -+=,解得,1190x =,2200x =∴要使两年的总盈利为1842万元,销售单价可定为190元或200元.∵对22825y x =-+,y 随x 增大而减小∴使销售量最大的销售单价应定为190元.例题3. 九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x (190x ≤≤)天的售已知该商品的进价为每件30元,设销售该商品的每天利润为y 元.(1)求出y 与x 的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果. 【答案】(1)当150x ≤<时,2(2002)(4030)21802000y x x x x =-+-=-++, 当5090x ≤≤时,(2002)(9030)12012000y x x =--=-+,综上所述:221802000(150)12012000(5090)x x x y x x ⎧-++≤<⎨-+≤≤⎩;(2)当150x ≤<时,二次函数开口向下,二次函数对称轴为45x =,当45x =时,22451804520006050y =-⨯+⨯+=最大, 当5090x ≤≤时,y 随x 的增大而减小, 当50x =时,6000y =最大,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元; (3)当150x ≤<时,2218020004800y x x =-++≥,解得2070x ≤≤, 因此利润不低于4800元的天数是2050x ≤<,共30天; 当5090x ≤≤时,120120004800y x =-+≥,解得60x ≤, 因此利润不低于4800元的天数是5060x ≤≤,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元.例题4. 某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y (件)与销售价x (元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务). (1)求日销售量y (件)与销售价x (元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数; (3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元? 【答案】 (1)当4058x ≤≤时,设y 与x 的函数解析式为11y k x b =+,由图象可得 111140605824k b k b +=⎧⎨+=⎩, 解得112140k b =-⎧⎨=⎩.)件∴2140y x =-+.当5871x <≤时,设y 与x 的函数解析式为22y k x b =+,由图象得 222258247111k b k b +=⎧⎨+=⎩, 解得22182k b =-⎧⎨=⎩,∴82y x =-+,综上所述:2140(4058)82(5871)x x y x x -+≤≤⎧=⎨-+<≤⎩;(2)设人数为a ,当48x =时,24814044y =-⨯+=, ∴(4840)4410682a -⨯=+,解得3a =;(3)设需要b 天,该店还清所有债务, 则:[(40)822106]68400b x y -⋅-⨯-≥,∴68400(40)822106b x y ≥-⋅-⨯-,当4058x ≤≤时,∴26840068400(40)(2140)27022205870b x x x x ≥=--+--+-, 220552(2)x =-=⨯-时,222205870x x -+-的最大值为180,∴68400180b ≥,即380b ≥;当5871x <≤时,26840068400(40)(82)2701223550b x x x x ≥=--+--+-, 当122611(1)x =-=⨯-时,21223550x x -+-的最大值为171,∴68400171b ≥,即400b ≥.综合两种情形得380b ≥,即该店最早需要380天能还清所有债务,此时每件服装的价格应定为55元.例题5. 某服装经销商甲库存有进价每套400元的A 品牌服装1200套,正常销售时每套600元,每月可卖出100套,一年刚好卖完,现市场上流行B 品牌服装,此品牌服装进价每套200元,售出每套500元,每月可卖出120套(两种服装的市场行情相互不受影响),目前有一可进B 品牌服装的机会,若这一机会错过,估计一年内进不到这种服装,可是经销商手头无流动资金可用,只有折价转让A 品牌服装,经与销售商乙协商,达成协议,方案一:不转让A 品牌服装,也不经销B 品牌服装; 方案二:全部转让A 品牌服装,用转让得来的资金一次性购入B 品牌服装,经销B 品牌服装; 方案三:为谋求更高利润,部分转让A 品牌服装,用转让来的资金一次性购入B 品牌服装后,经销B 品牌服装,同时也经销A 品牌服装.(1)如经锁商甲选择方案一,则他在一年内能获得多少利润? (2)如经销商甲选择方案二,则他在一年内能获得多少利润?(3)经锁商甲选择哪种方案可以使自己在一年内获得最大利润?并求出此时他转让经销商乙的A 品牌服装的数量是多少?此时他在这一年内共得利润多少元? 【答案】(1)方案一得1200(600200)240000⨯-=(元);(2)方案二得12002401200(240400)(500200)240000200⨯⨯-+⨯-=(元); (3)设转让数量为x 件,转让价格为y ,有表格关系得:136010y x =-+,则总利润(400)(500200)(1200)(600400)200xyz x y x =-+⨯-+-⨯-2211300240000(600)33000044x x x =-++=--+则转让600件时,利润最大为330000元.例题6. 某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A 、B 两类,A类杨梅包装后直接销售;B 类杨梅深加工后再销售.A 类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y (单位:万元/吨)与销售数量(2)x x ≥之间的函数关系如图;B 类杨梅深加工总费用s (单位:万元)与加工数量t (单位:吨)之间的函数关系是123s t =+,平均销售价格为9万元/吨.(1)直接写出A 类杨梅平均销售价格y 与销售量x 之间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A 类杨梅有x 吨,经营这批杨梅所获得的毛利润为w 万元(毛利润=销售总收入-经营总成本). ①求w 关于x 的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A 类杨梅有多少吨? (3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.【答案】 (1)①当28x ≤<时,如图, 设直线AB 解析式为:y kx b =+,将(2,12)A 、(8,6)B 代入得:21286k b k b +=⎧⎨+=⎩,解得114k b =-⎧⎨=⎩, ∴14y x =-+;②当8x ≥时,6y =.所以A 类杨梅平均销售价格y 与销售量x 之间的函数关系式为: 14(28)6(8)x x y x -+≤<⎧=⎨≥⎩;(2)设销售A 类杨梅x 吨,则销售B 类杨梅(20)x -吨.①当28x ≤<时,2(14)13A w x x x x x =-+-=-+; 9(20)[123(20)]1086B w x x x =--+-=-∴320A B w w w =+-⨯2(13)(1086)60x x x =-++--2748x x =-++; 当8x ≥时,65A w x x x =-=;9(20)[123(20)]1086B w x x x =--+-=- ∴320A B w w w =+-⨯(5)(1086)60x x =+--48x =-+.∴w 关于x 的函数关系式为:2748(28)48(8)x x x w x x ⎧-++≤<=⎨-+≥⎩.②当28x ≤<时,274830x x -++=,解得19x =,22x =-,均不合题意;当8x ≥时,4830x -+=,解得x =18.∴当毛利润达到30万元时,直接销售的A 类杨梅有18吨.(3)设该公司用132万元共购买了m 吨杨梅,其中A 类杨梅为x 吨,B 类杨梅为()m x -吨,则购买费用为3m 万元,A 类杨梅加工成本为x 万元,B 类杨梅加工成本为[123()]m x +-万元, ∴39[123()]132m x m x +++-=,化简得:360x m =-. ①当28x ≤<时,2(14)13A w x x x x x =-+-=-+; 9()[123()]6612B w m x m x m x =--+-=--∴3A B w w w m =+-⨯2(13)(6612)3m x x m x =-++---27312x x m =-++-.将360m x =+代入得:22848(4)64w x x x =-++=--+∴当4x =时,有最大毛利润64万元,此时643m =,523m x -=;②当8x ≥时,65A w x x x =-=;9()[123()]6612B w m x m x m x =--+-=-- ∴3A B w w w m =+-⨯(5)(6612)3m x m x =+---312x m =-+-.将360m x =+代入得:48w =,∴当8x >时,有最大毛利润48万元.综上所述,购买杨梅共643吨,其中A 类杨梅4吨,B 类523吨,公司能够获得最大毛利润,最大毛利润为64万元.例题7.(1)如图7-1,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为_______米.(2)如图7-2,一个横断面为抛物线形的拱桥,当水面宽4m 时,拱顶离水面2m .当水面下降1m 时,此时水面的宽度增加了______________(结果保留根号).(3)如图7-3,在水平地面点A 处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B ,有人在直线AB 上点C (靠点B 一侧)竖直向上摆放若干个无盖的圆柱形桶.试图让网球落入桶内,已知4AB =米,3AC =米,网球飞行最大高度5OM =米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).当竖直摆放圆柱形桶至少______________个时,网球可以落入桶内.图7-1 图7-2 图7-3【答案】(1)0.5;(2)4)m ;(3)8.例题8. 某物体从P 点运动到Q 点所用时间为7秒,其运动速度v (米每秒)关于时间t (秒)的函数关系如图所示. 某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB 的面积.由物理学知识还可知:该物体前(37)t t <≤秒运动的路程在数值上等于矩形AODB 的面积与梯形BDNM 的面积之和. 根据以上信息,完成下列问题: (1)当37t <≤时,用含t 的式子表示v ; (2)分别求该物体在03t ≤≤和37t <≤时,运动的路程S (米)关于时间t (秒)的函数关系式;并求该物体从P 点运动到Q 总路程的710时所用的时间. 【答案】(1)由题意得,当37t ≤≤时,v ,t 为一次函数设为v kt b =+; 代入点(3,2) (7,10)得到24v t =-, (2)当03t ≤≤时,12S t =,当37t <≤时,2123[2(24)](3)2S t t =⨯++--,即22,40379,3t S t t t t ⎧=⎨-+≤≤<≤⎩,总路程为总面积为62430+=米,7302110⨯=米6>米,令221S =,得24921t t -+=,解得6t =,或2t =-舍,故从P 点运动到Q 总路程的710时所用的时间为6秒.)例题9. 某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =. (1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x 的范围. 【答案】(1)根据题意得65557545.k b k b +=⎧⎨+=⎩,解得1k =-,120b =.所求一次函数的表达式为120y x =-+.(2)22(60)(120)1807200(90)900W x x x x x =-⋅-+=-+-=--+, 抛物线的开口向下,∴当90x <时,W 随x 的增大而增大,而6087x ≤≤, ∴当87x =时,2(8790)900891W =--+=.∴当销售单价定为87元时,商场可获得最大利润,最大利润是891元. (3)由500W =,得25001807200x x =-+-,整理得,218077000x x -+=,解得,170x =,2110x =.由图象可知,要使该商场获得利润不低于500元,销售单价应在70元到110元之间,而6087x ≤≤,所以,销售单价x 的范围是7087x ≤≤.例题10. 某大学生利用暑假40天社会实践参与了一家网店经营,了解到一种成本为20元/件(1)请计算第几天该商品的销售单价为35元/件?(2)求该网店第x 天获得的利润y 关于x 的函数关系式.(3)这40天中该网店第几天获得的利润最大?最大利润是多少? 【答案】(1)当120x ≤≤时,令130352x +=,得10x =.当2140x ≤≤时,令5252035x+=,得35x =.即第10天或者第35天该商品的销售单价为35元/件.(2)当120x ≤≤时,2113020(50)1550022y x x x x ⎛⎫=+--=-++ ⎪⎝⎭,当2140x ≤≤时,525262502020(50)525y x x x ⎛⎫=+--=- ⎪⎝⎭.∴2115500(120)226250525(2140)x x x y x x⎧-++⎪⎪=⎨⎪-⎪⎩≤≤≤≤(3)当120x ≤≤时,221115500(15)612.522y x x x =-++=--+∵102-<,∴当15x =时,y 有最大值1y ,且1612.5y =.当2140x ≤≤时,∵262500>,∴26250x 随着x 的增大而减小,∴21x =时,26250x 最大.于是,21x =时,26250525y x =-有最大值2y ,且22625052572521y =-=.∵12y y <.∴这40天中第21天时该网店获得利润最大,最大利润为725元.例题11. 某通讯器材公司销售一种市场需求较大的新型通讯产品.已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)总计120万元.在销售过程中发现,年销售量y (万件)与销售单价x (元)之间存在着如图所示的一次函数关系.(1)求y 关于x 的函数关系式;(2)试写出该公司销售该种产品的年获利z (万元)关于销售单价x (元)的函数关系式(年获利=年销售额-年销售产品总进价-年总开支).当销售单价x 为何值时,年获利最大?并求这个最大值;(3)若公司希望该种产品一年的销售获利不低于...40万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元? 【答案】(1)如图可知两点坐标为(60, 5),(80, 4)代入y kx b =+得1820y x =-+ (2)由题意可得1188401202020z x x x ⎛⎫⎛⎫=-+--+⨯- ⎪ ⎪⎝⎭⎝⎭整理得21(100)6020z x =--+,故当销售单价100x =时,最大利润为60万元 (3)由题意22140(100)6040(100)40020z x x ≥⇒--+≥⇒-≤ 201002080120x x ∴-≤-≤⇒≤≤要求y 尽可能大,所以x 尽可能小,故当80x =,保证销售最大又达到指标.)例题12. 如图所示,公园要建造圆形的喷水池,水池中央垂直于水面处安装一个柱子OA ,O恰在水面中心, 1.25m OA =,由柱子顶端A 处喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在OA 距离为1m 处达到距水面最大高度2.25m .(1)若不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不能落到池外?(2)若水流喷出的抛物线形状与(1)相同,水池的半径为3.5m ,要使水流不落到池外,此时水流最大高度应达多少米?【答案】(1)以O 为原点,顶点为(1, 2.25),设解析式为2(1) 2.25y a x =-+过点(0, 1.25),解得1a =-,所以解析式为:2(1) 2.25y x =--+,令0y =,则2(1) 2.250x --+=,解得 2.5x =或0.5x =-(舍去),所以花坛半径至少为2.5m .(2)根据题意得出:设2y x bx c =-++,把点(0, 1.25) (3.5, 0) ∴ 1.25497042c b c =⎧⎪⎨-++=⎪⎩,解得:22754b c ⎧=⎪⎪⎨⎪=⎪⎩, ∴2222511729747196y x x x ⎛⎫=-++=--+ ⎪⎝⎭, ∴水池的半径为3.5m ,要使水流不落到池外,此时水流最大高度应达729196米.A例题13. “城市发展交通先行”,成都市今年在中心城区启动了缓堵保畅的二环路高架桥快速通道建设工程,建成后将大大提升二环路的通行能力.研究表明,某种情况下,高架桥上的车流速度V (单位:千米/时)是车流密度x (单位:辆/千米)的函数,且当028x <≤时,80V =;当28188x <≤时,V 是x 的一次函数. 函数关系如图所示.(1)求当28188x <≤时,V 关于x 的函数表达式;(2)若车流速度V 不低于50千米/时,求当车流密度x 为多少时,车流量P (单位:辆/时)达到最大,并求出这一最大值.(注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度)【答案】 (1)设函数解析式为V kx b =+, 则28801880k b k b +=⎧⎨+=⎩,解得:1294k b ⎧=-⎪⎨⎪=⎩, 故V 关于x 的函数表达式为:1942V x =-+; (2)由题意得,194502V x =-+≥, 解得:88x ≤,又211949422P Vx x x x x ⎛⎫==-+=-+ ⎪⎝⎭,当088x <≤时,函数为增函数,即当88x =时,P 取得最大,故2max 188948844002P =-⨯+⨯=. 即当车流密度达到88辆/千米时,车流量P 达到最大,最大值为4400辆/时.千米)。

初三下册数学增长率练习题

初三下册数学增长率练习题

初三下册数学增长率练习题
增长率是数学中的一个重要概念,它用于表示一个变化量相对于初
始量的增加程度。

在初三下学期的数学课程中,增长率是一个重要的
知识点,我们需要掌握如何计算和应用增长率。

本文将为大家提供一
些初三下册数学增长率练习题,帮助大家提高对增长率的理解和应用
能力。

1. 一块土地的面积在过去的5年内以每年6%的速度递增。

如果初
始面积为1000平方米,那么5年后的面积是多少?
2. 一辆小汽车的速度在过去的3秒钟内以每秒2米的速度递增。


果初始速度为4米/秒,那么3秒后的速度是多少?
3. 一项商品的价格在过去的10天内以每天1.5元的速度递增。

如果
初始价格为100元,那么10天后的价格是多少?
4. 一辆自行车的里程表显示,在过去的7天内行驶了140公里。


果过去的行驶距离按每天20公里的速度递增,那么7天前的行驶距离
是多少?
5. 一根绳子的长度在过去的4个月内以每个月10厘米的速度递增。

如果初始长度为80厘米,那么4个月后的长度是多少?
以上是几个关于增长率的练习题。

对于这类问题,我们可以使用以
下公式来计算:
增长量 = 初始量 * 增长率
通过将已知条件代入公式,我们可以解出未知量。

在解题过程中,需要注意单位的一致性,确保相同单位的量进行计算。

希望以上练习题和解题方法能够帮助大家更好地理解和应用初三下册数学中的增长率概念。

通过不断练习和思考,我们可以提高对数学的理解和应用能力,为学业打下坚实的基础。

祝大家在学习数学的道路上取得好成绩!。

题型(二) 实际应用题-2021年中考数学一轮复习知识考点课件(74张)

题型(二) 实际应用题-2021年中考数学一轮复习知识考点课件(74张)
上一页 下一页
对点训练 1.(2020·上海)去年某商店“十一”黄 周进行促销活动期间,前六天的总营业
额为450万元,第七天的营业额是前六天总营业额的12%. (1)求该商店去年“十一”黄 周这七天的总营业额;
解:(1)450+450×12%=504(万元). 答:该商店去年“十一”黄 周这七天的总营业额为504万元.
解:设甲物资采购了x吨,乙物资采购了y吨.
依题意,得
x y 540, 解得 3x 2y 1380,
x
y
300, 240.
答:甲物资采购了300吨,乙物资采购了240吨.
上一页 下一页
(2)现在计划安排A,B两种不同规格的卡车共50辆来运输这批物资.甲物资7
吨和乙物资3吨可装满一辆A型卡车;甲物资5吨和乙物资7吨可装满一辆B
上一页 下一页
以分配类问题中购买商品为例,常出现的量有:购买数量、单价及购买
额,常见等量关系式为:单价×数量=总价.
1.以购买商品背景为例,常考以下三种形式:
模型一:已知a,b的单价、购买a,b的总数量及总花费,求a,b各自购
买的数量;
模型二:已知购买一定数量的a和一定数量的b的总花费(两组信息),求
上一页 下一页
(2)选购期间发现该品牌足球在两个文体用品商场有不同的促销方案:A商场 买十送一,B商场全场九折,试问去哪个商场购买足球更优惠?
(2)在A商场实际需要购买的足球为100× 10 = 1000 ≈91(个),
11 11
在A商场需要的费用为162×91=14 742(元), 在B商场需要的费用为162×100× 9 =14 580(元).
方案2:安排26辆A型卡车,24辆B型卡车;
方案3:安排27辆A型卡车,23辆B型卡车.

九年级数学:一元二次方程应用题增长率类型20道(含答案及解析)

九年级数学:一元二次方程应用题增长率类型20道(含答案及解析)
此题考查了一元二次方程的应用,解题的关键是理解题意找到等量关系,列出方程.
8.20%
【分析】
设这两年投入资金的平均增长率为x,根据题意列出方程计算即可;
【详解】
设这两年投入资金的平均增长率为x,由题意得:

解得: , (舍去);
答:这两年投入资金的年平均增长率为20%.
(2)已知该种饮料的进价为每箱25元,第三次的销售价为每箱40元,第四次销售时,若该种饮料每箱每降价1元,销售量就会增加5箱,问当该种饮料每箱降价多少元时,此超市第四次销售该种饮料获利4250元?
13.某企业2019年初投资100万元生产适销对路的产品,2019年底,将获得的利润与年初的投资和作为2020年初的投资.到2020年底,两年共获得56万元,已知2020年的年获利率比2019年的年获利率多10个百分点,求2019和2020年的年获利率各是多少?
答:从从七月到九月,每月盈利的平均增长率为 .
【点睛】
本题考查了一元二次程的应用,解题的关键是找准等量关系,正确列出一元二次方程.
7.这个增长率为
【分析】
设这几周工作时间的增长率为 ,根据题意列方程求解即可.
【详解】
解:设这几周工作时间的增长率为 ,
由题意可得:
解得 , (舍去)
答:这个增长率为
【点睛】
【分析】
(1)设每次下降的百分率为 ,根据题意列出方程,解出即可求解;
(2)设每千克应涨价 元,根据题意列出方程,解出即可求解;
(3)设每千克水果涨价 元,超市每天可获得利润为 元,根据题意可列出函数关系式,再利用配方法将关系式化为顶点式,即可求解.
【详解】
解:设每次下降的百分率为 ,根据题意得:

人教版初三数学上册实际问题与一元二次方程2----增长率问题

人教版初三数学上册实际问题与一元二次方程2----增长率问题

1.为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的人
均约为10m2提高到12.1m2若每年的年增长率相同,则年增长率为()
2.某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的
百分数相同,则平均每月的增长率为()
3.某人购买某种债券2000元,两个月后获纯利311.25元,则购这种债券的月利率是()。

4.某商场第一年初投入50万元进行商品经营,以后每年年终将当年获得的利润与当年年初投入资金相加所得的总资金,作为下一年年初投入资金继续进行经营。

(1)如果第一年的年获利率为P,则第一年年终的总金可用代数式表示为______万元。

(2)如果第二年的年获利率比第一年的年获利率多10个百分点,第二年年终的总资金为66万元,求第一年的年获利率。

列一元一次方程解应用题---- 增长率问题

列一元一次方程解应用题---- 增长率问题

___ 年___ 月____日组长检查:教师评价:学习内容:列一元一次方程解应用题(6)----增长率问题学习目标:1、掌握增长率及成本问题,能熟练地利用相等关系列方程;2、提高学生分析实际问题中数量关系的能力。

学习过程:基本等量关系:①增长率=;②增长后的量= 。

练习:⑴某厂去年的产值是100万元,今年比去年的产值增长20%,则今年比去年的产值提高万元,今年的产值是万元;⑵某厂去年的产值是x万元,今年比去年的产值增长20%,则今年比去年的产值提高元,今年的产值是万元.⑶某化肥厂去年生产化肥3200吨,今年计划生产3600吨,今年计划比去年增产 %⑷某加工厂的稻谷加工大米有出米率为70%,现在加工大米100公斤,设要这种稻谷x公斤,则列出方程是。

新课探究:例1 某印刷厂第一季度印刷图书704万册。

二月份比一月份增长12%,三月份比二月份增长25%,求三月份的产量。

练习:⑴一种药品现在售价56.10元,比原来降低了15%,问原售价为__________元.⑵甲、乙两厂去年完成任务的112%和110%,共生产机床4000台,比原来两厂任务之和超产400台,问甲厂原来的生产任务是多少台?⑶某工厂第一季度生产甲、乙两种机器共480台.改进生产技术后,计划第二季度生产这两种机器共554台,其中甲种机器产量要比第一季度增产10 % ,乙种机器产量要比第一季度增产20 %.该厂第一季度生产甲、乙两种机器各多少台?例2、某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%,求这个月的石油单价相对上个月的增长率。

分析:不妨设上个月的石油进口量为a,上个月的石油单价为b,则可知a、b均不为0.请完成此题的解答过程。

⑷民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的1.5%购买行李票。

一名旅客带了35千克行李乘机,机票连同行李费共付了1323元,求该旅客的机票票价。

2020年秋九年级数学上册 第2章 2.5 一元二次方程的应用 第1课时 增长率问题和营销问题同步

2020年秋九年级数学上册 第2章  2.5 一元二次方程的应用 第1课时 增长率问题和营销问题同步

第2章一元二次方程2.5 一元二次方程的应用第1课时增长率问题和营销问题知识点 1 增长率问题1.某商品原价为180元,连续两次提价x%后售价为300元,下列所列方程正确的是( ) A.180(1+x%)=300 B.180(1+x%)2=300C.180(1-x%)=300 D.180(1-x%)2=3002.2016·恩施州某商品的售价为100元,连续两次降价x%后售价降低了36元,则x为( )A.8 B.20 C.36 D.183.某车间1月份生产产品7000个,3月份生产产品8470个,求该车间这两个月生产产品的月平均增长率.4.2017·巴中巴中市某楼盘准备以每平方米5000元的均价对外销售,由于有关部门关于房地产的新政策出台后,部分购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4050元的均价开盘销售,若两次下调的百分率相同,求平均每次下调的百分率.知识点 2 营销问题5.某商店进了一批服装,进价为50元/件,按60元/件出售时,可销售800件;若单价每提高2元,则其销售量就减少40件,今商店计划获利12000元,则销售单价应定为________元/件.6.新华商场为迎接家电下乡活动销售某种冰箱,每台进价为2500元,经市场调研表明:当销售价定为每台2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天为5000元,每台冰箱的定价应为多少元?7.商场某种商品平均每天可销售30件,每件赢利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元. 据此规律,请回答:(1)商场日销售量增加________件,每件商品赢利________元(用含x的代数式表示);(2)在上述条件不变、销售正常的情况下,每件商品降价多少元时,商场日赢利可达到2100元?8.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的产量增长率为x,那么x满足的方程是( )A.50(1+x)2=182B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182D.50+50(1+x)+50(1+2x)=1829.某西瓜经营户以2元/千克的价格购进一批良种西瓜,以3元/千克的价格出售,每天可售出200千克.为了减少库存,该经营户决定降价销售.经调查发现,这种良种西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天赢利200元,应将每千克良种西瓜的售价降低多少元?10.2017·眉山某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.经调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,则此批次蛋糕属于第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,则该烘焙店生产的是第几档次的产品?11.2017·南宁为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅图书,并统计每年的借阅人数和图书借阅总量(单位:本).该阅览室2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人.如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,则a的值至少是多少?12.某汽车销售公司5月份销售某种型号的汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y与x之间的函数表达式;(2)已知该型号汽车的销售价为32万元/辆,公司计划当月的销售利润为25万元,那么该月需要售出多少辆汽车(注:销售利润=销售价-进价)?1.B [解析] 当商品第一次提价x %时,其售价为180+180x %=180(1+x %);当商品第二次提价x %后,其售价为180(1+x %)+180(1+x %)x %=180(1+x %)2,∴180(1+x %)2=300.故选B.2. B [解析] 根据题意,得100(1-x %)2=100-36,解得x =20或x =180(不合题意,舍去),故选B.3.解:设该车间这两个月生产产品的月平均增长率为x %,根据题意,得7000(1+x %)2=8470,∴(1+x %)2=1.21,即1+x %=± 1.21=±1.1,∴x %=0.1=10%或x %=-2.1(不合题意,舍去).答:该车间这两个月生产产品的月平均增长率为10%.4.解:设平均每次下调的百分率为x ,根据题意,得5000(1-x )2=4050,解得x 1=0.1=10%,x 2=1.9(不合题意,舍去).答:平均每次下调的百分率为10%.5.70或806.解:设每台冰箱的定价为x 元,依题意得(x -2500)(8+2900-x 50×4)=5000,解得x 1=x 2=2750,经检验x 1=x 2=2750符合题意.答:每台冰箱的定价应为2750元.7.解:(1)2x (50-x )(2)由题意,得(50-x )(30+2x )=2100.化简得x 2-35x +300=0.解得x 1=15,x 2=20.∵该商场为了尽快减少库存,∴x =15不合题意,舍去,∴x =20.答:每件商品降价20元时,商场日赢利可达到2100元.8.B [解析] 50(1+x )2 万个只表示六月份的产量,不包含四、五月份的产量,182万个是第二季度生产零件的总产量,包含四、五、六月份的产量.9.解:设每千克良种西瓜的售价降低x 元.由题意,得(3-x -2)(200+40x 0.1)-24=200, 解得x 1=0.2,x 2=0.3.∵该经营户想要减少库存,∴x =0.2不合题意,应舍去,∴x =0.3.答:应将每千克良种西瓜的售价降低0.3元.10.解:(1)由题意可知,生产的蛋糕每提高一个档次,该产品每件利润提高2元,14-102=2,所以生产提高了两个档次,所以此批次蛋糕属于第三档次产品.(2)设该烘焙店生产的是第x 档次的产品,则每件利润为[10+2(x -1)]元,每天的产量为[76-4(x -1)]件.根据题意,得[10+2(x -1)][76-4(x -1)]=1080,整理,得x 2-16x +55=0,解得x 1=5,x 2=11(不合题意,舍去).答:该烘焙店生产的是第五档次的产品.11.解:(1)设该社区的图书借阅总量从2014年至2016年的年平均增长率为x ,根据题意得7500(1+x )2=10800,即(1+x )2=1.44,解得x 1=0.2=20%,x 2=-2.2(舍去).答:该社区的图书借阅总量从2014年至2016年的年平均增长率为20%.(2)10800×(1+0.2)=12960(本),10800÷1350=8(本),12960÷1440=9(本),(9-8)÷8×100%=12.5%.答:a 的值至少是12.5.12.解:(1)当0<x ≤5时,y =30;当5<x ≤30时,y =-0.1x +30.5.∴y =⎩⎪⎨⎪⎧30(0<x ≤5且x 为整数),-0.1x +30.5(5<x ≤30且x 为整数).(2)当0<x ≤5时,(32-30)×5=10(万元)<25万元,不合题意;当5<x ≤30时,(32+0.1x -30.5)x =25,即x 2+15x -250=0,解得x 1=-25(舍去),x 2=10.答:该月需要售出10辆汽车.。

人教版九年级上册21.3 实际问题与一元二次方程--增长率问题专题练习(Word版,含答案)

人教版九年级上册21.3 实际问题与一元二次方程--增长率问题专题练习(Word版,含答案)

人教版九年级上册数学21.3 实际问题与一元二次方程--增长率问题专题练习一、单选题1.2021年9月份,全国新冠疫苗当月接种量约为1.4亿剂次,11月份新冠疫苗当月接种量达到2.3亿剂次,若设平均每月的增长率为x ,则下列方程中符合题意的是( )A .1.4x 2 =2.3B .1.4(1+x 2)=2.3C .1.4(1+x )2 =2.3D .1.4(1+2x )=2.3 2.某中学连续三年开展植树活动.已知2020年植树500棵,2022年植树720棵,假设该校这两年植树棵树的年平均增长率为x ,根据题意可以列方程为( ) A .()25001720x +=B .()25001%720x +=C .()50012720x +=D .()()250050015001720x x ++++= 3.某厂一月份的总产量为500吨,三月份的总产量达到为720吨.若平均每月增率是x ,则可以列方程 ( )A .500(12)720x +=B .2500(1)720x +=C .2720(1)500x +=D .2500(1)720x +=4.新冠疫情给各地经济带来很大影响. 为了尽快恢复经济,某企业加大生产力度,四月份生产零件50万个,第二季度共生产零件182万个. 若该企业五、六月份平均每月的增长率为x ,则下列方程中正确的是( )A .()2501182x +=B .()()505015012182x x ++++=C .()25012182x +=D . ()()250501501182x x ++++= 5.2022年受国际原油大涨影响,国内95#汽油从一月份7.85元/升上涨到三月份9元/升,如果平均每月汽油的增长率相同,设这个增长率为x ,则可列方程得( ). A .7.85(12)9x ⨯+= B .27.85(1)9x ⨯+=C .()27.8519x ⨯+=D .7.85(1)9x ⨯+=6.疫情期间,某快递公司推出无接触配送服务,4月份第1周接到1.5万件订单,前3周共接到4.8万件订单,设第1周到第3周订单的周平均增长率为x ,则可列方程为( )A .1.5(12) 4.8x +=B .1.52(1) 4.8x ⨯+=C .21.5(1) 4.8x +=D .21.5 1.5(1) 1.5(1) 4.8x x ++++= 7.科学研究表明,接种新冠疫苗是阻断新冠病毒传播的最有效途径.2021年我国居民接种疫苗迎来高峰期,据统计2021年4月份全国新冠疫苗当月接种量约为1.4亿剂次,6月份新冠疫苗当月接种量达到5.6亿剂次,若设平均每月的增长率为x ,则下列方程正确的是( )A .21.4 5.6x =B .()21.41 5.6x +=C .()21.41 5.6x +=D .()1.412 5.6x += 8.疫情形势下,我国坚持“动态清零”的防控措施,使很多地区疫情蔓延形势得以有效控制,并逐步恢复生产.某商店今年1月份的销售额仅2万元,3月份的销售额已达到4.5万元,从1月份到3月份,该店销售额平均每月的增长率是( ) A .50%B .62.5%C .20%D .25% 二、填空题9.某海洋养殖场每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖场第一年的可变成本为2.6万元,第三年的养殖成本为7.146万元,设可变成本平均每年增长的百分率为x ,则可列方程为_____. 10.某商场销售额4月份为25万元,6月份为36万元,该商场5、6两个月销售额的平均增长率是 _____%.11.新能源汽车节能、环保,越来越受消费者喜爱.2020年某款新能源汽车销售量为15万辆,销售量逐年增加,2022年预估当年销售量为21.6万辆,求这款新能源汽车的年平均增长率是多少?可设年平均增长率为x ,根据题意可列方程_______. 12.受益于电子商务的发展以及法治环境的改善等多重因素,“快递业”成为我国经济的一匹“黑马”.2018年我国快递业务量为500亿件,2020年快递量预计将达到740亿件,若设快递量平均每年增长率为x ,则所列方程为_________.13.为执行国家药品降价政策,给人民群众带来实惠,某药品经过两次降价,每瓶零售价由225元降至144元,则平均每次降价的百分率为______________.14.某学区房房价连续两次上涨,由原来的每平方米10000元涨至每平方米12100元,设每次涨价的百分率相同,则涨价的百分率为______.15.某种型号的电脑,原售价7200元/台,经连续两次降价后,现售价为4608元/台,则平均每次降价的百分率为________.16.汽车产业的发展有效促进我国现代化建设,某汽车销售公司2009年盈利1500万元,到2011年盈利2160万元,且从2009年到2011年,每年盈利的年增产率相同.若该公司的盈利年增产率继续保持不变,预计2012年盈利________万元?三、解答题17.某学校去年年底的绿化面积为2500平方米,预计到明年年底增加到3600平方米,若这两年的平均增长率相同,求这两年的平均增长率.18.疫情期间居民为了减少外出,更愿意选择线上购物,某购物平台今年二月份注册用户50万人,四月份达到了72万人,假设二月份至四月份的月平均增长率为x.(1)求x的值.(2)若保持这个增长率不变,五月份注册用户能否达到85万人?为什么?19.某口罩生产厂生产的口罩7月份平均日产量为30000个,7月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,厂决定从8月份起扩大产量,9月份平均日产量达到36300个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计10月份平均日产量为多少?20.为进一步提高某届学生的阅读量,学校积极开展课外阅读活动,目标将该届学生人均阅读量从刚上七年级的80万字增加到八年级结束时的115.2万字.(1)求该届学生人均阅读量这两年中每年的平均增长率;(2)若按这两年中每年的平均增长率增长,学校能否实现九年级结束时该届学生人均阅读量达到140万字的目标,请计算说明.参考答案:1.C2.A3.D4.D5.B6.D7.B8.A9.2+=-2.6(1)7.1464x10.2011.15(1+x)2=21.6或15(x+1)2=21.612.2x+=500(1)74013.20%14.10%15.20%16.259217.20%18.(1)20%(2)五月份注册用户能达到85万人19.(1)口罩日产量的月平均增长率为10%(2)39930个20.(1)20%(2)学校的目标不能实现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实际应用题----有关增长率及购物问题一、增长率是初中数学应用题中常出现的考题之一,这种题型是很多学生的弱点,整理了跟增长率有关的数学应用题,希望能帮助大家提供应用题的能力。

此类题的基本量之间的关系:现产量=原产量×(1+增长率)n1.某商品原售价289元,经过连续两次降价后售价为256元,设两次降价的百分率为x,可列方程________。

解:根据题意可得289(1-x)2=2562.某公司今年4月份营业额为60万元,6月份营业额达到100万元,设该公司5、6两个月营业额的月平均增长率为x,则可列方程为_______解:设平均每月的增长率为x。

根据题意可得:60(1+x)2=100.3.某品牌服装原价173元,连续两次降价后售价为127元,设平均降价率为x,则可列方程为_________解:173(1-X)2=1274.某汽车销售公司2018年10月份销售一种新型低能耗汽车20辆,由于该型号汽车经济适用性强,销量快速上升,12月份该公司销售型号汽车达45辆,求11月份和12月份销量的平均增长率。

解:设11月份和12月份销量的平均增长率为x。

根据题意,得20(1+x)2=45,解得x1=0.5=50%,x2=-2.5(舍去)。

答:11 月份和12月份销量的平均增长率为50%。

5.为进一步发展基础教育,自2016年以来,某县加大了教育经费的投入,2016年该县投入教育经费6000万元。

2018年投入教育经费8640万元。

假设该县这两年投入教育经费的处平均增长率相同。

(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还保持相同的处平均增长率,请你预算2019年该县投入教育经费多少万元。

解:(1)设该县投入教育经费的年平均增长率为x,根据题意得;6000(1+x)2=8640解得x=0.2=20%。

答:该县投入教育经费的年平均增长率为20%;(2)因为2018年该县投入教育经费为8540万元,且增长率为20%,所以2019年该县投入教育经费为:Y=8640×(1+20%)=10368(万元)答:预算2019年县投入教育经费10368万元。

6.某地2016年为做好“精准扶贫”,投入资金1280万元用于一处安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1600万元。

(1)从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?(2)在2018年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?解:(1)该地投入异地安置资金的年平均增长率为x,根据题意得:1280(1+x)2=1280+1600,解得:x=0.5或x=-2.25(不合题意舍去)答:从2016年到2018年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,得:1000×8×400+(a-1000)×5×400≥5000000,解得:a≥1900,答:今年该地至少有1900户享受到优先搬迁租房奖励。

7.2019年1月14日,国新办举行新闻发布会,海关总署新闻发言人李魁文在会上指出:在2018年,我国进出口规模创历史新高,全年外贸进出口总值为30万亿元人民币。

有望继续保持全球货物贸易第一大国地位。

预计2020年我国外贸进出口总值将达36.3万亿元人民币。

求这两年我国外贸进出口总值的年平均增长率。

解:设这两年我国外贸进出口总值的平均增长率为x。

根据题意列方程,得30(1+x)2=36.3,解得x1=0.1,x2=-2.1(舍)。

答:这两年我国外贸进出口总值的年平均增长率为10%。

8.某养殖场为了响应党中央的扶贫政策,今年起采用“场内+农户”养殖模式,同时加强对蛋鸡的科学管理,蛋鸡的产蛋率不断提高,3月份和5月份的产蛋量分别是2.5万kg 与3.6万kg ,现假定该养殖场蛋鸡产蛋量的月增长率相同。

(1)求该养殖场蛋鸡产蛋量的月平均增长率;(2)假定当月产的鸡蛋当月在各销售点全部销售出去,且每个销售点每月平均销售量最多为0.32万kg 。

如果要完成6月份的鸡蛋销售任务,那么该养殖场在5月份已有的销售点的基础上至少再增加多少个销售点?解:(1)设该养殖场蛋鸡产蛋量的月平均增长率为x 。

根据题意,得 2.5(1+x )2=3.6,解得 x=0.2, x=-2.2(不合题意舍去)。

答:该养殖场蛋鸡产蛋量的月平均增长率为20%。

(2)设再增加y 个销售点。

根据题意,得3.6+0.32≥3.6×(1+20%),解得y ≥49。

答:至少得增加3个销售点。

9.为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5000万元,2017年投入基础教育经费7200万元。

(1)求该市这两年投入基础教育经费的年平均增长率。

(2)2018年投入基础教育经费的增长率与前两年的相同,预测2018年投入基础教育的经费是多少?解:(1)设这两年投入基础教育经费的年平均增长率为x。

根据题意,得5000(1+x)2=7200,解得x1=0.2=20%,x2=-2.2(舍去)。

答:该市这两年投入基础教育经费的平均增长率为20%。

(2)2018年投入基础教育经费的为7200×(1+20%)=8640(万元)。

答:2018年投入基础教育经费的为8640万元。

10. 某村2016年的人均收入为20000元,2018年的人均收入为24200元.(1)求2016年到2018年该村人均收入的年平均增长率;(2)假设2019年该村人均收入的增长率与前两年的年平均增长率相同,请你预测2019年该村的人均收入是多少元?解(1)设2016年到2018年该村人均收入的年平均增长率为x,根据题意得:20000(1+x)2=24200,解得:x1=0.1=10%,x2=1.1(不合题意,舍去)答:2016年到2018年该村人均收入的年平均增长率为10%。

(2)24200×(1+10%)=26620(元)。

答:预测2019年该村的人均收入是26620元。

二、 购物类应用题此类问题用到的数量:单价,打折,数量,总价,总金额 数量关系:总金额=单价×数量或单价×折扣×数量总利润=(单价-进价)×数量11. 小林在某商店购买商品A ,B 共三次,只有一次购买时,商品A ,B 同时打折,其余两次均按标价购买,三次购买商品A ,B 的数量和费用如下表:(1)小林以折扣价购买商品A ,B 是第_____次购物; (2)求出商品A ,B 的标价;(3)若商品A ,B 的折扣相同,问商店是打几折出售这两种商品的? 解:(1)小林以折扣价购买商品A 、B 是第三次购物;(2)设商品A 的标价为x 元,商品B 的标价为Y 元。

根据题意,得 6x+5y=1140, 解得: x=90,3x+7y=1110. y=120.答:商品A 的标价为90元,商品B 的标价为120元;(3)设商店是打m 折出售这两种商品。

由题意得,(9×90+8×120)×10m =1062,解得m=6 。

答:商店是打6折出售这两种商品。

12.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元。

(1)若购买这两类球的总金额为4600元,篮球、足球各买了多少个?(2)若购买篮球的总金额不超过足球的总金额,最多可购买多少个篮球?解:(1)设购买篮球x个,则足球(60-x)个。

由题意得,70x+80(60-x)=4600,解得x=20.则60-x=60-20=40.答:篮球买了20个,足球买了40个。

(2)设购买了篮球y个,由题意得,70y≤80(60-y),解得y≤32.答:最多可购买篮球32个。

13.随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元。

(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?解:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元。

根据题意得,6x+3y=660,50×0.8x+40×0.75y=5200.解:打折前甲品牌粽子每盒70元,乙品牌粽子每盒80元。

(2)80×70×(1-80%)+100×80×(1-75%)=3120(元)。

答:打折后购买这批粽子比不打折节省了3120元。

14.客来多美食店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共1120元,总利润为280元。

(1)该店每天卖出这两种菜品共多少份?(2)该店为了增加利润,准备降低A种菜品售价,同时提高B种菜品售价,售卖时发现,A种菜品售价每降低0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份。

如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?解:(1)设每天卖出这两种菜品分别为x份、y份。

根据题意得:20x+18y=1120,(20-14)x+(18-14)y=280.解得x=20,Y=40.∴x+y=20+40=60(份)。

答:每天卖出两种菜品共60份。

(2)设A种菜品的售价每份降a元,总利润为w元。

根据题意得,w=(2a+20)(20-a-14)+(40-2a)(18+a-14)=-4(a-3)2+316.当a=3时,w取最大值为316。

答:这两种菜品一天的总利润最多是316元。

15.为响应国家“足球进校园”号召,某校购买了50个A类足球和25个B类足球共花费7500元,已知购买一个B类足球比购买一个A类足球多花30元。

(1)求购买一个A类足球和一个B类足球各需多少?(2)通过全校师生的共同努力,今年该校被评为“足球特色学校”,学校计划用不超过4800元的经费再次购买A类足球和B类足球共50个,若单价不变,则本次至少可以购买多少个A类足球?解:(1)设购买一个A类足球需要X元,购买一个B类足球需要y 元。

50x+25y=7500,依题意得,y-x=30.解得x=90,Y=120.答:购买一个A 类足球需要90元,购买一个B类足球需要120元。

相关文档
最新文档