飞思卡尔赛车与机器视觉设计方案

合集下载

飞思卡尔 智能汽车模型设计与制作

飞思卡尔 智能汽车模型设计与制作
优点:工作稳定、分辨率高、价格低廉 缺点:外围电路复杂,采集方法复杂
LM1881行场同步分离电路
使用摄像头的智能车技术简介
• 摄像头的选型
– 数字类摄像头(以OV6620为例): 内置高速AD转换器,按设定格式输出数字图 像。使用简单,无需多余的外围电路,单片机 可以直接接收到图像信息进行处理
优点:使用简单,速度快 缺点:价格昂贵,容易损坏,工作不稳定
S12系列单片机的开发环境Codeworrior
S12系列单片机的调试环境Hiwave
源代码窗口
汇编代码窗口 寄存器监视窗口
变量监视窗口1 变量监视窗口2
内存监视窗口 调试命令窗口
使用摄像头的智能车技术简介
• 摄像头的选型
– 模拟类摄像头: 输出全电视信号,使用LM1881分离出行同步、 场同步信号,使用片内或外置AD或比较器进行 图像采集,由单片机进行后期处理,从图像中 分离出赛道信息,决策出车模的速度和转角。
• 可以结合以上两种方式判断赛道信息
采集接收管模拟电压的电路
迟滞比较器应用电路
电机控制方法简介
• 本车模使用组委会规定的微型直流电机, 它是牵引车模运动的唯一动力源。
• 通常使用H桥作为电机驱动电路,可实现 正转、反转与调速功能。
• 需使用PWM信号控制H桥给电机调速。
H桥驱动电机原理
H桥驱动电机原理-正反转

做一枚螺丝钉,那里需要那里上。20. 12.1706 :33:440 6:33De c-2017-Dec-20

日复一日的努力只为成就美好的明天 。06:33: 4406:3 3:4406: 33Thurs day, December 17,渐。20.12.17 20.12.1 706:33: 4406:3 3:44December 17, 2020

(毕业设计)飞思卡尔智能车及机器视觉

(毕业设计)飞思卡尔智能车及机器视觉

图像处理在智能车路径识别中的应用摘要机器视觉技术在智能车中得到了广泛的应用,这项技术在智能车的路径识别、障碍物判断中起着重要作用。

基于此,依据飞思卡尔小车的硬件架构,研究机器视觉技术应用于飞思卡尔小车。

飞思卡尔智能车处理器采用了MC9S12XS128芯片,路况采集使用的是数字摄像头OV7620。

由于飞思卡尔智能车是是一款竞速小车,因此图像采集和处理要协调准确性和快速性,需要找到其中的最优控制。

因此本设计主要需要完成的任务是:怎样用摄像头准确的采集每一场的图像,然后怎样进行二值化处理;以及怎样对图像进行去噪处理;最后也就是本设计的难点也是设计的核心,怎样对小车的轨迹进行补线。

本设计的先进性,在众多的图像处理技术中找到了适合飞思卡尔智能车的图像处理方法。

充分发挥了摄像头的有点。

经过小车的实际测试以及相关的MATLAB 仿真,最终相关设计内容都基本满足要求。

小车的稳定性和快速性得到显著提高。

关键词:OV7620,视频采集,图像处理,二值化The Application of Image Processing in the Recognition ofIntelligent Vehicle PathABSTRACTCamera Machine vision technology in the smart car in a wide range of applications, the technology identified in the path of the smart car, and plays an important role in the obstacles to judge. Based on this, based on the architecture of the Freescale car, machine vision technology used in the Freescale car. Freescale smart car the processor MC9S12XS128 chip traffic collected using a digital camera OV7620. Freescale's Smart car is a racing car, so the image acquisition and processing to coordinate the accuracy and fast, you need to find the optimal control. This design need to complete the task: how to use the camera to accurately capture every image, and then how to binarization processing; and how to image denoising; last is the difficulty of this design is the design of the core, how to fill line on the trajectory of the car.The advanced nature of the design found in many image processing techniques of image processing methods for Freescale Smart Car. Give full play to the camera a bit. The actual testing of the car and MATLAB simulation, the final design content can basically meet the requirements. The car's stability and fast to get improved significantly.KEY WORDS: OV7620,Video Capture,Picture Processing,Binarization目录前言 (1)第1章飞思卡尔赛车及机器视觉的概述 (2)1.1 智能车的研究背景 (2)1.1.1 智能车的发展历史 (2)1.1.2 应用前景 (2)1.2 智能车设计要求介绍 (3)1.3 机器视觉介绍 (4)1.4 小结 (4)第2章主要思路及技术方案概要 (5)2.1 总体设计主要方法步骤 (5)2.2 摄像头的对比与选择 (5)2.2.1 摄像头的选取 (5)2.2.2 模拟摄像头 (6)2.2.3 数字摄像头 (6)2.2.4 摄像头的选定 (7)2.3 二值化方案的选取 (7)2.3.1 双峰值法 (7)2.3.2 迭代法 (8)2.3.3 大津法 (8)2.3.4 灰度拉伸-一种改进的大津法 (9)2.3.5 二值化方案的最终选定 (9)2.4对图像进行去噪 (9)2.4.1 传统的去噪法 (9)2.4.2 小波去噪 (11)2.4.3 去噪方法的最终确定 (13)2.5小结 (13)第3章硬件设计 (14)3.1 硬件总体方案设计 (14)3.2 核心控制板 (15)3.3 摄像头的安装 (15)3.4 小结 (16)第4章软件设计 (17)4.1 系统软件总体设计方案 (17)4.2 图像二值化软件设计 (17)4.3 去噪设计 (19)4.3.1 实验信号的产生 (19)4.3.2各参数下去噪效果对比 (20)4.4 二值化后补线 (24)4.5 小结 (32)第5 章结果分析 (33)5.1 采集到的灰度值去噪前的MATLAB仿真 (33)5.1.1 去噪前MATLAB函数和仿真结果 (33)5.1.2 去噪后MATLAB仿真结果 (34)5.2 边界扣取 (35)5.2.1 边界扣取函数 (35)5.2.2 边界扣取仿真结果 (36)5.3 补线后效果 (37)5.4 小结 (38)结论 (39)谢辞 (40)参考文献 (41)附录 (42)外文资料翻译 (45)前言机器视觉技术近几十年来已经得到广泛的应用,并且已经取得了巨大的成功,大大改善了人们的日常生活。

飞思卡尔智能车竞赛设计方案

飞思卡尔智能车竞赛设计方案

飞思卡尔智能车竞赛设计⽅案“神马”队设计⽅案摘要本⽂以“飞思卡尔”杯全国⼤学⽣智能车竞赛为主题,介绍了智能赛车从机械结构设计到控制系统的软硬件设计流程。

本次⽐赛使⽤竞赛秘书处统⼀指定的竞赛车模及套件,采⽤飞思卡尔半导体公司的16位微控制器作为核⼼控制单元,配合不同类型的传感器、驱动电机、转向舵机、直流电池、以及相应的驱动电路,使赛车能够⾃主识别路径,并控制模型车⾼速稳定地在跑道上运⾏,在规定时间内完成跑完赛道的任务。

第⼀章背景1.1“飞思卡尔”杯背景介绍“飞思卡尔”杯全国⼤学⽣智能车竞赛是在飞思卡尔半导体公司资助下举办的以S12 单⽚机为核⼼的⼤学⽣课外科技竞赛。

使⽤⼤赛组委会统⼀提供的竞赛车模、转向舵机、直流电机和可充电式电池,采⽤飞思卡尔 16 位微控制器MC9S12DB128B作为核⼼控制单元,⾃主构思控制⽅案及系统设计,包括传感器信号采集处理、控制算法及执⾏、电机驱动、转向舵机控制等,完成智能车⼯程制作及调试,于指定⽇期与地点参加场地⽐赛。

⽐赛成绩主要由赛车在现场成功⾏驶完赛道的时间为主。

全国⼤学⽣智能汽车竞赛所使⽤的车模是⼀款带有差速器的后轮驱动模型赛车,它由⼤赛组委会统⼀提供。

参赛队伍通过设计单⽚机的⾃动控制器控制模型车在封闭的跑道上⾃主循线运⾏。

在保证模型车运⾏稳定,即不冲出跑道的前提下,跑完两圈的时间越⼩成绩越好。

设计⾃动控制器是制作智能车的核⼼环节。

⾃动控制器是以单⽚机为核⼼,配合有传感器、电机、舵机、电池、以及相应的驱动电路,它能够⾃主识别路径,控制模型车⾼速稳定运⾏在跑道上。

⽐赛跑道表⾯为⽩⾊,中⼼有连续⿊线作为引导线,⿊线宽 25cm。

⽐赛规则限定可赛道宽度和拐弯最⼩半径等参数,赛道具体形状在⽐赛当天现场公布。

控制器⾃主识别引导线并控制模型车沿着赛道运⾏。

在严格遵守规则中对于电路限制条件,保证智能车可靠运⾏前提下,电路设计尽量简洁紧凑,以减轻系统负载,提⾼智能车的灵活性,同时坚持充分发挥创新原则,以简洁但功能完美为出发点,并以稳定性为⾸要前提,实现智能车快速运⾏。

基于飞思卡尔单片机的智能循线赛车设计和实现

基于飞思卡尔单片机的智能循线赛车设计和实现

系统 总 体 方 案 设计
本 文设计 的智 能循线 赛车 主要 由路径 检测 、 机转 向控制 、 舵 电机 驱 动 、 车速 控制 等功 能模 块 以及 软件 控 制 算 法构成 。小 车 以 1 6位 MC M 9 1D 18 为核 心控 制器 , U( C S2 G 2 ) 根据 黑色 和 白色反 射率 的不 同 , 用 “ ” 阵 采 一 字 列 的红外 光 电传感器 对 黑线 白底 路 径 进 行识 别 , 检 测 到 的 信 号送 入 MC 通 过 查表 方 式 改 变 控 制舵 机 的 将 U,
图 3 IR 0 T 099电 路 原 理 图
图 4 驱动直流电机的“ 桥 电路 H”
2 4 舵 机转 角控 制模块 .
系 统角度 控 制模块 采用 F t a 司 的 ¥ 00型舵 机 , ua 公 b 31 它为 通 用 舵 机 , 具有 低 成本 、 反应 快 、 扭 矩 的 特 高
E.. ........ . .......... . . . . . .J
二 圃
、 ●

l向 — 二 r——_: — — 机K 转 — —舵 1 ——
图 1 系统 结 构 框 图
2 智能 小 车硬 件设 计
2 1 电源模块 .
电源是 一个 系统 正常工 作 的基础 , 电源的设 计至关 重 要 。系统 模 块 中需 供 电的部 分 包 括 : 电传 感器 模 光
收稿 日期 : 0 0— 3—1 21 0 9 作者简介 : 杨丹 明( 95一) 男 , 士研究生 , 18 , 硕 主要研 究方向为控制理论 与控制工程。
第 6期
杨丹明 , 王富东 , 张
成, : 等 基于飞思卡尔单片机的智能循 线赛 车设计和实现

飞思卡尔设计方案

飞思卡尔设计方案

目录一.系统整体框图 (3)二.各模块电路 (3)三.材料清单 (11)四.赛道分析 (12)五.PID算法 (14)六.软件介绍 (17)七.程序分析 (20)八.结束语 (24)一.系统整体框图二.各模块电路1电源模块大赛提供的是7.2V的镍镉可充电电池,而单片机,方向传感器,速度传感器,使用的是5V电源,舵机使用的是6v电源,这就需要把7.2V分别经稳压电路转换为5V 、6V我们分别使用如下电路。

2)6V稳压电路作为智能车的动力来源,电池性能的好坏直接影响到整个车的运动效果,因此正确使用电池就非常重要,因此我们对电池的正确管理和合理使用采取了如下方案:2电机模块对于电机的驱动我们采用了两片MC33886级联的形式以增加它的驱动能力,通过两路PWM信号来控制,可以实现电机的正反转。

在编程的时候通过改变PWM的占空比来控制电机加速减速,对于MC33886使用时会发热的现象,我们对MC33886才用安装散热片的方法,经我们查阅资料可得这种方法效果很好。

MC33886驱动电路:3显示模块在调试过程中,为了方便观察小车的状态(例如小车的行驶速度等),我们安装了4个8断数码管显示电路,此模块可以更具实际情况选择是否连接。

4舵机模块舵机的工作频率为50Hz,但由于小车的速度太快,工作在这种频率下舵机的响应速度太慢不能满足要求,经我们查阅资料可得,舵机在100Hz的情况下仍可以很好的工作,并且可以满足小车快速行驶时对舵机响应较快的要求,因此在编写程序时我们把控制舵机的PWM 信号的频率设置为100Hz,这样就满足了要求。

此外为了提高舵机的响应速度,我们还采用了如下方案:1)正极串联一个二极管。

2)把舵机的臂加长。

等等。

下面我们列出了一种舵机的基本参数,和如何通过编程的方法来控制舵机调整方向。

舵机控制5测速模块测速的方法有很多,例如光电编码器,霍尔传感器……我们使用的是霍尔传感器来测量速度,如图当小车转动一周,霍尔开关将输入2个脉冲到单片机。

“飞思卡尔”智能车辅助设备的设计与实现

“飞思卡尔”智能车辅助设备的设计与实现

毕业设计说明书(论文)中文摘要“飞思卡尔”智能车在后期调试过程中,需要不断的更改程序中的速度和舵机偏转的角度,其工作量很大,也极其繁琐,浪费了大量的时间。

比赛时,由于比赛场景,赛道尺寸,难易度等因素都是未知,同时规则要求比赛前不能更改智能车中的程序。

因此,为了后期调试过程中提高效率,比赛时能及时更改比赛策略,将在智能车上安装辅助设备。

本文为解决人机交互问题采用液晶显示模块显示智能车信息,拨码开关和键盘调整程序参数和选择策略,无线监测模块和上位机检测软件对车实时运行时的数据进行监测和存储等手段。

经过研究与分析,并进行了比较,最终选定nokia5110 LCD液晶显示模块,拨码快关与键盘,无线模块与上位机软件作为智能车的辅助设备,设计了接口电路,编写了程序。

通过比赛,智能车的辅助设备得到了很好地利用,不仅为调试节约了大量时间,而且及时修改比赛策略,大大提高了比赛成绩。

关键词:飞思卡尔;液晶;键盘;拨码开关;无线—I—毕业设计说明书(论文)外文摘要Title Freescale Intelligent Vehicle AuxiliaryEquipment Design And ImplementationAbstractFreescale Smart Car in the post-commissioning process, the need to constantly change the program's speed and steering gear deflection angle, their workload, but also extremely cumbersome, wasting a lot of time. The game, due to the competition scene, the track size, degree of difficulty and other factors are unknown, the rule requires that before the game can not change the procedures in the smart car. Therefore, in order to improve efficiency in the post-commissioning process, the game in a timely manner to change the game strategy and auxiliary equipment will be installed in the smart car.LCD module to display the smart car information to solve the problem of human-computer interaction, the DIP switch and keyboard to adjust the program parameters and selection strategies, wireless monitoring module and the host computer detection software on the vehicle run-time data monitoring and storage means. Research and analysis, and compared with the final selection of nokia5110 LCD LCD module DIP fast off the keyboard, wireless module and the host computer software as the auxiliary equipment of the smart car, the design of the interface circuit, write a program.Through the game, the auxiliary equipment of the smart car to good use, saving a lot of time not only for debugging, and in a timely manner to modify the game strategy, greatly improving the competition results. Keywords: Freescale;LCD ;Keyboard ;DIP switch;Wireless目录目录毕业设计说明书(论文)中文摘要 (I)毕业设计说明书(论文)外文摘要 (II)第一章绪论 (1)1.1飞思卡尔简介 (1)1.2飞思卡尔智能车竞赛国内外现状 (1)1.2.1飞思卡尔智能车竞赛国外现状 (1)1.2.2 国内智能车竞赛现状 (2)1.3飞思卡尔智能车辅助设备研究的背景及意义 (4)第二章飞思卡尔智能车系统分析 (6)2.1光电组智能车系统分析 (6)2.2摄像头组智能车系统分析 (7)2.3电磁组智能车系统分析 (8)2.4三组智能车总体分析 (9)第三章飞思卡尔智能车辅助设备的设计 (10)3.1显示模块 (10)3.1.1液晶模块简述 (10)3.1.2液晶模块主要参数 (10)3.1.3飞思卡尔智能车显示模块的比较与选择 (11)3.1.4 飞思卡尔智能车显示模块的使用 (12)3.2输入设备 (14)3.2.1矩阵键盘与拨码开关简述 (14)3.2.2矩阵键盘与拨码开关的结构与工作原理 (14)3.2.4飞思卡尔智能车输入设备的使用 (16)3.3在线监测设备 (18)3.3.1在线监测设备简述 (18)3.3.2在线监测设备种类种类 (20)3.3.3飞思卡尔智能车在线监测设备的比较与选择 (21)3.3.4 飞思卡尔智能车在线监测设备的使用 (22)第四章飞思卡尔智能车辅助设备在线调试 (24)4.1飞思卡尔智能车显示模块在线调试 (24)4.2飞思卡尔智能车在线监测模块在线调试 (24)—III—东北电力大学信息工程学院毕业论文结论 (26)参考文献 (27)致谢 (28)附录 (29)绪论第一章绪论1.1飞思卡尔简介飞思卡尔(Freescale Semiconductor)是全球领先的半导体公司,为规模庞大、增长迅速的市场提供嵌入式处理产品和连接产品。

第四届飞思卡尔杯智能车大赛技术报告 北京工商大学

第四届飞思卡尔杯智能车大赛技术报告 北京工商大学

摘要随着数字图像处理技术的发展,面阵CCD摄像头在自动控制领域得到了越来越广泛的应用。

本文在对CCD图像处理技术和单片机嵌入式应用进行深入研究的基础上,借鉴国内外先进技术,研制出了具有自动循迹,转弯,加减速功能的智能小车。

本文介绍了基于面阵CCD图像处理技术以及MC9S12DG128微控制器嵌入式技术的智能小车的设计原理及研制过程。

论述了智能小车自动控制系统的实现方法,着重讨论了智能小车的硬件设计和以Codewarrior C交叉编译器为开发工具的软件设计。

在智能小车的研制过程中,利用CCD摄像头采集到的图像存在杂点和误差,这对单片机的控制影响较大,因此需要运用图像处理技术对数字图像进行处理,以达到对黑线正确识别的目的。

关键词:智能小车; CCD; MC9S12DG128微控制器;图像处理AbstractWith the development of treatment technology of the digital picture , plane array CCD camera has got more and more extensive application on the automatic controlled field.This text is on the basis of the thing that use and further investigate to CCD image processing technology and single-chip computer embeddedly, learns from domestic and international advanced technology, develop and follow the mark automatically, turn, add the intelligent car which moderates the function. The introduction to this text is on the basis of plane array CCD image processing technology and the design principle of the intellectual car of MC9S12DG128 microcontroller embedded technology and research course. Havedescribed the implementation method of the automatic control system of intellectual car , have discussed emphatically the hardware of the intellectual car is designed and as the software design of the developing instrument with Code-warrior C compiling device alternately.In the course of research of the intelligent car , utilize the picture that CCD camera gathers to noise and error, this makes a great influence on control of the single-chip computer, so need to use the image processing technology to deal with the digital picture , in order to achieve the correct purpose that discerns to the black line.Keywords:Intelligent car ; CCD ; MC9S12DG128microcontroller ;Image processing目录1.1背景简介 (1)1.2本课题研究的目的及意义 (2)1.3国内外相关技术的发展现状 (3)1.3.1国外智能小车的发展状况 (3)1.3.2国内智能小车的发展状况 (4)1.4系统设计要求 (5)1.5智能小车的设计思路 (5)1.6本文主要研究内容 (6)1.7本文的篇章结构 (7)2.1路径识别方案设计论证 (7)2.1.1 方案一:基于光电传感器阵列的路径识别方案 (7)2.1.2 方案二:基于线阵CCD图像传感器的路径识别方案 (8)2.1.3 方案三:基于面阵CCD图像传感器的路径识别方案 (8)2.1.4 所选方案 (8)2.2面阵CCD图像传感器简介 (8)2.3面阵CCD图像传感器的工作原理 (9)2.4面阵CCD图像传感器的选择 (10)2.5图像处理方法 (10)2.5.1 图像处理技术基础 (11)2.5.2 图像的灰度变换 (11)2.5.3 图像的平滑处理 (11)2.5.4 图像边缘检测 (12)2.6本章小结 (13)3.1机械方面设计及改进 (13)3.1.1 车模基本参数 (13)3.1.2 CCD摄像头的设计安装 (14)3.1.3 底盘参数设计改进 (14)3.1.4 齿轮传动机构调整 (15)3.1.5 后轮差速机构调整 (15)3.1.6驱动电机介绍 (16)3.1.7 舵机介绍 (17)3.2智能小车电路设计 (19)3.2.1 所选用单片机介绍 (19)3.2.2 硬件电路系统组成 (22)3.2.3 供电电路 (23)3.2.4 时钟电路 (24)3.2.5看门狗电路 (25)3.2.6 电源稳压电路 (25)3.2.7 驱动电机/舵机电路 (26)3.2.8 CCD摄像头数据采集分离电路 (27)3.2.9 A/D采集电路设计 (28)3.3本章小结 (29)4.1软件设计环境 (30)4.2软件整体设计方案 (30)4.3程序评测及流程 (31)4.4程序模块介绍 (34)4.4.1 初始化 (34)4.4.2 摄像头图像数据采集以及处理 (35)4.4.3 速度采集以及速度控制 (42)4.5黑线提取算法 (42)4.6本章小结 (42)5.1软件开发平台C ODEWARRIOR IDE (43)5.1.1 Codewarrior IDE 功能介绍 (43)5.1.2 Codewarrior IDE 基本使用方法 (44)5.2本章小结 (48)第1章绪论1.1背景简介车辆与我们的社会生活息息相关,然而当今车辆的智能化发展还不是很迅速,特别是在安全性,智能化,车与路之间交互信息等方面。

“飞思卡尔”智能汽车系统设计

“飞思卡尔”智能汽车系统设计

作为最为普遍的交通工具之一 , 汽车与人们的生活息息相关。 一旦智能汽 车得到普及势必会走向量产化, 而在智能汽车普及之前应该制定出相关的设计 标准作为智能汽车的标杆。 智能汽车系统所包含的内容甚多, 如信息控制、 系统 结构、 数据采集、 系统数据库等方面都属于智能汽车系统所涵盖的范畴, 如果没 有统一的标尺, 则会让各个模块之间出现很大的差异化, 这样就会带来一系列 的问 题, 同时也会让智能汽车的构建变得繁琐、 复杂。 通过制定出 统一的标准 , 让系统兼容性得以保证的同时让整个智能汽车系统设计更加规范, 从而带动智 能汽车产业的发展[ 1 】 。
1 . 2 控制模 块
控制系统是智能汽车系统重要的组成部分 , 是实现人机交互的关键。 从当 前的汽车控制来看还是不能离开人工操作 , 只有在驾驶员存在的情况下才能保 证汽车的正常工作。 在驾驶的过程中, 如果时间较长则会给驾驶员带来极大的 疲劳感, 这样就 间接带来了交通事故隐患。 而在智能化汽车将能够摆脱人工操
科 学论 坛
l 蕾
C h i n a s c i e n c e a n d T e c h n o ] o g y R e v i e w
“ 飞 思卡 尔 ” 智能 汽 车 系统 设 计
王贯 安
( 中南大学 湖南 长沙 4 1 0 0 1 2 )
[ 摘 要] 随着 科 技的进 步 , 汽 车产 业也 发生 了翻天 覆地 的变 化 。 在计 算机 技术 、 网络技术 、 电子 技术等 高端 技术 的推动 下 , 智 能汽车 得到 了实 现 , 相信 随着 时 间的推移 。 智能汽车也将有着更加广阔的发展空间。 要让汽车实现智能化, 智能系统设计是十分重要的一个环节。 本文对智能汽车系统进行了综合性的阐述 , 并以 “ 飞思卡尔智” 能汽车比赛对智能汽车系统设计进行了探讨。 [ 关键 词] 飞思 卡 尔 智 能 汽车 系统 设计 中图分类号 : D4 1 2 . 3 文献标识码 : A 文章编号 : 1 0 0 9 - 9 1 4 X ( 2 0 1 4 ) 0 1 —0 2 2 4 一 O 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

飞思卡尔赛车及机器视觉设计方案第1章飞思卡尔赛车及机器视觉的概述1.1 智能车的研究背景1.1.1 智能车的发展历史1953 年,美国 Barrett Electric 公司制造了世界上第 1 台采用埋线电磁感应方式跟踪路径的自动导向车,也被称作“无人驾驶牵引车”。

20 世纪 60 年代和 70 年代初,AGV 仍采用这种导向方式。

但是,20 世纪 70 年代中期,具有载货功能的 AGV 在欧洲得到了应用并被引入到美国。

这些自动导向车主要用于自动化仓贮系统和柔性装配系统的物料运输。

在 20 世纪 70 年代和 80 年代初,AGV的应用领域扩大而且工作条件也变得多样化,因此,新的导向方式和技术得到了更广泛的研究与开发。

在最近的 10-15 年里,各种新型 AGV 被广泛地应用于各个领域。

单元式 AGV主要用于短距离的物料运输并与自动化程度较高的加工设备组成柔性生产线,除此以外,AGV 还用于搬运体积和重量都很大的物品,尤其是在汽车制造过程中用多个载货平台式 AGV 组成移动式输送线,构成整车柔性装配生产线。

最近,小型 AGV 应用更为广泛,而且以长距离不复杂的路径规划为主。

AGV 从仅由大公司应用,正向小公司单台应用转变,而且其效率和效益更好。

至此出现了智能车的概念。

1.1.2 应用前景城市公共交通是与人民群众生产生活息息相关的重要基础设施。

然而,目前世界上许多大城市都面临着由私人汽车过度使用而带来的诸多问题,例如道路堵塞、停车困难、能源消耗、噪声污染和环境污染等,这些问题严重降低了城市生活的质量。

优先发展城市公共交通是提高交通资源利用效率,缓解交通拥堵的重要手段。

国务院总理温家宝于 2005 年 10 月做出重要批示,要求优先发展城市公共交通,这是贯彻落实科学发展观和建设节约型社会的重要举措。

大容量城市公共交通,如地铁、轻轨等,其最大优点是空间利用率和能源利用率较高。

然而,由于缺乏足够的时间、空间、运力灵活性,在客流量不足的情况下,系统效率将大大降低,运营成本过高,难以大力推广和应用。

回顾汽车发展的百年历史,不难发现其控制方式从未发生过根本性改变,即由人观察道路并驾驶车辆,形成“路-人-车”的闭环交通系统。

随着交通需求的增加,这种传统车辆控制方式的局限性日益明显,例如安全性低(交通事故)和效率低(交通堵塞)。

最新调查表明,95%的交通事故是由人为因素造成,交通堵塞也大都与驾驶员不严格遵守交通规则有关。

如果要从根本上解决这一问题,就需要将“人”从交通控制系统中请出来,形成“车-路”闭环交通系统,从而提高安全性和系统效率。

这种新型车辆控制方法的核心,就是实现车辆的智能化。

智能车有着极为广泛的应用前景。

结合传感器技术和自动驾驶技术可以实现汽车的自适应巡航并把车开得又快又稳、安全可靠;汽车夜间行驶时,如果装上红外摄像头,就能实现夜晚汽车的安全辅助驾驶;他也可以工作在仓库、码头、工厂或危险、有毒、有害的工作环境里,此外他还能担当起无人值守的巡逻监视、物料的运输、消防灭火等任务。

在普通家庭轿车消费中,智能车的研发也是很有价值的,比如雾天能见度差,人工驾驶经常发生碰撞,如果用上这种设备,激光雷达会自动探测前方的障碍物,电脑会控制车辆自动停下来,撞车就不会发生了。

1.2 智能车设计要求介绍在在飞思卡尔比赛中,参赛选手使用大赛组委会统一提供的竞赛车模,以 Freescale 公司生产的 16 位微控制器 MC9S12DG128B 作为核心控制单元,自主构思控制方案及系统设计,包括传感器信号采集处理、控制算法及执行、动力电机驱动、转向舵机控制等,最终实现一套能够自主识别路线,并且可以实时输出车体状态的智能车控制软硬件系统。

各参赛队完成智能车工程制作及调试后,于指定日期与地点参加比赛。

参赛队伍之名次以赛车现场成功完成赛道比赛时间为主,技术方案及工程制作质量为辅来决定。

但与去年不同的是,今年的赛道与去年不同,今年的赛道黑色轨迹不是在中间而是在两边,对于摄像头足来说难度不是太大,对于激光组来说有一定的挑战性。

1.3 机器视觉介绍所谓机器视觉就是用视觉传感器代替人眼来做测量和判断,这也是模式识别的基础。

机器视觉系统是指通过图像传感器(即图像摄取装置,分为CMOS摄像头和CCD摄像头两种)将被摄取目标转换成图像信号,这个过程是由AD采样来完成的,然后把结果传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。

在智能车导航技术方面,机器视觉技术由于其能提供丰富的信息、价格相对低廉、能与其他传感器方便的进行数据融合等特点,成为当前有着广泛应用前景的导航技术之一。

1.4 小结基于此,本文主要解决的问题如下:1.如何选择摄像头。

摄像头有数字摄像头,有模拟摄像头。

关键是如何选择。

2.对图像采集时,在满足快速的情况下如何保证图像的准确性。

飞思卡尔比赛是竞速比赛,利用摄像头采集图像时必须要满足图像的快速性,因为采集的速度直接影响到处理器对赛车的实时控制。

3.如何对图像进行二值化。

二值化有多种方式,如何找到一种最优的二值化方式。

4.如何对反光处进行补线,并进行去噪。

通过以上几个问题的解决,可以大大的提高飞思卡尔赛车的稳定性和快速性。

第2章主要思路及技术方案概要2.1 总体设计主要方法步骤为满足飞思卡尔赛车的设计要求,总体设计思路如下设计思路:通过对摄像头采集到的图像的进行处理,然后通过测速电机对小车的实时速度的采集,处理器再对采集到的数据进行分析,然后控制小车的运动方向和速度。

同时外加小液晶和相应按键,这样可以根据现场情况来调节相应的PID参数来适应相应路况。

本章主要论述的是各种方案的对比以及最终方案的选择。

2.2 摄像头的对比与选择2.2.1 摄像头的选取图像传感器即摄像头是组成机器视觉系统的非常重要的元器件。

根据其原理不同摄像头主要分为两种:CCD(Charge Coupled Device)摄像头、CMOS摄像头。

CCD也称电耦合器件,其工作原理是:被摄物体反射光线到摄像头上,经过镜头聚焦到CCD感光芯片上,感光芯片根据光线的强弱积聚相应电荷,经周期性放电而产生表示图像的电信号。

CMOS摄像头其实跟CCD差不多,也是将光转换成电信号的器件。

它们的差异之处就是图像的扫描方式不同,CCD是采用连续扫描方式,即它只有等到最后一个像素扫描完成后才进行放大;CMOS传感器的每个像素都有一个将电荷放大为电信号的转换器。

所以CMOS的功耗比CCD要小。

由于CMOS功耗小,较CCD要便宜,而且图像质量满足要求。

对于摄像头图像采集,也可以用OV7620数字摄像头模块,或者使用高速外部AD进行采集。

也可以使用PAL制式黑白摄像头和单片机片内部AD 来进行图像采集。

另外根据摄像头的安装方式不同,也有旋转90度进行采集的。

对于整个程序的流程也有很多不同,有采完一场图像后进行处理的,也有采集一行就进行处理的。

2.2.2 模拟摄像头在采集图像之前,我们首先要知道摄像头输出信号的特性。

目前的模拟摄像头一般都是PAL制式的,输出的信号由复合同步信号,复合消隐信号和视频信号组成。

视频信号:真正的图像信号,对于黑白摄像头,图像越黑,电压越低,图像越白,电压越高。

在这里我们通过AD采集来得到亮度信号。

复合同步信号:用于控制电视机的电子枪对电子的偏转。

当电子枪收到行同步信号时,电子束就从上一行的最右端移动到下一行的最左端。

当电子枪收到场同步信号时就从屏幕的最右下角移到最左上角。

在这里我们需要用这个信号来控制采集像素的时序。

复合消隐信号:在图像换行和换场时电子枪回扫时不发射电子。

即收到复合同步信号后,电子枪要换位置时是不能发射电子束的,这时候就由这个信号来消隐。

在这里我们完全不用理会这个信号。

由于人眼看到的图像大于等于24Hz时人才不会觉得图像闪烁,所以PAL制式输出的图像是25Hz,即每秒钟有25幅画面,说的专业点就是每秒25帧,其中每一帧有625行。

但由于在早期电子技术还不发达时,电源不稳定,容易对电视信号进行干扰,而交流电源是50Hz所以,为了和电网兼容,同时由于25Hz时图像不稳定,所以后来工程师们把一副图像分成两场显示,对于一幅画面,一共有625行,但是电子枪先扫描奇数场1,3,5.....,然后再扫描2,4,6.....,所以这样的话,一副图像就变成了隔行扫描,每秒钟就有50场了。

2.2.3 数字摄像头OV7620是1/3CMOS彩色/黑白图像传感器。

它支持连续和隔行两种扫描方式,VGA与QVGA两种图像格式;最高像素为664×492,帧速率为30fps;数据格式包括YUV,YCrCb,RGB三种,能够满足智能车图像采集系统的要求。

OV7620采用的是NTSC制,每秒30帧,一帧两场,那么每秒就有60场。

意味着50/3MS就有一幅图像产生。

7620支持VGA(640x320)QVGA(320x240),且默认的是VGA格式,通过调整SCCB可以改为QVGA格式。

这样改有两个好处:首先像素小了。

那么像素同步时间增大了,采点方便。

再者减小计算量,没必要搞那么多的点。

320x240 pixels,理解为:有320行,一行有240个点。

视野和可视距离:这个和镜头的选择有关,据我测试,f=3.6MM 时视野应该有 25度左右,f 越大视场越小.可视距离需要调节镜头对焦.经我测试可视距离可以看十几米,毕竟相素值只有 30万多,用单片机读可以看到 3-4M 的距离.这里解释一下为什么用单片机读会打折扣.因为黑线宽度只有 2.5CM,太远了黑线会很细,采点之后就分辩不出是噪声还是有用信号了.在 1 米左右时,黑线宽度可用 8 个点表示。

2.2.4 摄像头的选定经过对比,选择数字摄像头不仅可以缩短设计周期,而且采集速度准确快速,所以最终选择数字摄像头OV7620。

2.3 二值化方案的选取图像二值化是数字图像处理技术中的一项基本技术,该系统中由于赛道是由黑色和白色两种颜色组成的,并且背景颜色基本也是白色的,系统的任务是识别出黑色的引跑线位置,由于其图像的干扰并不是很强,因此可以采用二值化的技术作为系统的图像预处理。

经过二值化处理后将原来白色的像素点用“0”表示,而黑色像素点用“1”表示。

根据阈值选取的不同,二值化的算法分为固定阈值和自适应阈值。

比较常用的二值化方法则有:双峰法、迭代法、大津法和灰度拉伸法等。

2.3.1 双峰值法在对赛道环境的分析中,我们可以发现黑线部分的亮度是相对比较固定的,其波动的范围非常小,小于20(亮度值最大为255),而白色底板的亮度值变化相对较大一些,但仍能保证其与黑线的亮度值有较大的梯度。

相关文档
最新文档